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Artificial Intelligence based on Deep Learning is opening new
horizons in Biomedical research and promises to revolutionize
the Microscopy field. Slowly, it now transitions from the hands
of experts in Computer Sciences to researchers in Cell Biology.
Here, we introduce recent developments in Deep Learning ap-
plied to Microscopy, in a manner accessible to non-experts. We
overview its concepts, capabilities and limitations, presenting
applications in image segmentation, classification and restora-
tion. We discuss how Deep Learning shows an outstanding po-
tential to push the limits of Microscopy, enhancing resolution,
signal and information content in acquired data. Its pitfalls are
carefully discussed, as well as the future directions expected in
this field.
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Introduction. Deep Learning is a type of Artificial Intelli-
gence (AI) which has recently seen a rise in academic re-
search and popular interest. This sudden boost has been
primarily fuelled by the invention of Convolutional Neural
Networks (CNNs), a novel machine learning algorithmic ar-
chitecture. In the early 2010’s CNNs became increasingly
prominent as tools for image classification, showing super-
human accuracy at identifying objects in images (1). Since
then, Deep Learning has expanded to many research fields,
showing its potential to outsmart humans in board games
such as Go (2), achieve self-driving cars (3, 4) and to sig-
nificantly improve Biomedical image analysis (5).

Recently, a growing amount of biology studies has used
CNNs to analyze microscopy data, laying the foundation for
a fundamental change in how imaging data is interpreted, and
how microscopy is carried out. The areas where Al has been
applied include: automated, accurate classification and seg-
mentation of microscopy images (6—8); extraction of struc-
tures from label-free microscopy imaging (also known as ar-
tificial labelling) (9—11); and image restoration, such as de-
noising and resolution enhancement (12—-14). Here, we give
non-specialist readers an overview of the potential of Deep
Learning, specifically through CNNs, in the context of some
of the major challenges of microscopy. We will also discuss
some of the current limitations of the approach and give an
outlook on possible future applications of Deep Learning in
Microscopy.

For a more in-depth view into the Al-field, we advise the
reader to see the Lecun et al. (15), which gives an extended
perspective on Deep Learning and its historical development.
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Fig. 1. Deep Learning compared to classical computation. a) Classical com-
puter programs convert an input (e.g. blurry image) into a desired output (sharp
image) via an algorithm with known rules and parameters. b-i) Neural networks are
trained with pairs of known inputs and outputs, e.g. a blurry and highly resolved
image of a cell. During training, the network learns to match its inputs by observing
a large number of paired examples. While doing so, it optimizes its internal param-
eters, gaining the capacity to predict a matching image when given a single input
(b-ii). b-ii) After training, the network can be used to perform the task similarly to a
conventional algorithm on novel data.

Additionally Litjens et al. (16), Angermueller et al. (17)
and Belthangady et al. (18) comprehensively discuss the ap-
plication of Al in Biomedical Sciences and Computational
Biology.

How does a CNN learn? CNNs are complex networks of
connected ‘neurons’ arranged in ‘layers’, nomenclature in-
spired by the animal visual cortex (19). Each neuron per-
forms a specific mathematical operations on its input and
passes the output to the neurons of the next layer of the net-
work. In CNNs, the operations are typically either convolu-
tions which extract patterns from images, or so-called pool-
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ing operations which reduce the number of pixels in the im-
age and therefore simplify the representation of the data. This
combination of feature extractions and data simplification is
what allows CNNs to 'understand’ the content of the images
and perform efficiently on many types of imaging data. Once
several layers are stacked upon another, networks become
‘deep’ and the information they can extract from inputs be-
comes increasingly complex (15).

