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ABSTRACT

Komlos conjecture is about the existing of a constant upper bound over the dimension n of the function
K (n) defined by

Kn) = max ISt el )
{W,...,W}E{VER": IV 1l,=1

In this paper, the function K (n) is evaluated first for lower dimensions, n < 5, where it found that K (2) =

V2, K(3) =20 K@) =3, and K(5) = U2
\/n —[log,(2"=1/n)] is found to be a lower bound for the function K(n), from where it is concluded

that the Komlos conjecture is false i.e., the universal constant k = max K(n) does not exist because of
n

}" ({81 sn}e{ 1,1}

For higher dimension, the function f(n) =

lim K(n) = hm log(n) — 1 = +oo.

n—-oo
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Introduction

J. Komlos has made the following conjecture: For a given dimension n, let K(n) denote the minimum
value such that: for any set of n Vectors 7{ ) e 7,: € R™ with ||I7>l||2 < 1 ,there exists weights ¢; =

+1 or — 1 such that
n
Z Sil_ii
i=1

Kolmos has conjected the existence of a universal constant K such that K(n) < k for any dimension n.
The [, and I, norms in R™ are denoted by ||. ||, and ||. || respectively.

< K(n).

o)

This conjecture was referred by Joel Spencer [8] in 1994, where he linked kolmos Conjecture to
Spencer’s famous Six Standard Deviation in 1985, see [9].
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The main nontrivial result known, which is due to Joel Spencer [9], is that if k < n then ||Z{-‘=1 si7i||w =

O(log (n)). The main result of D. Hajela [4] was very close to disprove the Komlos conjecture, where
precisely he has proved the following theorem:

THEOREM 1. Let f(n) be a function that’s goes to infinity when n goes to infinity with f(n) = 0(n) and
let 0 < 1 < 1/2.Then form n > n, (where ny depends only onnand 1) and any A € {1, —1}" with
|A| < 2™/ there are orthogonal vectors x4, ..., x,, in R™, ||x;|l, < 1forall 1 < i < n, and such that

Aloglog f(n) >

llegxe; + -+ + gnxnllo = exp <log Tog log F(n)
forall (g4, ..., &,) € A.

The previous theorem disproves the conjecture of Komlos over the set A € {1, —1}" where |A| <
2V The proof of Theorem 1 is based on certain inequalities which arise in the geometry of convex
bodies [1], [10], and [2].

Komlos Conjecture is also related to discrepancy theory, paper of J.Becka and T.Fiala [6], where it states
that for a global constant K and for any m X n matrix A, whose columns are inside a unit ball, there
exists a vector X € {—1, +1}" such that ||AX||, < K.

The best progress in proving Komlos conjecture is a result given by Banaszczyk [11] who proved the
bound

i <
xe{r_rll{gl}nllAX | < K+/log(n)

for a global constant.
This is the best known bound for Becka-Fiala conjecture as well [5].

Discrepancy is a challenging problem that has application in geometry, data analysis, and complexity
theory. The books, J. Matousek [7], B. Chazelle [ 3], and J. Beck and V.T [5], provide references for a wide
array of applications.

For lower dimension, the idea is to find a hypercube of minimum side of 2K , where all vertices formed
by different combinations of the weights, 2.7, sil_/i , should be all inside the hypercube. Also It is not
hard to show that vn is an upper bound for the function K (n). The proof can be carried out by funding
find a particular weights & such that all vectors Vi,..,V, €R"with ||I_/Z ||2 <1,s0

n
-
*
i=1

The below boulets are the details of the proof:

< K() <Vn.

o)

e We will prove first that | X7, & Vi”z < +/n, which it is a sufficient condition to prove that
X & Vil , < V.
e For dimension 2: the upper bound can be evaluated by using cosine rule as follows:
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||$II71 + S;I_/)Z ||2 =
2

—y2 2 e e
J||V1||2 +|[Vell, = 2[[val, V2|, cos(Vy, V2 )
< V2,

where the weight z—z is chosen in order to have cos (171, 72) = 0.
1

e If we suppose that | X! & V.|l < vn—1, we need to prove that >rltel Vi+ e Vn
2

vn. Again by cosine rule, we can write the following:

n-—1 n—

gV el < |l Z

i=1 2 =1
< vi+n-—-1

< V.

-

where the weight g, is chosen in order to have cos ( el Vi, &n Vn) =0

e From the principle of induction proof, it is concluded that all vectors 7{ e) 7,: € R™ with
v ||2 < 1, the weights can find & such that

1By & Vill, < vn.

Since ||Z; & Vin < |z, & 7i||2, we can conclude that the function K(n) has an upper bound of
order V.

