

1 Article

2 Identification of a novel Picorna-like virus, 3 Burpengary virus, that is negatively associated with 4 chlamydial disease in the koala

5 **Erin Harvey¹, Danielle Madden², Adam Polkinghorne², and Edward C. Holmes^{*1}**

6 ¹ Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and
7 Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006,
8 Australia; erin.harvey@sydney.edu.au (EH); edward.holmes@sydney.edu.au (ECH);

9 ² Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
10 danielle.madden@research.usc.edu.au (DM); apolking@usc.edu.au (AP);

11 * Correspondence: edward.holmes@sydney.edu.au; Tel.: +61 2 9351 5591

12

13 **Abstract:** Koalas (*Phascolarctos cinereus*) are native Australian marsupials whose populations are in
14 decline from a range of threats. Infectious diseases caused by the bacterium *Chlamydia pecorum* and
15 other pathogens are of particular concern. We analysed 26 poly-A selected RNA-sequencing
16 libraries from a data set designed to study the immune response of koalas to ocular chlamydial
17 infection. Using virus discovery techniques, we identified the coding-complete genome sequence of
18 a novel picorna-like virus, denoted Burpengary virus, that was most common in south-east
19 Queensland. Notably, abundance measurements of the virus across all 26 libraries revealed an
20 inverse relationship in prevalence with ocular disease in Koalas, suggesting that co-infection
21 between Burpengary virus and *Chlamydia pecorum* is inhibited.

22 **Keywords:** Virus discovery, *Chlamydia pecorum*, Koala, Picornavirus, Phylogeny

23

24 1. Introduction

25 The koala (*Phascolarctos cinereus*) is an iconic Australian marsupial species under threat from a
26 number of anthropogenic factors such as loss of habitat due to deforestation and urbanisation, attack
27 from domestic animals such as cats and dogs, and vehicle collisions [1]. It has been estimated that the
28 koala population of south-east Queensland has declined by as much as 80% since the 1990s. Shrinking
29 population sizes and habitat regions are also contributing to the spread of disease. The infectious
30 threat of most concern to the koala is *Chlamydia pecorum*, a bacterium that infects the eyes and urinary
31 tract causing blindness, infertility and death [2]. It has been estimated that up to 100% of some koala
32 populations are now infected with the bacterium, with most wild populations across Australia
33 affected and those from northern Queensland experiencing higher levels of both infection and clinical
34 disease [3, 4].

35 In addition to *Chlamydia*, koalas are also known to be susceptible to a number of viral infections
36 such as koala retrovirus (KoRV) and two gammaherpes viruses [5, 6]. KoRV has been linked to
37 leukaemia in koalas and is a potential contributing factor to the high rates of *Chlamydia*, such that
38 KoRV might cause immunomodulation and increase susceptibility to chlamydial disease [7]. To
39 determine if koalas suffering ocular disease due to *Chlamydia* might be infected with other viruses,
40 we employed virus discovery techniques based on bulk RNA sequencing [8-10]. These data were

41 previously collected to analyse the immune response of koalas to ocular infection, particularly that
42 caused by *C. pecorum* [11].

43 **2. Materials and Methods**

44 *2.1. Analysis of RNA libraries and identification of a novel virus*

45 A total of 26 previously determined poly-A selected RNA-seq libraries from koalas with evidence of
46 gross pathology consistent with koala chlamydiosis (n = 13) and those without (n = 13) were
47 assembled and analysed [11]. All sequencing data is available at NCBI SRA under Bioproject
48 PRJEB26467. To identify novel viruses within the data set, the paired end reads were trimmed using
49 Trimmomatic (v 0.36) [12] and assembled *de novo* using Trinity (v.2.5.1) [13]. A blast search of the
50 assembled contigs was performed against the NCBI nr database using diamond blast (v 0.9.10) [14].
51 Hits to virus associated proteins were extracted and a subsequent blast analysis was run against the
52 NCBI nt database using BLASTn [15] to determine if any of these contigs showed significant sequence
53 similarity to previously characterised non-viral sequences. Contigs showing sequence similarity to
54 viral proteins exclusively were then checked for complete open reading frames (ORFs) using the
55 ExPASy translate tool (<https://web.expasy.org/translate/>). The coding-complete genome sequence of
56 a picorna-like virus was identified in the assembled contigs of four libraries, while partial sequences
57 were identified in nine other libraries. Bowtie2 (v.2.2.5) [16] was then used to retrieve full genomes
58 from all other libraries, where possible using the Trinity contig as a reference. The genome structure
59 of the novel virus was predicted based on the single ORF predicted, and a web blast conserved
60 domain search [17] against the conserved domain database (CDD) was used to predict conserved
61 protein regions.