Unlike conventional computer programs which are designed
to perform a set of user-defined and well-understood opera-
tions on the input data (Fig. 1a) (20), a CNN has to be trained
(Fig. 1b-i) on a so-called training dataset. This set consists of
paired inputs and outputs which describe the transformation
of the image that the user wishes the network to learn. For
instance, for an image denoising operation, noisy images and
matching high signal images have to be provided for train-
ing. The training dataset therefore defines the task that the
network performs. During training, the network compares
its output to the provided input and adjusts the parameters
of its neurons, e.g. the impact that each neuron has on the
next layer, until the network is able to infer an artificial out-
put which resembles the expected real-output. After training,
networks are tested on a validation dataset, using inputs pre-
viously 'unseen’ by the network, to determine if it can gen-
eralize over new data. In this case, real outputs are not used
to train the network but to determine its performance. Once
trained and validated, the network can be applied to new data
for which no real output exists, identically to conventional
computer programs (Fig. 1b-ii). Training is computationally-
intensive generally taking hours to day, especially for deep
networks with millions of trainable parameters. In compari-
son, after training, the inference process is considerably fast,
taking minutes to seconds.

However, the computational-performance of CNNS is in-
crementally improving with the development of increas-
ingly powerful processing units, notably Graphical Process-
ing Units (GPUs). Until the introduction of the first GPU-
enabled CNN in 2012 (1) called AlexNet, CNNs were largely
neglected in Al (15), because their training was too slow,
sometimes requiring weeks to months of computations to
complete. AlexNet greatly outperformed the competition at
the ImageNet image classification challenge in 2012, a semi-
nal breakthrough for the Al field.

The success CNN algorithms is both based on the design of
the network architecture, usually carried out by computer sci-
entists, and the availability of good training data. Generally,
the training dataset should contain many different examples
of the desired outputs. For example, a network designed to
learn to categorize an animal should be trained with images
showing the animal in different positions or environments.
Generating and curating the training dataset is often the ma-
jor bottleneck for the applications of CNNs.

CNNs in microscopy. One of the first studies using GPU-
enabled neural networks was able to segment neuronal mem-
branes from electron microscopy (EM) images (21), vastly
improving speed and efficiency of segmentation over the
state-of-art methods. Another breakthrough came through

the design of a more efficient network architecture which
combines a number of convolution/pooling layers (the en-
coder), with a number of layers of de-convolution/up-
sampling (the decoder) (7, 22). The encoder learns the main
features of the image and the decoder reassigns them to dif-
ferent pixels of the image. Due to this conceptual down- fol-
lowed by up-sampling, this network architecture was termed
"U-net’. U-nets are therefore very powerful for image-to-
image tasks (as opposed to simple classification of the im-
age), making them one of the most important networks for
microscopy applications (5, 9, 12, 23).

Researchers in life sciences face several challenges when
imaging biological specimens: How can phototoxicity and
bleaching of fluorescent labels be balanced against good sig-
nal or resolution? How many channels can a cell be imaged in
without interfering with native processes? And how can rele-
vant and complex information be extracted from large image
datasets, without tedious manual annotation and human bias?
In the following sections, we will present how Al methods
have recently provided efficient solutions to these problems.
While there exist some conceptual overlaps, we have sepa-
rated these into four categories: image classification, image
segmentation, artificial labelling and image restoration.

Classification. An important goal for microscopic image
analysis is to recognize and assign identities to relevant fea-
tures on an image (Fig. 2). For example, identifying mitotic
cells in a tissue sample can be essential for cancer diagnosis.
However, manual annotation is tedious, limited in through-
put, and experts can introduce bias into such annotations by
deciding which image features are important while ignoring
others. Although several computational methods have been
introduced to accelerate detection or classification tasks (24—
26), these still often rely on handcrafted parameters, chosen
by researchers. The advantage of CNNs is their capability
to learn relevant image features automatically. CNNs have
therefore been extensively used in the Biomedical imaging
field, especially for cancer detection, particularly as large
training sets have become more available (6, 27-31). The
classification accuracy of neural networks has been success-
fully applied to high-throughput and high-content screens
where it has shown expert-level recognition of subcellular
features (32-35).
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Fig. 2. Classification Schematic of neural network trained to detect and classify
cells of different types or stages, e.g. to identify mitotic cells

CNNs have also shown the capacity to accurately identify
cellular states from simple transmitted-light data. For exam-
ple, differentiating cells based on cell cycle stage (36), cells
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affected by phototoxicity (37) or stem cell-derived endothe-
lial cells (38). Previously, researchers would generally rely in
fluorescent reporters to identify these cellular features, CNN's
now enable the same findings in a label-free manner.