We can extend the Komlos conjecture statement to the below lemma, where it summarizes very

interesting properties related to special vectors, I_/Z ,i=1,....,n, that cannot cancel each other further
than K(n) .

Lemma 1: Let C™ be a set of vectors in R™ have [, norm at most 1, and we denote by V* as a set of
vectors in R™ that satisfies V* = {71) A } = argmax m1n ”Z
Viecn

The set V* satisfies the below properties:

i.  Forany vector I_/; in V* has [, norm equal to 1, ”I_/; ”2 =

ii.  Allthe vertices have the same distance [, i.e.,
Min ||Shiad || = Max [Tad|
g€{—1,+1} Liz1 &N o sie{—fsn} Leb, o
iii.  K(n) is strictly increasing sequence, i.e., for all integers m > n implies that
K(n) < K(m).
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A proof of the previous lemma will be publish soon in order to prove that K (n)~./log,(n).

The following sections are consecrated to evaluate the function K for a different dimension, the exact
value of K will be calculated for a dimension less or equals to 5 and a lower bound will evaluated for
any dimension n.

Evaluation of K(2):

It is obvious to see that the constant K (1) for dimension one is equal to one, and it is quite easy to
calculate K (2) by using some basic rules in geometry.

To find the value of K(2), it will be useful to analyze the parallelogram formed by four vertices centered
at the origin, resulting from the four combinations $I71 ¥ 72 (see Figurel)

Figure 1. A parallelogram formed by four vertices, 171 + 172, 171 — 172, —171 +

Vv, -V, —,.

By using the cosine rule, we can find the length of the big and the small diagonals respectively as
follows:

A AR AR AR
2 =, + IV, = 2Vl [Vl cos(6),
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where 6 is the acute angle between the two vectors 71 and 72 .

We can notice that the small diagonal [ has v/2 as an upper bound, i.e.,

JWl, + 17, = 2071, 171, cost@) < (I, + 7], < V2.

As it was mentioned before, the two weights, €; and €, , can be chosen in such a way the length of
81171 + 82172 is smaller than the length of diagonal [, in which it implies that for all vectors Vi inside the
circle of center (0,0) and Radius =1, we can find &; and ¢, such that ||21171 + 82172 ||OO <Kn) <+2.

In different method the prove of K(2) < V2 can be carried out by using technic of proof by
contradiction. Let’s assume the case where the vertices A, B, C, and D are located outside of the red
square of side 2v/2 as it is shown in Figure 2.

v

Figure 2. ABCD is a parallelogram with for vertices located outside of square
whose side is V2 has min(d;) = /2.
13

The possibility of having all vertices,?l_/)l ¥ 72 , outside the red square in Figure 2 is impossible! Because
it contradicts with the fact that small diagonal length is at less or eqal t0 /2.

From previous proof, we can conclude that K(2) < V2, and it is enough to find a particular case where
min||ell71 + &V, | =+2in order to prove that K (2) = 2.
& ©
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Lt’s considerthe case where 71 = % (Ii) and 72 = % (;1) , so for any possible values of €; and ¢, ,

- -
we can calculate the value m1n||elV1 + &V, ||ooas follows:
&j

max<|61+e| |81—62|> . 11+52/¢ | [1-5/¢]
V2 W2 V2T 2

= —— max (1 + |82/gl| ,1 - |82/$1|)

§!|N Sil-

Therefore, we can conclude that K (2) = /2.

Evaluation of K(3):

Given the vector space R3, the span of the set S of finite vectors is defined as the set of all linear
combinations of the vectors in S, noted as follows:

K
Span(S) =12ai17i;k€ N,V,eS,a;€R }.

i=1
The calculation of K (3) will be splited to several cases related to different configurations of the three
vectors V4, V,, and V in R3.

Case 1: V; L Span(V,,V,) and Span(V,, V) = x-y plane.

As the vector V; is parallel to y-axe, then without losing generality, we can write the following:
rréiin||§373 + &V, + &V, ||oo=nr‘1siin||l7’3 + &V, + &V ||

by consequence,
minll Vs + &V, + &7, || =max {[Fs ], minl&,7, + &7, |, |

From previous section, we know that the constant K (2) = v/2 and from the fact that 52172 + 51171 € x-y
plane, we have

max{||l73||2,n‘1si'n||§2172 + &V ||OO } < max{||73||2,v2 }
L
<

I~

+1 -1 0
By considering 71 =141 , 72 =141 , and 73 = 0 |, K(3) can be calculated as follows:
V2 0 V2 0 +1



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2019

3
R
&V
i=1

_maX<|51+52| le; — & le |>
\/E ) \/E ) 3

_maX<|1+52| 11— &l 1>
V2o N2

= V2.