62 *2.2. Evolutionary relationships and viral abundance*

63 To determine the phylogenetic relationship of the novel virus identified here to previously
64 characterised viruses the amino acid sequence of the assembled polyprotein was aligned to other
65 viruses within the family *Picornaviridae*. Accordingly, all *Picornaviridae* polyprotein amino acid
66 sequences available within the RefSeq database as of January 2019 were compiled and aligned to the
67 novel protein sequence using MAFFT (v.7.300) [18] employing the L-INS-I algorithm. TrimAL
68 (v.1.4.1) [19] was then used to remove ambiguously aligned regions. The IQ-tree (v.1.6.1) tool,
69 ModelFinder [20], was used to determine the best-fit model of amino acid substitution - identified as
70 the Le-Gascuel (LG) model. A maximum likelihood tree assuming this model was then inferred using
71 PhyML (v.20150415) [21], with 1000 bootstrap replications used to determine the support for each
72 node within the tree.

73 The abundance of the virus in each library was determined using Bowtie2 (v.2.2.5) [16] to align
74 the fastq reads to the assembled genomes of the novel picorna-like virus. The abundance of the
75 housekeeping gene GAPDH and KoRV were also measured using the same method with reference
76 sequences of koala GAPDH and KoRV taken from the RefSeq database. The Bowtie2 read counts
77 were converted to reads per kilobase million (RPKM) to normalise across the three references.