Segmentation. Segmentation is the identification of image
regions that are part of specific cellular or sub-cellular struc-
tures and often is an essential step in image analysis (Fig.
3). A drawback of some existing segmentation platforms
(24, 26, 39) is that they often need user-based fine-tuning and
manual error-removal, requiring time and expertise (40). Im-
age segmentation can therefore be a bottleneck for research,
particularly for high-throughput studies. CNNs was success-
fully shown to outperform classical approaches in terms of
accuracy and generalization (7, 21, 22, 40, 41), especially
when performing cell segmentation in co-cultures of multi-
ple cell types (40). In the context of histopathology, CNNs
have been successfully used to segment colon glands (42-46)
and breast tissues (47, 48), outperforming non-deep learning
based approaches.
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Fig. 3. Segmentation Schematic of neural network trained to assign color-values
to pixels on images, allowing the construction of segmentation masks.
Naturally, there is overlap between the challenges of classi-
fication and segmentation since both require the network to
learn about specific regions of an image. Hence, segmenta-
tion is often used with subsequent classification and can even
improve the accuracy of classification (29, 49).

Artificial Labelling. The analysis of specific structures in
cells, especially in light microscopy, typically requires the
introduction of labels, either by genetic labelling or chemi-
cal staining, which can disturb the biological system. Ad-
ditionally, fluorescence microscopy, especially when using
laser illumination, is inherently more phototoxic to cells than
transmitted-light imaging (50, 51). With this in mind, two
studies using CNN methods have shown that specific cellu-
lar structures, such as nuclear membrane, nucleoli, plasma
membranes and mitochondria, can be extracted by neural net-
works from label-free images (9, 10). The networks used here
were trained to predict a fluorescent label from transmitted-
light or EM images, alleviating the need to label and acquire
the corresponding fluorescence images (Fig. 4). This capac-
ity is especially useful when tracking individual structures
over long periods of time. It was also shown that the net-
works can achieve high accuracy using a training dataset of
only 30 to 40 images (9), and can simultaneously identify
dying cells or distinguish different cell-types and subcellular
structures (10).
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Christiansen et al. (10) also demonstrated their network’s
ability for transfer learning, a method allowing a pre-trained
network to perform a new task with minimal additional train-
ing. The network showed promising results for transfer learn-
ing between different microscopes and labels, highlighting
the versatility of these networks’ performance.
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Fig. 4. Artificial Labelling Schematic of neural network trained to label cellular
structures in images of unstained cells or cells imaged in bright field.

While the network task of artificial labelling is similar to
‘classic’ segmentation, the main difference in this approach
lies in the creation of the training set which does not require
to be hand-labelled. The networks are simply trained from
paired frames obtained from cells imaged in bright-field and
fluorescence modalities.

Image Restoration: resolution and signal. The amount
and quality of features which can be extracted from a micro-
scopic image is limited by fundamental constraints inherent
to all optical set-ups: signal-to-noise ratio (SNR) and reso-
lution. Therefore, overcoming these limitations constitutes
a central research goal in microscopy. In particular, super-
resolution microscopy (SRM) (52-56) now allows imaging
of cellular structures at the nanoscale using light microscopy.
However, phototoxicity, bleaching and low temporal resolu-
tion still limit the capacity to achieve high-resolution long-
term imaging in living specimens. Several research groups
have proposed CNN methods addressing some of these is-
sues in the last two years (12—14). Training approaches for
networks published to date fall into two categories which
could be described as naive and informed. In the naive ap-
proach, training datasets consist, for instance, of pairs of im-
ages acquired at low and high SNR and the network learns
to predict the high SNR from the low SNR. The training
dataset can be obtained from acquiring images at short and
long exposure time or at different laser intensities. This ap-
proach was demonstrated on the highly photosensitive organ-
ism Schmidtea mediterranea and allowed a 60-fold decrease
in illumination dose, enabling longer and more detailed ob-
servation of this organism in vivo (12). The authors also used
the same approach to obtain SRM images from diffraction-
limited image data, using the SRRF method as a reference
(56, 57). Similarly, SRM images can be obtained from con-
ventional confocal microscopy images using STED to ac-
quire the high-resolution training dataset (14).