Therefore, under the case 1, the value K(3) is equal to V2.

o)

Case 2: Span(l71, 72) = x-y plane.
We split the vector 73 as follows:

73 = 1731691732 , Where 731 1 XY-plane. Without losing generality, the value of the weight &5 can be
fixed to 1 in our calculation.

Therefore, for all vectors V; , V;,V; € R3 with ||V] |, <1

3
.
&V
=1

min
&j

min
&j

2
173 + Z Sil_/)i
i=1 o0

2
1732 + Z Sil_/)i

i=1

o)

max ||I7)31||2,1r‘1siin

o)

From previous equation, we can see that the calculation is moved from dimension 3 to dimension 2 by
just calculating the following:

For all vectors V; , V3, V3, € R? with ||I_/; ||2 < 1, the below maximum is needed to be calculated
2
1732 + Z Sil_/)i
i=1
a

where 1732 = <ﬁ>, and without losing generality, the two assumptiona? + f? < land0<a <f <1
0

_, max min
v, eR3: v s1 &

o)

can be added.

To evaluate the value K(3), the question about the possibility to have all the vertices,1732 t 72 + 71,
outside the square of side 2+/2, as it shown in Figure 3, needs to be checked.
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Figure 3 Without losing generality, the vector 732 can be
consider with slope bigger than one, m >1. The two distances |
and L are the length of the small and the big diagonal
respectively.

From the Figure 4, the small diagonal, I, of parallelogram centered at the point 0’ is at most equal to V2
, consequently, we have to focus only on the green area, highlighted in Figure 5, the possible location of
two opposite vertices that form the two small diagonal L.
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Figure 4 Green Area is the only possible location of the vertices,@ + 71) + VZ), in order to have maybe
Vs TV F V5, > V2

The distance between the point 0’ and the midpoint of any two adjacent vertices is equals to either

||71|| or ||72 | , which implies that the impossibility to have, on one side of square, two vertices outside
of square, refer to Figure 4.

This impossibility can be proved by highlighting the fact that the distance between any point inside the
area S; and any point inside the area S, is bigger than or equal to 1, see Figure 5.
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A e N
/ \
/ \
v2| B(V2,V2) |
l [
\ /
TN /
=52 -\ 7

Figure 5. Distance between any point in the area S1 and any point in the area S; has minimum distance of 1,
S = {x >V2andy < O} and S, = {x* + y> < 1and 0 < x < y < 1}, where the red and green circles have
radius of 1 and centred at the point B and O respectively.

Therefore, under the case 2, the constant K (3) is upper bounded by v/2 .

+1
"\ o

+1
To conclude that K (3) = V2, it is enough to check the function K (3) for V; = | +1 , Vo=
V2

0
— 1 O
,and V3 =—| 0 |, where

Sl

ﬁ+1

o)

Case 3: General case

By symmetry, without losing generality, we can consider the weight €3 = 1 in our calculations, as it is
proven below

10
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o)

2
= min V3+Z— i
& = 3

2
. - -
= min||Vz+ ) ¢&V;

&j

o)

The vector Z§=1 eil_/i will be evaluated over two perpendicular spaces, x-y plane and z -axe, and a link
between the two space will be found in order to maximize the ||Zi3=1 &V ||oo

The projection of the vector Vi over the space x-y plane, Proj Xy_plan(vi), is denoted by vector ﬁi.

From case 2, we have proven that it is not possible to have all vertices, L73 + L72 + L71, outside the
square of side 2v/2 centered at the origin. An important question rises about the possibility to increase

the I, norm beyond V2 for two vertices and compensate the [, norms of the two other vertices by I,
norm over z-axe?

To answer the previous question, we need to find z-coordinates of three vectors Vi that satisfy the
following statement:

For each possible weight’s vector (1, &, £;) where ||L73 + Zfﬂ ejﬁi“w < V2 then
12: + 231 g Zil = 175 + 23y g2 > V2 .

- —
To summarize the above idea, we create an example of vectors V;, where ||Zi3=1 siVi”w > /2, as

—X1 —X X3
V1=<}’1),V2=<}’2),andV3=<3’3),
Zq —Z3 Z3

R
where x; , y;, z; are all non-negative value with ||I/i||2 =Jx2+ y?2+z2<1,

follows:

We assume the following equations

f 1”173 _172 _171”00 =x1+x; +x3 = K1
“173 +7, '|'I71||0O =y1+y:+y3=K;

th I||I73_I72+I71||OO:Z:1+22+Z3:K3
||V3 + I72 —171”0O = |z3 — 21 — 2,| = K.