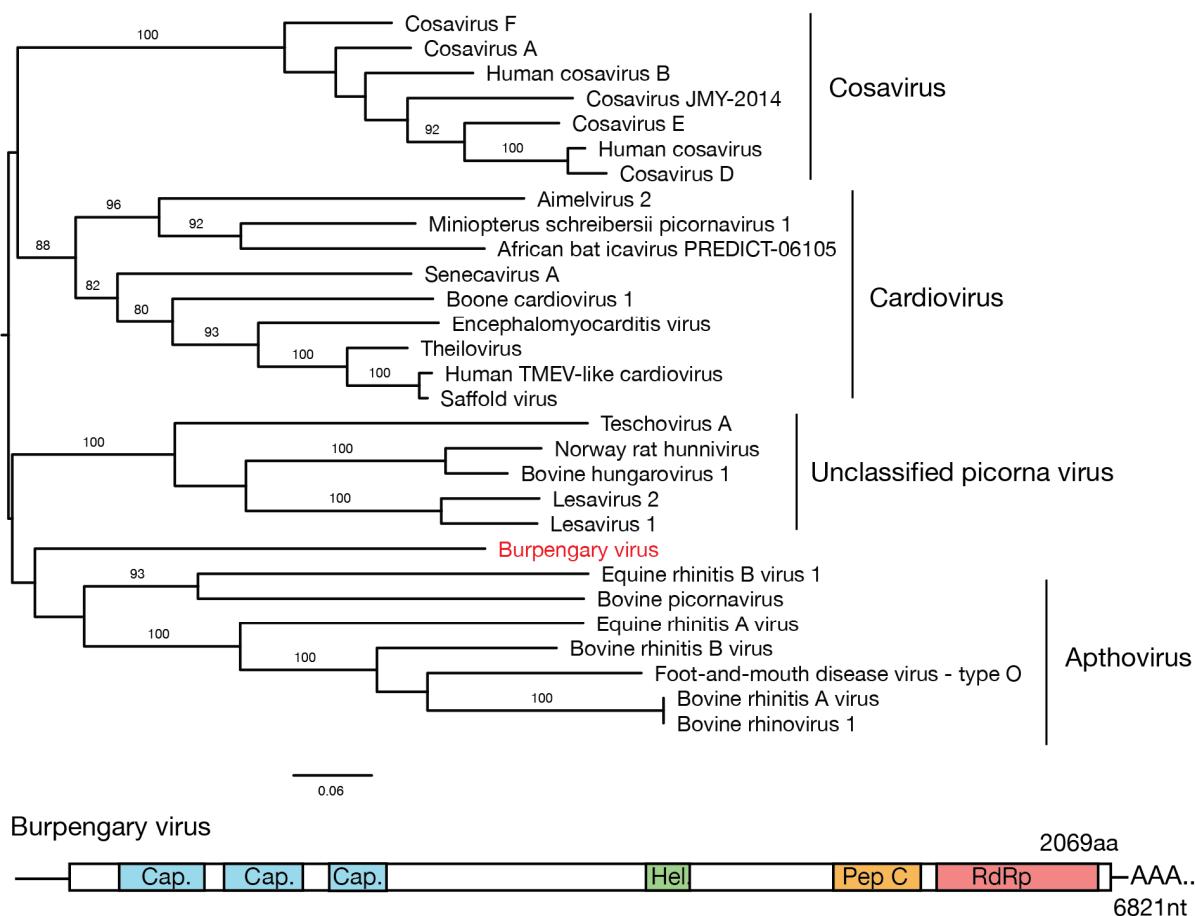
78 2.2. *C. pecorum* abundance

79 *C. pecorum* infectious load was assessed in conjunctival swabs from each animal following DNA
80 extraction as previously described [22]. A recently described *C. pecorum* species-specific LAMP assay
81 was modified for qPCR analysis [23]. The F3 forward primer (5' ATCGGGACCTTCTCATCG 3') and
82 B3 reverse primer (5' GCTGTTGTAAGGAAGACTCC 3') amplify a 209 base pair target region of the
83 gene specific to *C. pecorum*. All reactions were run in duplicate and were carried out on a Rotor Gene
84 Q real-time PCR machine in a 20 μ L reaction volume. The reaction mix consisted of 10 μ L QuantiTect
85 mastermix containing SYBR Green I chemiluminescent dye, 1 μ L of 10 μ M each forward and reverse
86 primer, 3 μ L dH₂O and 5 μ L sample DNA template. Cycling conditions included an initial
87 denaturation of 94°C for 10 minutes, with 35 cycles of denaturation (94°C for 15 seconds), annealing
88 (57°C for 30 seconds) and extension (72°C for 25 seconds). Negative (dH₂O) and positive (cultured
89 *C. pecorum* DNA) controls were included in each run. Infection loads were expressed as a number of
90 gene target copies/ μ L.

91 3. Results

92 3.1. Data selection

93 A total of 26 sequencing libraries were chosen from a larger data set originally generated to
94 analyse the immune response of koalas to ocular chlamydial infection [11] (those libraries excluded
95 from our analysis had incomplete information on *C. pecorum* status and geographic location). These
96 RNA-sequencing libraries included samples from 26 individual koalas in varying stages of ocular
97 health grouped into five categories based on disease state and presence or absence of *C. pecorum*
98 following qPCR screening. Specifically, (i) H1 indicates individuals with no signs of ocular disease
99 and the absence of *C. pecorum*; (ii) H2 indicates individuals with no signs of disease but with *C.*
100 *pecorum* detected by PCR; (iii) G1 are individuals with acute active disease but an absence of
101 symptoms of chronic ocular disease; (iv) G2 indicates individuals with chronic, active disease; and
102 (v) G3 are individuals with chronic, inactive disease with little or no discharge but evidence of corneal
103 scarring.