CNNs in Single-Molecule Localization Microscopy.
CNNs have also recently generated interest in the Single-
molecule Localization Microscopy (SMLM) field. All avail-
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able studies were published within the last year, by indepen-
dent groups, suggesting that the potential of Al for SRM is
increasingly recognized in the community (13, 58? -60).
Applying sophisticated network architectures, with combi-
nations of widefield and SMLM data as inputs (13, 58), it
is possible to train a CNN for SMLM reconstruction. Here,
the networks do not learn to localize individual fluorophores
as typical single-molecule localization algorithms do, but in-
stead to map sparse SMLM data of either microtubules, mi-
tochondria or nuclear pores into SRM output images. This
demonstrates the strength of CNNs for pattern recognition in
redundant data, like SMLM data where only a small num-
ber of frames may suffice to reconstruct a Super-Resolution
image. Interestingly, some of these algorithms require no pa-
rameter tuning or specific knowledge about the imaged struc-
tures (58). Especially, for high emitter density, this is advan-
tageous over conventional SMLM reconstruction algorithms
which can be time-consuming and require sample-dependent
optimisation of imaging parameters.

Two other groups have used a different approach to SMLM
reconstruction which could be termed ‘informed’ as it makes
use of the intrinsic properties of SMLM data (59, 61). Here,
networks are trained to learn the positions of fluorophores
from SMLM input images. In contrast to naive training,
this means that such CNNs can only be used for data ac-
quired with SMLM techniques. However, the advantage is
that the output of these networks contains the positional infor-
mation of the fluorophores whereas the output of naive net-
works does not. The outstanding question about how neural
networks manage to produce Super Resolution images from
sparse or widefield data, is circumvented by this approach.
The reconstructed images are therefore more similar to stan-
dard SMLM reconstructions making the resolution improve-
ment easier to interpret.

While achieving similar accuracy to state of the art SMLM
alogorithms (62), a main achievement of deep learning for
SMLM is the speed with which super-resolved images can
be produced. In several studies this was increased by several
orders of magnitude compared to conventional reconstruction
algorithms (13, 58, 60, 61).

Discussion. The use of neural networks is transforming
microscopy both by allowing human or super-human per-
formances for a number of image analysis tasks and as
an automated high-performance tool for big-data analysis
(34, 35, 40) (Table 1). However, while performance, versatil-
ity and speed of neural networks is likely to continue increas-
ing, there are significant challenges which will not be solved
by improved processing units. A frequently raised concern
in the microscopy community over Al is how much machine
outputs can be trusted to represent data. This is a real con-
cern since CNNs have been observed to cause image hallu-
cinations (66) or to fail catastrophically simply as a result of
minute changes in the image (67). To address this issue, sev-
eral groups have assessed the presence of artefacts in their
their network output images, notably using SQUIRREL (12—
14, 60, 68, 69).

While this may identify the presence of artefacts, it does not

address the underlying problem that it is difficult to inter-
pret how CNN architectures produce their output from the
image input. This lack of interpretability of network out-
puts is particularly concerning in the case of resolution en-
hancement, where it is not clear what information a CNN
can extract from a diffraction limited image to achieve a non-
diffraction limited image and how deep learning algorithms
achieve this without producing significantly more artefacts
than standard algorithms (12, 14). Another consequence of
this is that the design of CNN architectures has been referred
to as ‘notorious as an empirical endeavour’(10). Choosing
network parameters such as network depth, number of neural
connections, learning rate and other hand-coded features of
neural networks, also termed hyperparameters, is therefore
based on evaluating the respective choices by performance
(34,59, 70, 71).

Beside issues of interpretability, there are other anecdotal ex-
amples where networks have ‘cheated’ their way to high per-
formance, e.g. by using undesirable features such as empty
space (37) to identify dead cells or by identifying patterns in
the ordering of the training set, but not in the images them-
selves (72). This shows how much of the performance of
Deep Learning methods relies on the choice and curation of
training data sets.

Despite these issues, Al has great enabling potential for mi-
croscopy, given super-human performance in classification
tasks and image reconstruction. Hence, the issues discussed
above should not discourage the use of CNNs as a research
tool but be reason for caution when interpreting the perfor-
mance of neural networks, as for any computational analysis
tool.

