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Abstract

Matiyasevich’s theorem states that there is no algorithm to decide whether or not a given
Diophantine equation has a solution in non-negative integers. Smoryński’s theorem states that the set
of all Diophantine equations which have at most finitely many solutions in non-negative integers is
not recursively enumerable. We prove: (1) Smoryński’s theorem easily follows from Matiyasevich’s
theorem, (2) Hilbert’s Tenth Problem for Q has a negative solution if and only if the set of all
Diophantine equations with a finite number of rational solutions is not recursively enumerable,
(3) the question of whether or not a given Diophantine equation has at most finitely many integer
solutions is semi-decidable with an oracle that decides whether or not a given Diophantine equation
has an integer solution.
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1 Introduction

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable setM ⊆ N
has a Diophantine representation; that is

a ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a, x1, . . . , xm) = 0 (R)

for some polynomial W with integer coefficients, see [7]. The representation (R) is said to be infinite-fold
if for every a ∈ M the equation W(a, x1, . . . , xm) = 0 has infinitely many solutions (x1, . . . , xm) ∈ Nm.
A stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem states that each recursively
enumerable subset of N has an infinite-fold Diophantine representation with 9 variables, see [4], [6],
[7, p. 163], and [9, p. 243].

Martin Davis’ theorem states that the set of all Diophantine equations which have at most finitely
many solutions in positive integers is not recursive, see [1]. Craig Smoryński’s theorem states that the
set of all Diophantine equations which have at most finitely many solutions in non-negative integers is
not recursively enumerable, see [8, p. 104, Corollary 1] and [9, p. 240]. Yuri Matiyasevich’s theorem
states that there is no algorithm to decide whether or not a given Diophantine equation has a solution
in non-negative integers ([7]). The same is true for solutions in integers and for solutions in positive
integers ([7]).
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Matiyasevich’s theorem easily follows from the Davis-Putnam-Robinson-Matiyasevich theorem
without the use of Smoryński’s theorem ([7]). Similarly, the stronger version of the Davis-Putnam-
Robinson-Matiyasevich theorem implies that Matiyasevich’s theorem holds for Diophantine equations
which have at most k variables, where k > 9, see [7]. In section 3, we show that Smoryński’s theorem
easily follows from Matiyasevich’s theorem. In section 4, we show that Hilbert’s Tenth Problem for Q
has a negative solution if and only if the set of all Diophantine equations with a finite number of rational
solutions is not recursively enumerable.

2 Basic lemmas

Let P denote the set of prime numbers, and let

P = {p1, q1, r1, p2, q2, r2, p3, q3, r3, . . .},
where p1 < q1 < r1 < p2 < q2 < r2 < p3 < q3 < r3 < . . . .

Lemma 1. For a non-negative integer x, let
∞∏

i=1
pαi

i · q
βi
i · r

γi
i be the prime decomposition of x + 1. For

every positive integer n, the mapping which sends x ∈ N into
(
(−1)α1 · β1

γ1 + 1
, . . . , (−1)αn · βn

γn + 1

)
∈ Qn

is a computable surjection from N onto Qn.

Lemma 2. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in non-negative integers
(alternatively, integers, positive integers, rationals) x1, . . . , xp if and only if the equation
D(x1, . . . , xp) + 0 · xp+1 = 0 has at most finitely many solutions in non-negative integers (respectively,
integers, positive integers, rationals) x1, . . . , xp+1.

Proof. We present the proof for solutions in non-negative integers. Let A1 denote the following
statement: A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in non-negative integers
x1, . . . , xp. Let A2 denote the following statement: The equation D(x1, . . . , xp) + 0 · xp+1 = 0 has at
most finitely many solutions in non-negative integers x1, . . . , xp+1. We need to prove that

(A1 ⇒ A2) ∧ (A2 ⇒ A1)

We present the proof that A1 implies A2. The statement A1 implies that the set of all tuples
(x1, . . . , xp+1) ∈ Np+1 which satisfy D(x1, . . . , xp)+ 0 · xp+1 = 0 is empty. The empty set is finite. We
present the proof that A2 implies A1. Assume, on the contrary, that non-negative integers a1, . . . , ap

satisfy D(a1, . . . , ap) = 0. Then,

∀xp+1 ∈ N D(a1, . . . , ap) + 0 · xp+1 = 0

Therefore, infinitely many tuples (x1, . . . , xp+1) ∈ Np+1 solve the equation D(x1, . . . , xp) + 0 · xp+1 = 0, a
contradiction. The proof for solutions in integers (positive integers, rationals) is analogous. �

Lemma 3. If the set of all Diophantine equations which have at most finitely many solutions in
non-negative integers (alternatively, integers, positive integers, rationals) is recursively enumerable, then
there exists an algorithm which decides whether or not a given Diophantine equation has a solution in
non-negative integers (respectively, integers, positive integers, rationals).