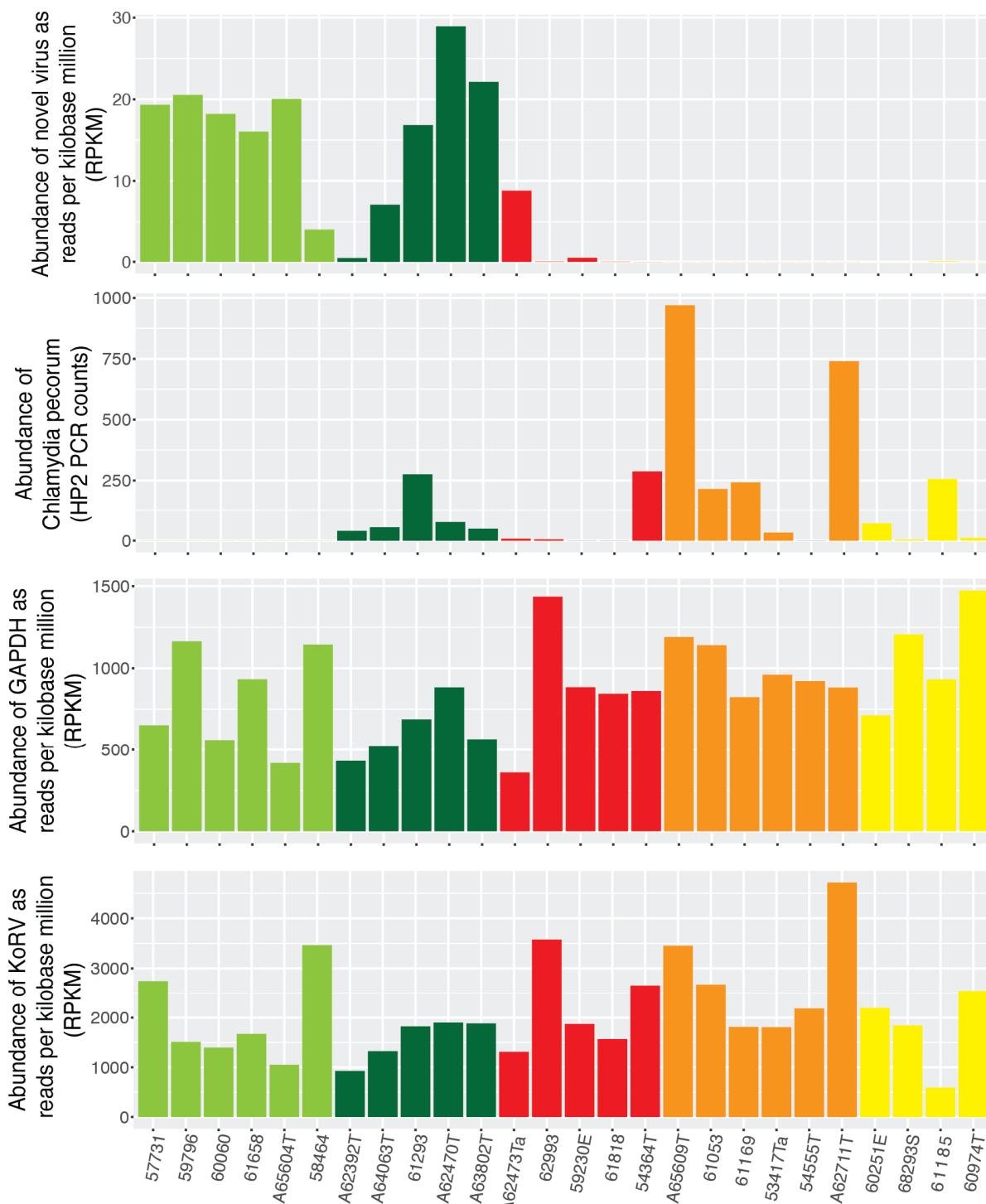

104 3.2. Read assembly and analysis

105 Between 62,555,754 and 132,486,302 paired end reads were generated for each library, which we
106 assembled into between 55,840 and 174,502 contigs using a *de novo* transcript assembly tool. These
107 contigs were submitted to a series of blast searches to exclude host reads and determine if any viruses
108 were present. As expected, KoRV was found in all 26 libraries, although it is challenging to
109 distinguish exogenous from endogenous copies on these data. No other previously identified viruses
110 were found.

111 3.3. Virus discovery and characterisation

112 A single novel positive-sense single-stranded RNA virus, which we refer to as Burpengary virus
113 (named after the locality where it was found at highest prevalence), was identified in 15 libraries and
114 a coding complete genome was assembled. A single ORF was predicted, suggesting a polyprotein
115 organisation, with is consistent with the genome structure of other viruses within the family
116 *Picornaviridae*. Within the predicted polyprotein a number of conserved protein sequences were

117 identified using a blast conserved domain search consistent with the polyprotein structure of other
 118 viruses within the family (Figure 1). Analysis of the predicted coding-complete polyprotein amino
 119 acid sequence revealed that Burpengary virus is phylogenetically distinct, but most closely related to
 120 members of the *Aphthovirus* genus that contains Foot-and-mouth virus, Equine rhinitis virus, Bovine
 121 picornavirus and Bovine rhinovirus, although with a marked lack of bootstrap support (Figure 1).
 122