By symmetry, we can consider the constants K; = K, and K53 = K,.

11
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Then the system that is needed to be solved is summarized by the following equations:

X1+X2+X3=K1

it+y:+y3 =K
Z1+22+Z3:K3
Z1+Z2_Z3:K3

From the last two equations, we conclude that
z3=0
By symmetry, we can conclude that
X3 =Y3
Since ||73 || < 1, itis convenient to increase x3& y3 as much as we can in order to maximum the value
of K, where it can be found when the coordinates of 73 are:

1
X3=3’3=ﬁ

Therefore, the system will be simplified again as follows

V2
X1+XZ:K1—7

V2

=K, ——
Vit 175

Z1+ 27, = K3
Again by symmetry, we can consider the following equations:

X1=)1=a

X, =Yy2=p

1 =2 =Y

In order to maximize K and by symmetry, we need to impose that K; = K3, then the final system that
need to be solved is as follows:

V2

a+ B = K——2
K
r=7

a’l+pr+yi<i,
the last inequality comes from the constraint that ||I7)l||2 <1, fori=1,2.

Again, without losing generality, we can assume thata = f3,

12
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The maximum value of K can be calculated by

K V2
“=5 T
K
r==
202 +y%2 =1

So, we end up to solve the below quadratic equation
K V2\ K\
2(3-%) +(3) =1
2 4 2

3K2—2V2K-3=0

After simplification, we find:

The solution of previous quadratic equation is when the value K is equal to ‘/EJ;‘/H,
Hence

3

@ or not. A cylindrical

Coordinate has been used in our simulation to check most of the cases, the possible coordinate’s values

A simulation is used to answer the question if the value K(3) is eqal to

of the vector Vi are summarized as follows:
x = r cos(0)sin (a)
y = r sin(0)sin ()
z =71 cos (a)

where 6 = [start value: step: end value] = [0:0.001: 21] , @ = [start value: step: end value] =
[0:0.001: 2rt] , and r = [start value: step: end value] = [0: 0.01: 1].

lie. K(3) = :

The simulation has showed that the value K (3) is equl to .

VZ+V11 VZ+V11
3

The constant K(4)

Before giving the approach for dimension 4, we will review the evaluation K (3) for dimension 2 and 3
in a different ways in order to be generalized later on.

- a . a
For dimension 2, we denote by V; = (ﬁi) andV, = (ﬁj) the two particular vectors that verified

13



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 October 2019

Ir;ln“r/; + 82172”00 = K(Z)
1

By symmetry, we can assume that

||I71 + 172“00 =a,t+a; = K(Z)

“171 - 172”00 =p1—B2=K(2)

From the definition of K(2), to get the maximum value of it, the coordinates of the two vectors should
be non-negatives values except the coordinate [, should be a negative value.

By symmetry, we denoteay = a, =a & 1 =—F,=0.
to find K(2), it is a enough to solve the following system:

2a = K(2)
{2[3 =K(2)

under the constraint a® + 2 < 1.

The maximum K(2) can be found by considering a? + 2 = 1, so the previous system is equivalent to
the following quadratic equation

() + () =

Therefore

K(2) = 2.

a1 a; as
For dimension 3, we would like to find V, = <ﬁ1) LV, = <ﬁz) and V; = <33) that verify
41 V2 V3
K(g) = 2nl£n||173 + 82172 + 81171”00.
1,€2

&1

All possible cases of the vector &€ = <£2> will be gathered under a matrix named Az, where its rows 1;
1

form all cases of the vector €.

The matric A3 is defined as follows:

+1 +1 +1
A = +1 -1 +1
3_ .
+1 +1 -1
+1 -1 -1

The four rows are not independent vectors because it is noted that 1, = r, + 13 — 13.

By symmetry, we can assume the following equations

14
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”173 +7, '|'I71||0O =las+a; + a1l =K(3)
Vs + 7, - I71”00 =|Bs+ B — Bl =K(?3)
Vs =V, + Vil = lys —v2 + 72l = K(3)

”173 _172 _171”0O =lys—v2 =11l = K(3)

In order to maximize the value of K(3), it is suitable to consider the coordinates 1, y1,and y, asa
negative values, so the coordinate of the three vectors Vi will be summarized as following

o 4%) a3
V= <— B1 ) V, = < B )andV3 = <[>’3),
4! -2 V3

where all parameters, («; , ; ,¥;) are non-negative values.
To calculate K (3), it is enough to solve the below system:

az+a; +a; =K(3)
B3+ B2+ Pp1=K(@3)
Ys+v2+y:i =K(Q3)
—¥s+v2+v1i=K(@3)

