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Diophantine equations with a finite number of solutions: Craig
Smorynski’s theorem, Harvey Friedman’s conjecture, and relative
recursive enumerability

Apoloniusz Tyszka

Abstract

Matiyasevich’s theorem states that there is no algorithm to decide whether or not a given
Diophantine equation has a solution in non-negative integers. Smorynski’s theorem states that the set
of all Diophantine equations which have at most finitely many solutions in non-negative integers is
not recursively enumerable. We prove: (1) Smoryrski’s theorem easily follows from Matiyasevich’s
theorem, (2) Hilbert’s Tenth Problem for Q has a negative solution if and only if the set of all
Diophantine equations with a finite number of rational solutions is not recursively enumerable,
(3) the question of whether or not a given Diophantine equation has at most finitely many integer
solutions is semi-decidable with an oracle that decides whether or not a given Diophantine equation
has an integer solution.
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solution, oracle that decides whether or not a given Diophantine equation has a rational solution,
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1 Introduction

The Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set M C N
has a Diophantine representation; that is

aeE M= Ax;,....,xpn €N W(a,x1,...,%,) =0 (R)

for some polynomial W with integer coefficients, see [7]. The representation (R) is said to be infinite-fold
if for every a € M the equation W(a, x1, ..., x,) = 0 has infinitely many solutions (xi,..., X,) € N,
A stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem states that each recursively
enumerable subset of N has an infinite-fold Diophantine representation with 9 variables, see [4]], [6],

[7, p. 163], and [9, p. 243].

Martin Davis’ theorem states that the set of all Diophantine equations which have at most finitely
many solutions in positive integers is not recursive, see [1]. Craig Smoryriski’s theorem states that the
set of all Diophantine equations which have at most finitely many solutions in non-negative integers is
not recursively enumerable, see [8, p. 104, Corollary 1] and [9} p. 240]. Yuri Matiyasevich’s theorem
states that there is no algorithm to decide whether or not a given Diophantine equation has a solution
in non-negative integers ([7]]). The same is true for solutions in integers and for solutions in positive

integers ([[7]).
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Matiyasevich’s theorem easily follows from the Davis-Putnam-Robinson-Matiyasevich theorem
without the use of Smoryriski’s theorem ([[7]). Similarly, the stronger version of the Davis-Putnam-
Robinson-Matiyasevich theorem implies that Matiyasevich’s theorem holds for Diophantine equations
which have at most k variables, where k > 9, see [7]. In section [3| we show that Smorynski’s theorem
easily follows from Matiyasevich’s theorem. In section ] we show that Hilbert’s Tenth Problem for Q
has a negative solution if and only if the set of all Diophantine equations with a finite number of rational
solutions is not recursively enumerable.

2 Basic lemmas
Let # denote the set of prime numbers, and let

P ={p1.q1.11,P2,92, 72, P3, 43,13, - . .},
where py < g <rn<pp<@<rn<p3<qgi<r3<....

Lemma 1. For a non-negative integer x, let [] ptq’ . qlﬂ L. r?/’ be the prime decomposition of x + 1. For
i=1

every positive integer n, the mapping which sends x € N into

aj . Bi 1\ . B n
e e

is a computable surjection from N onto Q".

Lemma 2. A Diophantine equation D(xi,...,x,) =0 has no solutions in non-negative integers
(alternatively, integers, positive integers, rationals) xi,...,x, if and only if the equation
D(x1,...,x5) +0-x,41 =0 has at most finitely many solutions in non-negative integers (respectively,
integers, positive integers, rationals) xi, ..., Xpy1.

Proof. We present the proof for solutions in non-negative integers. Let A; denote the following

statement: A Diophantine equation D(xi,...,x,) =0 has no solutions in non-negative integers
Xi,...,%p. Let A denote the following statement: The equation D(xy,...,x,) +0-x,11 =0 has at
most finitely many solutions in non-negative integers xi, ..., xXp+1. We need to prove that

(A = A) AN(A = Ay)

We present the proof that A; implies A,. The statement A; implies that the set of all tuples
(X1,...,Xp41) € NP*! which satisfy D(x1,...,xp)+ 0-x,41 =0 is empty. The empty set is finite. We
present the proof that A, implies A;. Assume, on the contrary, that non-negative integers aj, ..., a,
satisfy D(ay, ..., ap) = 0. Then,

Vxpi1 €N D(ay,...,ap) +0-x,01 =0
Therefore, infinitely many tuples (xq,...,Xp41) € NP*1 solve the equation D(x1,...,x,) +0-x,41 =0, 2
contradiction. The proof for solutions in integers (positive integers, rationals) is analogous. O

Lemma 3. If the set of all Diophantine equations which have at most finitely many solutions in
non-negative integers (alternatively, integers, positive integers, rationals) is recursively enumerable, then
there exists an algorithm which decides whether or not a given Diophantine equation has a solution in
non-negative integers (respectively, integers, positive integers, rationals).

Proof. We present the proof for solutions in non-negative integers. Suppose that {S; = 0}, is a
computable sequence of all Diophantine equations which have at most finitely many solutions in
non-negative integers. By Lemma 2] the execution of Flowchart 1 decides whether or not a Diophantine
equation D(x1,...,x,) =0 has a solution in non-negative integers. The flowchart algorithm uses a
computable surjection ¢: N — NP,
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Y

/ Input a Diophantine equation D(xi,...,x,) =0 /

A 4

Wxt, ..., Xps1) := D(x1, ..., xp) + 0 Xpyq

=1+ 1 |e

A

A

Is W(xq,..., xp+1) =8,?
VNO
Is D(¢(i)) = 07?