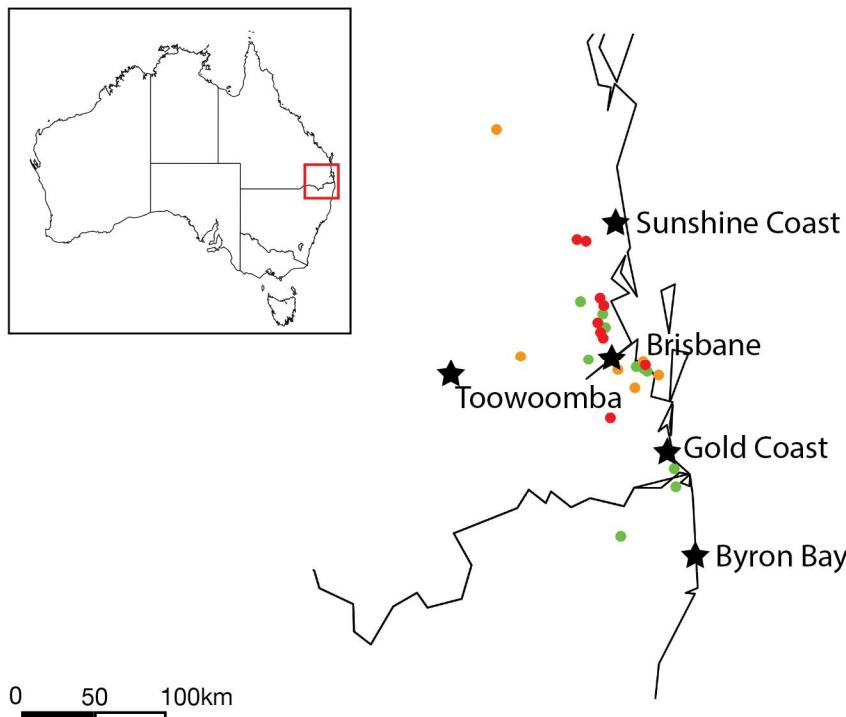

123 **Figure 1.** Maximum likelihood phylogenetic tree showing the position of the newly identified
 124 Burpengary virus (in red) in relation to other members of the *Picornaviridae*. The tree is midpoint
 125 rooted for clarity, and bootstrap support values of over 70% are shown. Genera within the
 126 *Picornaviridae* are indicated to the right of the tree. The predicted genome structure of the novel virus
 127 is shown below the phylogeny, with the single coding-complete ORF and conserved regions
 128 indicated as: Cap - the conserved picornavirus capsid protein domain, Hel - the conserved RNA
 129 helicase domain, Pep C - the peptidase C3 cysteine protease domain, and RdRp - the conserved RNA-
 130 dependent RNA polymerase.
 131

132 3.3. Abundance measurement

133 The abundance of Burpengary virus was measured as reads per kilobase million, and compared
 134 to that of koala GAPDH and KoRV to determine if virus abundance was associated with the general
 135 abundance of transcripts within each data set. This revealed no association between the abundance
 136 of GAPDH or KoRV and Burpengary virus (Figure 2). Importantly, however, when samples were
 137 separated by disease status, the presence of Burpengary virus appeared to show an inverse

138 relationship to signs of ocular disease, being highest in the H1 and H2 samples, and lowest in G1-G3
 139 that designate acute or chronic *C. pecorum* infection (Figure 2). Due to the poly-A selection step being
 140 included in the library preparation of these samples, it is impossible to directly compare the
 141 abundance of *C. pecorum* with the virus and host genes. The abundance of *C. pecorum* was, however,
 142 measured using PCR and gene copies per μ L of DNA extract from each conjunctival were recorded
 143 for each sample (Figure 2).

144


145

146 **Figure 2.** Abundance of Burpengary virus, koala GAPDH, KoRV and *C. pecorum*. Samples are
147 grouped and colour coded by the individual koalas health status as follows: H1 light green, H2 - dark
148 green, G1 - red, G2 - orange and G3 - yellow. The abundance of Burpengary virus, KoRV and GAPDH
149 are measured in reads per kilobase million based on fastq reads, while the abundance of *C. pecorum*
150 was measured by PCR.