Under the constraints

a?+ B +r?<1

a2+ B +y2 <1

as?+B° +ys? <1
From the last two equations of the system we can conclude thaty; = 0.
By symmetry also, we can assume that

A== =p=p
Y2=V1 =Y

az=pfz3=a

Therefore,
{Zﬁ +a=K(3)
2y = K(3)
Under the constraints
2% +a% <1
20> <1

15
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In order to maximize the value of K (3), the two constraints can be considered as
2% +a%=1
2 =1
Then the system will be simplified as follows

28 = K(3) -g

2y = K(3)

The below quadratic equation is needed to be solved to calculate the value K(3) ,

MECIEY

(20

2 4

After simplification, the quadratric equation can be as follows:

3K(3)2 —2vV2K(3) =3 =10

As a consequence, it concludes that

V2 +4/11

KQ@3) = 3

The particular vectors that cannot canceled each other further than K(3) are define as follows:

K@ _y2 K@ _ V2 Vz
4 4 4 4 7
V, = -’(4(3)+§ , V, = @_g and V= | vz |.
K@) _k@) 0
2 2

Note that these particular three vectors are not unique solution of argy min||¥ &V, ||oo
€i

The idea is to generalize the previous approach in evaluating the function K (n), for that let’s denote by
V= {174, 73, 72, 171} the set of particular vectors that satisfy the below equation

3
174 + Z eil_/i
i=1

The previous matrix A; can be extended to matrix A4 in order to fit all possible 4-dimension vectors
(1, &,&,,¢&3) as follows:

K(4) = min

€1,€2,€3

o)

16
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+1 +1 +1 +17
+1 -1 +1 +1
+1 +1 -1 +1
+1 -1 -1 +1
+1 +1 +1 -1
+1 -1 +1 -1
+1 +1 -1 -1
+1 -1 -1 -1

where it is noted that 1;,, = 1,41 +1; —1;_4, fori > 1, and dim(span(rl,rz,r3)) =3.

-
The idea is to well assign each row 7; to one of fourth dimension in order to avoid zero coordinate in V; ,

which it is a consequence of maximizing the value of K (4), i.e., the axes where [, norm of 74 + Zi3=1 eil_/i
is located will be distributed over all possible combinations of (1, &4, &5, €3) in a way to maximize the
value K (4).

The below diagram, in Figure 6, identifies which coordinate will be eliminated, being zero, when we
associate two rows to same axes.

Figure 6 A link between gathering two rows as system of
equation and the index variable that will be eliminated. 17
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From previous diagram, the rows are gathered as follows

o () |VakVa+ Vo + V|| = Vi £ Vi + V3 + V| =K(4)
o (s Vet VoV, —Vi|| = |V2+VZ£VZ -V =K®
o () |[VamVs—Vo Vi =|V@ —V§—V§ £ V| =K(4)
o (ry1e): | HVat Vs — Vo + Vil = 12V + Vi — Vi + V=K (4),

where Vij is the j" coordinate of vector Vi.

In order tomaximize the value K (4), the coordinate’s sign of Vi can be found as follows:

a 4%) as Ay
> [=B2\ 5 [ B2\ = | Bs > | Ba
Vi= Y2 |’ V2= VY2 |’ Vs = —V3 and Vs = Ya |

w» —W3 Wy Wy

where «;, B;, y; and w; are non-negative values.

The negative sign highlighted at the coordinate of I_/; comes from rows 1y, 15, 14, and r3. For instance, if
we assume that ||74 +¥3, SiVin = |21, ga; + ay|, wherer, = (1,—1,—1,1), in order to get
maximum value of K(4), it is preferable to consider the two coordinates a, and a3 as negative values
such that the equation 1(a;) — 1(a,) — 1(a3) + 1(a4) = K(4) will be equivalent to the equation

lag| + az] + las| + |ag| = K(4).
The rows distribution can formulated by the following systems of equations

. a4+a3+a2+a1:K
(rl,rz).{a4_a3+a2+a1 =K

(Bt Pt PatPi=K
O N E R

(12, 7g): {

=>a3:0

Yatys+ya+yvi =K

=y, =0
Yatyst+yv.a—v1i =K n

W4+W3+W2+W1:K

(r3,r6):{_W4+W3 +W2 +W1 :K=>W4 =0

The system can be simplified further by

18
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0.’4+0!2+(X1=K
PstPs+p1=K
Yatys+y, =K
W3+W2+W1=K