Proof. We present the proof for solutions in non-negative integers. Suppose that {Si = 0}∞i=0 is a
computable sequence of all Diophantine equations which have at most finitely many solutions in
non-negative integers. By Lemma 2, the execution of Flowchart 1 decides whether or not a Diophantine
equation D(x1, . . . , xp) = 0 has a solution in non-negative integers. The flowchart algorithm uses a
computable surjection ϕ : N→ Np.
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Start

Input a Diophantine equation D(x1, . . . , xp) = 0

W(x1, . . . , xp+1) := D(x1, . . . , xp) + 0 · xp+1

i := 0

i := i + 1

Is W(x1, . . . , xp+1) = Si?

Is D
(
ϕ(i)

)
= 0?

Print "The equation D(x1, . . . , xp) = 0
is solvable in non-negative integers"

Print "The equation D(x1, . . . , xp) = 0 is
not solvable in non-negative integers"

Stop

No

Yes

Yes

No

Flowchart 1

The flowchart algorithm always terminates because there exists a non-negative integer i such that

(D(x1, . . . , xp) + 0 · xp+1 = Si) ∨ (D(ϕ(i)) = 0)

Indeed, for every Diophantine equation D(x1, . . . , xp) = 0, the flowchart algorithm finds a solution
in non-negative integers, or finds the equation D(x1, . . . , xp) + 0 · xp+1 = 0 on the infinite list
[S0,S1,S2, . . .] if the equation D(x1, . . . , xp) = 0 is not solvable in non-negative integers.

For solutions in integers, we choose a computable surjection ϕ : N→ Zp, modify the definition of
the sequence {Si = 0}∞i=0, and modify the two print instructions. For solutions in positive integers, we
choose a computable surjection ϕ : N→ (N \ {0})p, modify the definition of the sequence {Si = 0}∞i=0,
and modify the two print instructions. For solutions in rationals, we apply Lemma 1 and choose a
computable surjection ϕ : N→ Qp, modify the definition of the sequence {Si = 0}∞i=0, and modify the
two print instructions. �
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3 The set of all Diophantine equations which have at most finitely many
solutions in non-negative integers is not recursively enumerable

Theorem 1. The set of all Diophantine equations which have at most finitely many solutions in
non-negative integers (integers, positive integers) is not recursively enumerable.

Proof. It follows from Lemma 3 and Matiyasevich’s theorem. �

Let E denote the set of all Diophantine equations D(x1, . . . , xp) = 0 such that p ∈ N \ {0} and the
polynomial D(x1, . . . , xp) truly depends on all the variables x1, . . . , xp. The last phrase means that for
every i ∈ {1, . . . , p} the polynomial D(x1, . . . , xp) involves a non-zero monomial which is divided by xi,
if D(x1, . . . , xp) is written as the sum of a minimal number of monomials.

Lemma 4. A Diophantine equation D(x1, . . . , xp) = 0 has no solutions in non-negative integers
x1, . . . , xp if and only if the equation

(
2xp+1 + 1

)
· D(x1, . . . , xp) = 0 has at most finitely many solutions

in non-negative integers x1, . . . , xp+1.

Lemma 5. If a polynomial D(x1, . . . , xp) ∈ Z[x1, . . . , xp] truly depends on all the variables x1, . . . , xp,
then the polynomial

(
2xp+1 + 1

)
· D(x1, . . . , xp) truly depends on all the variables x1, . . . , xp+1.

Theorem 2. The equations which belong to E and which have at most finitely many solutions in
non-negative integers form a set which is not recursively enumerable.

Proof. We reformulate Lemma 3 for Diophantine equations which belong to E. The proof, which uses
Lemmas 3–5, is analogous to the proof of Theorem 1. �

For a positive integer k, let Dioph(k) denote the set of all Diophantine equations which have at most
k variables and at most finitely many solutions in non-negative integers.

Theorem 3. For every integer k > 9, the set Dioph(k) is not recursively enumerable.

Proof. Let {D j = 0}∞j=0 be a computable sequence of all Diophantine equations which have at most k
variables. By the stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem, there exists
a polynomial W(x, x1, . . . , x9) ∈ Z[x, x1, . . . , x9] such that for every non-negative integer j, the equation
D j = 0 is solvable in non-negative integers if and only if the equation W( j, x1, . . . , x9) = 0 has infinitely
many solutions in non-negative integers x1, . . . , x9. Equivalently, for every non-negative integer j, the
equation D j = 0 has no solutions in non-negative integers if and only if the equation W( j, x1, . . . , x9) = 0
has at most finitely many solutions in non-negative integers x1, . . . , x9. Suppose, on the contrary, that
{Gi = 0}∞i=0 is a computable sequence of all equations from Dioph(k). Then, the execution of Flowchart 2
decides whether or not a Diophantine equation D(x1, . . . , xp) = 0 (where p 6 k) has a solution in
non-negative integers x1, . . . , xp. The flowchart algorithm uses a computable surjection ϕ : N→ Np.