151 *3.3. Geographical distribution of Burpengary virus*

152 Koala samples were collected across south-east Queensland and north-east New South Wales,
153 Australia. To tentatively determine if a particular geographical region was associated with
154 Burpengary virus, the collection locations were mapped and collection points were coloured by virus
155 abundance (Figure 3). This revealed that koalas infected with Burpengary virus were located further
156 north in the collection area, with no virus seen in any samples collected from the border or NSW
157 region. However, this may be an artefact of the distribution of collection locations as most samples
158 were collected around the broader region of south-east Queensland and may be impacted by animal
159 displacement as the koalas tested mainly come from care centres.

160

161

162 **Figure 3.** Map showing the koala collection area spanning from north of the Sunshine Coast,
163 Australia, across the New South Wales and Queensland border to Byron Bay in the south. Key urban
164 areas are indicated by black stars, while the koala collection locations are colour coded by virus
165 abundance with green points indicating no virus with the sample, yellow indicating low levels of
166 virus (below 0.01% of total reads) and red indicating high abundance of virus (>0.01% of total reads).

167

168 **4. Discussion**

169 Infectious diseases are a significant driver of morbidity and mortality in wild koalas [1]. The data
170 set analysed here was designed to study the immune response of koalas to ocular chlamydial

171 infection, and we subsequently analysed 26 poly-A selected sequencing libraries to identify any novel
172 viruses. The technique of eliminating host reads and performing blast searches against a data set of
173 conserved virus protein sequences such as the RNA-dependent RNA polymerase region of RNA
174 viruses has been used previously to identify novel viruses [9, 10, 24, 25]. We implemented this data
175 analysis methodology here and in doing so identified a novel and phylogenetically distinct
176 picornavirus that we have termed Burpengary virus.

177 As the sequencing libraries were poly-A selected during library preparation, bacterial sequences
178 are necessarily eliminated, such that we were unable to measure the abundance of *C. pecorum* relative
179 to the abundance of Burpengary virus, KoRV or the housekeeping gene GAPDH [11]. This also limits
180 the discovery of novel viruses within the samples as all non-polyadenylated viruses would be
181 excluded from sequencing, and may be a major reason why only a single novel virus was identified.
182 However, Burpengary virus was found in a large proportion of the sequenced samples, with 15 of
183 the 26 libraries containing virus reads.

184 Interestingly, Burpengary virus was identified almost exclusively in samples collected from
185 healthy koalas showing no signs of ocular chlamydiosis. This tentatively suggests that there is a
186 mechanism, currently unknown, that may prevent the co-infection of ocular tissues with the novel
187 virus and *C. pecorum* when animals develop acute or chronic ocular disease, although this clearly
188 needs verifying with a larger sample size. It is possible that infection with the bacterium may block
189 viral replication in a similar manner to that of *Wolbachia* - a genus of arthropod-associated
190 intracellular bacteria known to block the replication of *Drosophila* and mosquito species with a variety
191 of RNA viruses [26, 27], including Dengue virus in *Aedes aegypti* mosquitoes [28, 29]. A perhaps more
192 likely possibility is that chlamydial infection of the mucosal surface by this intracellular bacterial
193 pathogen promotes a strong local immune response, critical to chlamydial infection clearance but
194 also to the promotion of disease [30]. This may affect the presence of other organisms in the
195 conjunctiva. Indeed, although conflicting evidence exists, studies of human trachoma have reported
196 that chlamydial disease is associated with a decrease in microbial richness and diversity compared
197 to healthy controls [31, 32]. Innate immune responses form a key part of the host response to
198 chlamydial infection and, although only speculation, it is possible that upregulation of these
199 processes at the mucosal surface may inadvertently impact on infection by other organisms such as
200 the novel virus detected in this study [30].

201 These results highlight our limited knowledge of the diversity of novel microorganisms present
202 in unique Australian fauna such as the koala. The clinical impact of Burpengary virus on koala health
203 at the individual and population level is unclear, and like many other studies of this marsupial is
204 limited by the logistical challenges associated with sampling these animals in the field. The
205 apparently inverse association with chlamydial ocular disease appears to add another dimension to
206 the complex and multi-factorial nature of chlamydial disease in this host [30]. Future studies will be
207 required to characterise the significance of the relationship between this novel virus and the major
208 pathogen of the koala, *C. pecorum*.

209 **Author Contributions:** conceptualization, A.P, E.H. and E.C.H.; methodology, E.H.; laboratory analysis, D.M.;
210 software, E.H.; formal analysis, E.H.; data curation, E.H.; writing—original draft preparation, E.H.; writing—
211 review and editing, E.C.H and A.P.; visualization, E.H.; supervision, E.C.H.; project administration, A.P. and
212 E.C.H.; funding acquisition, E.C.H.