Under the below constraints

ai +Bi+vi=1
wi+B5+vi=1
ai+wi+yi=1
a?+pZ+wi=1

As before, the previous system of equations needs to be matched with coordinates of the four vectors

in order to maximize the value of K(4), then

LSTNY)
[V]J VZPV3PV3] = 0 ! —Y>
Wy —Ww;

By symmetry, we can assume that

Ay =0y =1 = A
Pr=P3=Pp1=P
Ya =V3=V2=Y

W3 =W, =W, =W

Therefore
a=K/3
B=K/3
y =K/3
w=K/3

To maximize K, the constraints can be assumed to be as follows:

1=a?+p%+y?
=a?+ B% +w?
=a? +w? +y?
= w? + B% + 92

0
B3
V3
w3

Ay

Ba
Val
0

To find the value of K (4), it is enough to solve the below quadrature equation

2

K
a2+32+y2=3(§) =

1.
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It implies that
K(4) =3,
and the coordinates of the particular set of vectors I_/Z are summarized under the below matrix
1 1 0 1
A A AR
1 -1 1 0

Note: Other distribution can formulated by the following the below configuration:
The matrix can be formulated differently as follows:

+1 +1 +1  +17
-1 +1 +1 +1
+1 -1 +1 +1
-1 -1 +1 +1
+1 +1 -1 +1
-1 +1 -1 +1
+1 -1 -1 +1
-1 -1 -1 +1

From the below Table 1, the row distribution can configurated by the following systems of equations

. a1+a2+a3+a4:K _
(rl,rz).{_a1+a2+a3+a4:K=>a1_0
Pr+ B+ B3+ Pa=K
T, 1g): =3 =0

(re,7s) {.31—.32"',33"'34:1( &
Vityv2tys+rva=K

3,177): =3 =0

(rs,77) {V1+V2—Y3+V4=K Ys

wy+w, +wz+w, =K
(r4,r5):{wl Fwytws—w, =K VT 0
Rows| alpha beta |Gamma| Lambda Index vector and coodinate=0 Dimension
1 1 1 1 1 a
2 -1 1 1 1 a dim=2
3 1 1 1 1 g dim=3
4 -1 1 1 1 w dim=2
5 1 1 -1 1 w dim=4
6 -1 1 -1 1 b dim=2
7 1 1 1 1 g dim=3
8 -1 1 -1 1 b dim=2
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Table 1 How to gather two rows of the matrix in order to eliminate a given index coordinate.

By finishing the calculation, we find that

K(4) =+/3.

The Cauchy-Schwarz inequality, also known as the Cauchy—Bunyakovsky—Schwarz inequality, can be
used to optimized the following system:

Maximizing the variable K, under the fourth objective functions:

a,+az+a, =K
P+ B+ Pa=K
Yitv2+va=K
W1+W2+W3=K

Under the below constraints:

ai +Bi+vi=1
wi+B5+y; =1
ai+wi+yi=1
Vi +Bf +wf =1

The system can be modified by Cauchy as follows:

K:=(ay+az+ay)?<(as+a?+ad)(12 +12+1?)
K? = (B +Bs+Bu) > < (BE + B3+ L%+ 17 +17)

K*= 1 +y2 +v) 2 < (rf +v3 +vH) (12 + 172 +19)

K? = (wy +wy + w3) 2 < (W2 + w2 +w2)(1%2 + 12 + 1?)

By adding all the four equation will get
4K? < 3(af + ai +ad + i + B3 + B +vi +yi +vi +wi+wi+wi),
from constraints, the maximum of the value K can be calculated as follows:
4K? = 12,
then the constant of the optimization is found to be as follows
K =43,

Then the komlos constant has a lower bound as follows

K(4) =+/3.
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The coordinate of the four vectors can be calculated from the equality of Cauchy-Schwarz inequality
property that states that

az Ay 4

(@t a,+a3)2=(@2+a2+ad)(12+12+12) = 2=2=1
1 1 1
Bot s+ B)? = (B4 B3+ D@2 + 12 410) = BB B
<
Ga+v2+7)2 =02 +vE +vH(1% +1%2 +17) =>y—11=”T2=7’T4
w w w
\(W3+W2+W1)2=(We%+W22+W12)(12+12+12)=>T1=T2=T3
Therefore
V3
ai=ﬁi=Yi=Wi=?-

The coordinate of the particular vectors I_/; are summarized under the below matrix
0 +1 +1 +1

[—>—>—>—>_§+1 0 -1 +1
i V2 Vs W=7 14 -1 0 41|

-1 -1 +1 0

In the case where the dimension is under the form of 2™, for certain integer m, the optimization is
perfect but for other cases of dimension an upper bound can be found for the constant K if Cauchy-
Schwarz inequality is applied as above.