Outlook Most of the methods reviewed here were published
within the past 24 months, demonstrating the massive inter-
est in deep learning as a versatile and powerful tool for mi-
croscopy applications. However, the delay between devel-
opments and their applications means that some areas of Al
research have not yet been translated to microscopy.

For example, transfer learning is an area which will likely
become more widely investigated, allowing the use of pre-
trained networks to carry out a new task, forms of which are
only starting to become available (8). Finding methods to re-
use neural networks robustly on multiple different tasks, dif-
ferent image sizes or images taken on different microscopes
would make deep learning a much more flexible and usable
approach for image analysis than is currently possible. Im-
portantly, it would reduce the need for large training datasets
and shorten the training needed for new tasks. Furthermore,
it would lower the accessibility barrier of the approach and
minimize the need for biologists to be fully familiar with neu-
ral network specifics. This would in turn allow deep learn-
ing to become a tool, rather than a method that needs expert
knowledge. This will likely open the door for deep learn-
ing to become an even more widely used method within life
science.
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Table 1. Major publications from the recent years applying or developing deep learning to microscopy. This table covers the main four themes where Al has provided
solutions to some of the major limitations of microscopy in the recent years.

Classification/Segmentation

Authors Year Details Reference
Ning et al. 2005 Classification and segmentation of tissues in stages of C. elegans development “4n
Ciresan et al. 2012 Segmentation of neuronal membranes in EM 2n
Ciresan et al. 2013 Mitosis detection in breast cancer (6)
Long et al. 2015 Introduction of fully convolutional networks (fCNN) for segmentation tasks 22)
Ronneberger et al. 2015 U-net: significant increase in efficiency for image to image networks @)
Kainz et al. 2015 Colon gland segmentation, network outperforms handcrafted feature detection (42)
Kraus et al. 2016 High-throughput classification and segmentation in yeast (33)
Z.Xu et al. 2016 Accelerated cell detection in very large images and images with large cell numbers 27
Bauer et al. 2016 Cancer cell survival in different organs (63)
Yao et al. 2016 Lung cancer survival prediction via biomarker (subtype) discovery (64)
Diirr et al. 2016 Phenotyping of over 40000 drug-treated single-cell images (65)
van Valen et al. 2016 Efficient cell-cell segmentation in live-cell imaging (40)
Richmond et al. 2017 Identification of cells showing damage from phototoxicity (37)
Kraus et al. 2017 Identification of yeast strains and mutants and subcellular protein localisations (3%
M. Xu et al. 2017 High-throughput identification of blood cells from sickle-cell anemia samples 47
Pédrnamaa & Parts 2017 High-throughput classification of protein localisation in yeast 34)
Godinez et al. 2017 Phenotyping cells after drug treatment, organelle identification (32)
Eulenberg et al. 2017 Identification of cell-cycle phases and differences in disease stages (36)
Kusumoto et al. 2018 Detection of epithelial cells derived from iPSCs (38)
Falk et al. 2018 U-net as ImageJ plugin for non-experts, includes pretrained network ®)
Artificial Labelling
Authors Year Details
Christiansen et al. 2018 Label Prediction in fixed and live cells (10)
Ounkomol et al. 2018 3D label prediction in live-cell, IF and EM images )
Luetal 2018 Prediction of fluorescent protein localisation in human and yeast cells an
Image Restoration/Super Resolution
Authors Year Details
Nehme et al. 2018 SMLM images from diffraction limited input (58)
Boyd et al. 2018 Identifies localisation of fluorophores from STORM single frames (61)
Wang et al. 2018 Conversion of low NA to high NA or diffraction limited to STED resolution images (14)
Ouyang et al. 2018 SMLM reconstruction using very small number of frames to predict SR image (13)
Hess & Nelson 2018 PALM reconstruction network trained directly on the image to be analysed (59)
Weigert et al. 2018 Denoising and resolution enhancement in different organisms and cell types (12)
Liet al 2018 SMLM localisation by deep learning and artefact removal by statistical inference (60)
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