213 **Funding:** ECH is funded by an ARC Australian Laureate Fellowship (FL170100022). AP's work on this project
214 was funded by an ARC Discovery Project (DP150101485).

215 **Acknowledgments:** The authors acknowledge the collection of conjunctival samples from koalas in this study
216 by wildlife veterinarians at Australia Zoo Wildlife Hospital, Currumbin Wildlife Sanctuary and Moggill Koala
217 Hospital.

218 **Conflicts of Interest:** The authors declare no conflict of interest

219 **References**

- 220 1. Gonzalez-Astudillo, V.; Allavena, R.; McKinnon, A.; Larkin, R.; Henning, J. Decline causes of koalas in
221 south east Queensland, Australia: a 17-year retrospective study of mortality and morbidity. *Sci. Rep.* **2017**,
222 7, 42587.
- 223 2. Speight, K.N.; Polkinghorne, A.; Penn, R.; Boardman, W.; Timms, P.; Fraser, T.; Johnson, K.; Faull, R.; Bate,
224 S.; Woolford, L. Prevalence and pathologic features of *Chlamydia pecorum* infections in south Australian
225 koalas (*phascolarctos cinereus*). *J. Wildl. Dis.* **2016**, 52, 301-306.
- 226 3. Kollipara, A.; Polkinghorne, A.; Wan, C.; Kanyoka, P.; Hanger, J.; Loader, J.; Callaghan, J.; Bell, A.; Ellis,
227 W.; Fitzgibbon, S.; et al. Genetic diversity of *Chlamydia pecorum* strains in wild koala locations across
228 Australia and the implications for a recombinant *C. pecorum* major outer membrane protein based
229 vaccine. *Vet. Microbiol.* **2013**, 167, 513-522.
- 230 4. Polkinghorne, A.; Hanger, J.; Timms, P. Recent advances in understanding the biology, epidemiology and
231 control of chlamydial infections in koalas. *Vet. Microbiol.* **2013**, 165, 214-223.
- 232 5. Vaz, P.K.; Legione, A.R.; Hartley, C.A.; Devlin, J.M. Detection and differentiation of two koala
233 gammaherpesviruses using high resolution melt (HRM) analysis reveals differences in viral prevalence
234 and clinical associations in a large study of free-ranging koalas. *J. Clin. Micro.* **2019**, doi:10.1128/jcm.01478-
235 18;JCM.01478-01418.
- 236 6. Denner, J.; Young, P.R. Koala retroviruses: characterization and impact on the life of koalas. *Retrovirology*
237 **2013**, 10, 108.
- 238 7. Tarlinton, R.; Meers, J.; Hanger, J.; Young, P. Real-time reverse transcriptase PCR for the endogenous
239 koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. *J. Gen.*
240 *Virol.* **2005**, 86, 783-787.
- 241 8. Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.; Eden, J.S.; et al.
242 Redefining the invertebrate RNA virosphere. *Nature* **2016**, 540, 539-543.
- 243 9. Pettersson, J.H.; Shi, M.; Bohlin, J.; Eldholm, V.; Brynildsrud, O.B.; Paulsen, K.M.; Andreassen, A.;
244 Holmes, E.C. Characterizing the virome of *Ixodes ricinus* ticks from northern Europe. *Sci. Rep.* **2017**, 7,
245 10870.
- 246 10. Geoghegan, J.L.; Pirotta, V.; Harvey, E.; Smith, A.; Buchmann, J.P.; Ostrowski, M.; Eden, J.S.; Harcourt, R.;
247 Holmes, E.C. Virological sampling of inaccessible wildlife with drones. *Viruses* **2018**, 10, 300.
- 248 11. Johnson, R.N.; O'Meally, D.; Chen, Z.; Etherington, G.J.; Ho, S.Y.W.; Nash, W.J.; Grueber, C.E.; Cheng, Y.;
249 Whittington, C.M.; Dennison, S.; et al.. Adaptation and conservation insights from the koala genome. *Nat.*
250 *Genet.* **2018**, 50, 1102-1111.
- 251 12. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.
252 *Bioinformatics* **2014**, 30, 2114-2120.
- 253 13. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.;
254 Raychowdhury, R.; Zeng, Q.; et al.. Full-length transcriptome assembly from RNA-Seq data without a
255 reference genome. *Nat. Biotechnol.* **2011**, 29, 644-652.
- 256 14. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. *Nat. Methods*
257 **2015**, 12, 59-60.