Evaluation of K(5)

By using the same idea of the previous section, in dimension 4, we denote by 7{ 75) as a special

vectors satisfying
4
175 + Z eil_/i
i=1

All the different combination of (g4, €,, €3, &4, 1) are summarized at the rows of the matrix A5 defined as
follows

K(5) = min
&

o)
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+1 +1 +1 +1 +17
-1 +1 +1 +1 +1
+1 -1 +1 +1 +1
-1 -1 +1 +1 +1
+1 +1 -1 +1 +1
-1 +1 -1 +1 +1
+1 -1 -1 +1 +1
-1 -1 -1 +1 +1
+1 +1 +1 -1 +1
-1 +1 +1 -1 +1
+1 -1 +1 -1 +1
-1 -1 +1 -1 +1
+1 +1 -1 -1 +1
-1 +1 -1 -1 +1
+1 -1 -1 -1 +1
-1 -1 -1 -1 +1

where itis noted that 1;,, = 1744 + 13 — 17,1, fori > 1and dim{r;,i =1,...,16} = 5.

The target is to distribute the 16 rows among to five dimensions, named {, 8, y, A, w} in such way to
a;
. Bi
minimize number of zeros in the 5vectors, V; = | Vi | ,i=1,...,5.
A;
Wi

The rows distribution is summarized as following:

e  Four rows will be assigned to each axe except axe a, where one row is a linear combination of
the others 1., = 13,1 + 17 — 17—, it looks like each three independent rows will be assigned to
one axe,

e Two rows will be assigned to axe

Formulating the previous distribution of the 16 rows to the below 16 equations as follows:

For a-Axe: ||V5 +Xi EiVi“oo = Yicqlei] + las]

{rls:a5+a4+a3+a2+a1=K(5):>a -0
1=

Te: s + a4 + a3 +a; —ay = K(5)

For B-Axe: ||V5 + X Eivi”w = YialeBil + |Bs|

71:Ps + By + B3+ B2+ B1 = K(5)
r3: s + Ba+ B3 — B2 + B1 = K(5)
75:Ps + Pa— B3+ B2+ 1 = K(5)
r7:Bs + B — B3 — B2 + B1 = K(5)

Note that the last equations depend on the 3 first equations.

=pf=p3=0
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For y-Axe: ||V5 + 2 Eivi”w =Yiale vl + sl

7:¥s+ Vat+ ¥s+ v2 + v = K(5)
Te:Vs + Va— Y3+ Y2+ y1 = K(5)
T10:¥s— Vat+ V3 + v2+ v1 = K(5)
T14:¥Vs —Va— V3 + v2+ y1 = K(5)

=y =y3=0

Note that the last equations depend on the 3 first equations.

For A-Axe: ||V5 +Xh, Eivi“w =Y ledl + | A5

Tds+ A4+ A3+, + 44 =K(5)
r5ids+ Ay — A3 — 4, — /11=—K(5)=>
Ti2ids — A+ A3+, + 4, =K(5)
T3ids — A4 — A3 — 4, — 4, = K(5)

/14=/15=0

Note that the last equations depend on the 3 first equations.

For w-Axe: ||V5 + Z;-Ll Eivi“w = Z?=1|£iwi| + | ws|

Te:Ws + Wy + w3 +wy + wy = K(5)
Tg:Ws + Wy + w3z —w, + wy = —K(5)
To:Ws — Wy — W3 +wy + —wy = K(5)
T11:Ws — Wy — W3 —w, — wy = K(5)

= ws =w, = 0.

Note that the last equations depend on the 3 first equations.

From the previous systems of equations, we can shape our five vectors Vi in order to maximize K(5) as
follows

0 -, —Q3 —Q4 Qg
s 0 0 s B
[V1 V, Vo Vi Vs ]: —71 V2 0 0 Vs |

— W1 0 — W3 Wy 0

where a;, B;, vi, Ai, and w; are non-negative values.

The negative sign highlighted at the coordinate of I_/Z comes from rows 1y, 11, 75, 14 and 1 , for instance
if we assume that ||[Vs + %t , SiVin = |2, ga; + as| where s = (1,—1,—1,-1,1) and our target is
to maximize the value of K(5), then it is preferable to considera,, a3, and a, are negative values such
that the equation 1(a41) — 1(a;) — 1(a3) — 1(ay) + 1(as) = K(5) will be equivalent to the below
equation,

laq| + |az| + |as| + |laz| + |as| = K(5),

for notation simplification notation, we write any negative parameter as -a;.
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To calculate the constant K (5), we need to solve the below system

ay + a3+ ay +as = K(5)
B1+ Ba+ Bs = K(5)
Yi+v2+ vs =K0O)
A+ 1, + ;3 =K(5)
wy + ws + wy = K(5)

Under the constraint ||I7)l|| <1i=1,..,5.