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   doi:10.20944/preprints201902.0156.v2

http://dx.doi.org/10.20944/preprints201902.0156.v2


Start

Input a Diophantine equation D(x1, . . . , xp) = 0, where p 6 k

j := 0

j := j + 1

Is D(x1, . . . , xp) = D j?

i := 0

i := i + 1

Is W( j, x1, . . . , x9) = Gi?

Is D
(
ϕ(i)

)
= 0?

Print "The equation D(x1, . . . , xp) = 0
is solvable in non-negative integers"

Print "The equation D(x1, . . . , xp) = 0 is
not solvable in non-negative integers"

Stop

No

Yes

No

Yes

Yes

No

Flowchart 2

Thus we have a contradiction to Matiyasevich’s theorem. The flowchart algorithm always terminates
because there exist non-negative integers i and j such that

(D(x1, . . . , xp) = D j) ∧ ((W( j, x1, . . . , x9) = Gi) ∨ (D(ϕ(i)) = 0))

�

4 Hilbert’s Tenth Problem for Q

Hilbert’s Tenth Problem for Q remains unsolved, see [2] and [7]. Harvey Friedman conjectures that
the set of all Diophantine equations which have only finitely many rational solutions is not recursively
enumerable, see [3]. For solutions in rationals, Lemma 3 claims that a negative solution to Hilbert’s
Tenth Problem for Q implies that the set of all Diophantine equations with a finite number of rational
solutions is not recursively enumerable. We show the converse implication.

Lemma 6. For every rational number b, b , 0 if and only if the equation (y · b) − 1 = 0 is solvable in
rationals.
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Theorem 4. A positive solution to Hilbert’s Tenth Problem for Q implies that the set of all Diophantine
equations with a finite number of rational solutions is recursively enumerable.

Proof. We assume a positive solution to Hilbert’s Tenth Problem for Q. By Lemma 6, the algorithm
in Flowchart 3 halts if and only if a Diophantine equation D(x1, . . . , xn) = 0 has at most finitely many
rational solutions.

Start

Input a Diophantine equation D (x1, . . . , xn) = 0

Fix a computable surjection ζ : N→ Qn

k := 0

k := k + 1

Does the equation D2(x1, . . . , xn) +

y ·
∏

(r1,...,rn)∈{ζ(0),...,ζ(k)}

n∑

i=1

(xi − ri)2

 − 1


2

= 0

is solvable in rationals x1, . . . , xn, y ?

Print "The equation D (x1, . . . , xn) = 0 has at
most finitely many rational solutions"

Stop

Yes

No

Flowchart 3

We explain in details why the algorithm in Flowchart 3 is correct. For a non-negative integer k, let
Wk(x1, . . . , xn, y) = 0 be the equation

D2(x1, . . . , xn) +



y ·
∏

(r1, . . . , rn) ∈ {ζ(0), . . . , ζ(k)}

n∑

i=1

(xi − ri)2

 − 1



2

= 0

Its coefficients are rational, and they all can be computed. Therefore, for every k ∈ N, we can compute a
positive integer dk such that the equivalent equation dk ·Wk(x1, . . . , xk, y) = 0 has integer coefficients. �
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Guess ([5, p. 16]). The question of whether or not a given Diophantine equation has at most finitely
many rational solutions is decidable with an oracle that decides whether or not a given Diophantine
equation has a rational solution.

Originally, Minhyong Kim formulated the Guess as follows: for rational solutions, the finiteness
problem is decidable relative to the existence problem.

5 The question of whether or not a given Diophantine equation has at
most finitely many integer solutions is semi-decidable with an oracle
that decides whether or not a given Diophantine equation has an integer
solution

Lemma 7. ([10, p. 177]). For every integer b, b , 0 if and only if the equation

y · b − (2u − 1)(3u − 1) = 0

is solvable in integers.

Theorem 5. The question of whether or not a given Diophantine equation has at most finitely many
integer solutions is semi-decidable with an oracle that decides whether or not a given Diophantine
equation has an integer solution.

Proof. By Lemma 7, the algorithm in Flowchart 4 halts if and only if a Diophantine equation
D(x1, . . . , xn) = 0 has at most finitely many integer solutions.

Start

Input a Diophantine equation D (x1, . . . , xn) = 0

Fix a computable surjection θ : N→ Zn

k := 0

k := k + 1

Does the equation D2(x1, . . . , xn) +

y ·
∏

(r1, . . . , rn) ∈ {θ(0), . . . , θ(k)}

n∑

i=1

(xi − ri)2

 − (2u − 1)(3u − 1)



2

= 0

is solvable in integers x1, . . . , xn, y, u ?

Print "The equation D (x1, . . . , xn) = 0 has
at most finitely many integer solutions"

Stop

Yes

No

Flowchart 4

By the Davis-Putnam-Robinson-Matiyasevich theorem, the oracle in the claim of the theorem decides
the halting problem. This strong argument makes the proof trivial and without the use of Lemma 7. �
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[8] C. Smoryński, A note on the number of zeros of polynomials and exponential polynomials, J.
Symbolic Logic 42 (1977), no. 1, 99–106, http://doi.org/10.2307/2272324.
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