258 15. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. *J. Mol.*
259 *Biol.* **1990**, *215*, 403-410.

260 16. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **2012**, *9*, 357-359.

261 17. Marchler-Bauer, A.; Bryant, S.H. CD-Search: protein domain annotations on the fly. *Nucleic Acids Res.*
262 **2004**, *32*, W327-331.

263 18. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: improvements in
264 performance and usability. *Mol. Biol. Evol.* **2013**, *30*, 772-780.

265 19. Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: a tool for automated alignment trimming
266 in large-scale phylogenetic analyses. *Bioinformatics* **2009**, *25*, 1972-1973.

267 20. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: fast model
268 selection for accurate phylogenetic estimates. *Nat. Methods* **2017**, *14*, 587-589.

269 21. Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and
270 methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst.*
271 *Biol.* **2010**, *59*, 307-321.

272 22. Wan, C.; Loader, J.; Hanger, J.; Beagley, K.; Timms, P.; Polkinghorne, A. Using quantitative polymerase
273 chain reaction to correlate *Chlamydia pecorum* infectious load with ocular, urinary and reproductive tract
274 disease in the koala (*Phascolarctos cinereus*). *Aust. Vet. J.* **2011**, *89*, 409-412.

275 23. Jelocnik, M.; Islam, M.M.; Madden, D.; Jenkins, C.; Branley, J.; Carver, S.; Polkinghorne, A. Development
276 and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens:
277 *Chlamydia psittaci* and *Chlamydia pecorum*. *PeerJ* **2017**, *5*, e3799.

278 24. Shi, M.; Lin, X.D.; Vasilakis, N.; Tian, J.H.; Li, C.X.; Chen, L.J.; Eastwood, G.; Diao, X.N.; Chen, M.H.;
279 Chen, X.; et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary
280 history of the *Flaviviridae* and related viruses. *J. Virol.* **2015**, *90*, 659-669.

281 25. Remnant, E.J.; Shi, M.; Buchmann, G.; Blacquiere, T.; Holmes, E.C.; Beekman, M.; Ashe, A. A diverse
282 range of novel RNA viruses in geographically distinct honey bee populations. *J. Virol.* **2017**, *91*, e00158-17.

283 26. Teixeira, L.; Ferreira, A.; Ashburner, M. The bacterial symbiont *Wolbachia* induces resistance to RNA viral
284 infections in *Drosophila melanogaster*. *PLoS Biol.* **2008**, *6*, e2.

285 27. Johnson, K.N. The impact of *Wolbachia* on virus infection in mosquitoes. *Viruses* **2015**, *7*, 5705-5717.

286 28. Bian, G.; Xu, Y.; Lu, P.; Xie, Y.; Xi, Z. The endosymbiotic bacterium *Wolbachia* induces resistance to
287 dengue virus in *Aedes aegypti*. *PLoS Pathog.* **2010**, *6*, e1000833.

288 29. Johnson, K.N. Bacteria and antiviral immunity in insects. *Curr. Opin. Insect. Sci.* **2015**, *8*, 97-103.

289 30. Madden, D.; Whaite, A.; Jones, E.; Belov, K.; Timms, P.; Polkinghorne, A. Koala immunology and
290 infectious diseases: how much can the koala bear? *Dev. Comp. Immunol.* **2018**, *82*, 177-185.

291 31. Zhou, Y.; Holland, M.J.; Makalo, P.; Joof, H.; Roberts, C.H.; Mabey, D.C.; Bailey, R.L.; Burton, M.J.;
292 Weinstock, G.M.; Burr, S.E. The conjunctival microbiome in health and trachomatous disease: a case
293 control study. *Genome Med.* **2014**, *6*, 99.

294 32. Butcher, R.M.R.; Sokana, O.; Jack, K.; Kalae, E.; Sui, L.; Russell, C.; Houghton, J.; Palmer, C.; Holland, M.J.;
295 Le Mesurier, R.T.; et al. Active trachoma cases in the Solomon Islands have varied polymicrobial
296 community structures but do not associate with individual non-chlamydial pathogens of the eye. *Front.*
297 *Med.* **2017**, *4*, 251.