By symmetry, we can assume the following

As ||I7)1||2 <1, wecan put

The system will be summarized as follow:

( 4a =K(5)
2B =K(5)—%

J2v=k©
2/1=K(5)—%
2w = k() -3

Under the constraints

1= a?+p%+y?
a? + p% + w?
a? + 2% + w?
a’+ 2% +y2

The system be equivalent to quadratic equation

2 2
(O] (93 -
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4++/142
9

So we can conclude that the value of K(5) is lower bounded by i.e.

4 ++142

K(5) = 5

To see the importance of the way of distributing the rows among the axes is very important, we try to
make, as an example, another configuration as follows:

(17,718,179, 119) for a — Axe
(ry,73,13) for B — Axe
(112,714, T16) fory — Axe
(rs,7y3,71) for A— Axe
(1,111, 115) forw — Axe

The five vectors coordinate will be summarized under the below matrix

0 -0, —0U3 dy 0
e 0 B B Bs
[V1, Vy, Vi, Vi V5]= " 0 0 -7 ¥s

A 4 0 0 A

—W; Wy 0 Wy 0

w

The system that needs to be solved is formulated as follows:

a, +az+a, =K(5)
B3 + Bs+ Bs = K(5)
Y1 +vatvys =K(5)
A+, + s =K(5)
wy +wy +wy = K(5)

Under the constraints: ||I7)l||2 <1

-

By using this type of distribution, the symmetry of the matrix [71, ..., V5] is not preserve, which it makes
the system hard to be solve analytically and number of zero coordinate in the set of vectors I_/; has been
increased from 9 times to 10 times.

Therefore, the system that needs to be optimized is as follows:

MaxK(S) =a,t+az+ay,

= B3+ s+ Ps
=Y1tVatVs
zll'l'lz +15
:W1+W2 +W4

Under the constraints: ||I7)l||2 <1

The value of K(5) is very sensitive to the distribution choices, please refer the below Table 2 for
different choices.
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Rows| alpha | beta | Gamma | Lambda w Index vector and coorinate =0 Dimension

Wl - [ 2] = 1 1 b |

2 2 [ 1 1 1 1 e dim=2

3 [N 1 1 b dim=3

a| 2 [a] 1 1 1 dim=2

s [ HEN 1 1 b [ dim=4
6| 1 | 1] 1 1 e w dim=2

7] 1 [a] a 1 1 b dim=3

8| 4 || a 1 1 w | dim=2

s [IENIEE -1 1 | w dim=5
10| 1 | 1 1 1 1 e dim=2

1 [ a 1 w dim=3

2| 1 [ 1] 1 5 1 dim=2 dim=4
) & [ 2] = 1 1 [
1| 1| 1]| 1 1 1 e dim=2
15 [ [ [T 1 1 |a dim=3
6| 1 | 1| 2 1 1 |a dim=2

Table 2 How to gather rows of the matrix in order to eliminate a certain axes-coordinates.

Evaluation of K(n)

In dimension n, it is very crucial to find a best way to distribute all possible combinations of the vectors

211—1
£=(1,&,...,&,-1) among the n axes. We assume that we have

vector of & for which

n—
VnZv

where x; is the coordinate of vector Vi corresponding to x-Axe.

= |Zexl+xn| = K(n),

TL 1

n-1
The [ ] vectors that have been assign to one axes has a dimension of order [logz (2 ) ] ,and as

TL—1

consequence, it implies that each vector V has at most [logz ( ) ] null coordinates.

To evaluate the constant K(n) , it is enough to solve the below optimization equation

n=[toas(*5) |

K(n) = max Z X
X

i=1

By imposing the symmetry conditions by choosing a good way of distribution, the non-null coordinate in
each axes as constant values, i.e., x; = x.

n-1

Let B a suset {1, ..., n} of cardinality around n — [logz (2 ) ] and from the condition that ||I7;l||2 <1

the upper bound of x can be found as following
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S ) - Yoo <1 ='X<J”'[[f;j(2n 1))}].

The lower bound of Kmolos conjecture can be calculated as follows:

2n—1
= oo (%)
> Jlog(n) + 1.

Under our lemma, if it exists an natural n such that n = 2%, then the symmetry conditions can be used
always in order to conclude that

K(n)

v

Kn)= |n— [logz <2:1>l = /log,(n) + 1.
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