Yes

No

VYes

Print "The equation D(xi,...,x,) = 0
is solvable in non-negative integers"

Print "The equation D(xy,...,x,) = 01is
not solvable in non-negative integers"

A
Y

Y

Groe>

Flowchart 1

The flowchart algorithm always terminates because there exists a non-negative integer i such that
(D(x1, ... %p) + 0 Xpat = S V (D)) = 0)

Indeed, for every Diophantine equation D(xy,...,x,) =0, the flowchart algorithm finds a solution
in non-negative integers, or finds the equation D(xi,...,x,)+0-x,,1 =0 on the infinite list
[So, 81,8, .. ] if the equation D(x, ..., x,) = 0 is not solvable in non-negative integers.

For solutions in integers, we choose a computable surjection ¢: N — ZP, modify the definition of
the sequence {S; = 0}, and modify the two print instructions. For solutions in positive integers, we

choose a computable surjection ¢: N — (N '\ {0})”, modify the definition of the sequence {S; = 0},

and modify the two print instructions. For solutions in rationals, we apply Lemma [I] and choose a

computable surjection ¢: N — QPF, modify the definition of the sequence {S; = 0}°,, and modify the

two print instructions. O
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3 The set of all Diophantine equations which have at most finitely many
solutions in non-negative integers is not recursively enumerable

Theorem 1. The set of all Diophantine equations which have at most finitely many solutions in
non-negative integers (integers, positive integers) is not recursively enumerable.

Proof. 1t follows from Lemma [3|and Matiyasevich’s theorem. O

Let & denote the set of all Diophantine equations D(x,...,x,) = 0 such that p € N'\ {0} and the
polynomial D(x,...,x,) truly depends on all the variables xi, ..., x,. The last phrase means that for
every i € {1,..., p} the polynomial D(xi,...,x,) involves a non-zero monomial which is divided by x;,
if D(x1,...,xp) is written as the sum of a minimal number of monomials.

Lemma 4. A Diophantine equation D(xi,...,x,) =0 has no solutions in non-negative integers
X1,...,Xp if and only if the equation (2xp+1 + 1) - D(x1,...,xp) = 0 has at most finitely many solutions
in non-negative integers xi, ..., Xp11.

Lemma 5. If a polynomial D(x1,...,x,) € Z[x1,...,x,] truly depends on all the variables xi, ..., x,
then the polynomial (2xp+1 + l) - D(x1,...,xp) truly depends on all the variables x1, . .., Xp41.

Theorem 2. The equations which belong to & and which have at most finitely many solutions in
non-negative integers form a set which is not recursively enumerable.

Proof. We reformulate Lemma [3| for Diophantine equations which belong to &. The proof, which uses
Lemmas [3H3] is analogous to the proof of Theorem I} i

For a positive integer k, let Dioph(k) denote the set of all Diophantine equations which have at most
k variables and at most finitely many solutions in non-negative integers.

Theorem 3. For every integer k > 9, the set Dioph(k) is not recursively enumerable.

Proof. Let {D; = 0};’.‘;0 be a computable sequence of all Diophantine equations which have at most k
variables. By the stronger version of the Davis-Putnam-Robinson-Matiyasevich theorem, there exists
a polynomial W(x, x1,...,Xx9) € Z[x, x1, ..., X9] such that for every non-negative integer j, the equation
D; = 0 is solvable in non-negative integers if and only if the equation W(j, x1, ..., x9) = 0 has infinitely
many solutions in non-negative integers xi, ..., x9. Equivalently, for every non-negative integer j, the
equation D; = 0 has no solutions in non-negative integers if and only if the equation W(j, x1,...,x9) =0
has at most finitely many solutions in non-negative integers xp, ..., X9. Suppose, on the contrary, that
{Gi = 0}, is a computable sequence of all equations from Dioph(k). Then, the execution of Flowchart 2
decides whether or not a Diophantine equation D(xy,...,x,) =0 (where p <k) has a solution in
non-negative integers xi, ..., x,. The flowchart algorithm uses a computable surjection ¢: N — N,
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A 4

/Input a Diophantine equation D(xi,...,x,) =0, where p < k/

< ji=j+1

A

Is D(xi,...,x,) = D;? |0

A
~
Il
~.
+
[S—
A

Yes

Is W(j,x1,...,x9) = Gi?
I No
Is D(¢(i)) = 0?

No

Yes

A\ 4

Print "The equation D(xi,...,x,) = 0
is solvable in non-negative integers"

Print "The equation D(xi,...,x,) = 01is
not solvable in non-negative integers"

&
<

A 4

Flowchart 2

Thus we have a contradiction to Matiyasevich’s theorem. The flowchart algorithm always terminates
because there exist non-negative integers i and j such that

(D(x1,...,xp) = Dy AW(j, x1,...,x9) = Gi) V (D(p() = 0))

4 Hilbert’s Tenth Problem for Q

Hilbert’s Tenth Problem for Q remains unsolved, see [2]] and [7]. Harvey Friedman conjectures that
the set of all Diophantine equations which have only finitely many rational solutions is not recursively
enumerable, see [3]]. For solutions in rationals, Lemma [3] claims that a negative solution to Hilbert’s
Tenth Problem for Q implies that the set of all Diophantine equations with a finite number of rational
solutions is not recursively enumerable. We show the converse implication.

Lemma 6. For every rational number b, b # 0 if and only if the equation (y - b) — 1 = 0 is solvable in
rationals.
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Theorem 4. A positive solution to Hilbert’s Tenth Problem for Q implies that the set of all Diophantine
equations with a finite number of rational solutions is recursively enumerable.

Proof. We assume a positive solution to Hilbert’s Tenth Problem for Q. By Lemma [6] the algorithm
in Flowchart 3 halts if and only if a Diophantine equation D(xy,...,x,) = 0 has at most finitely many

rational solutions.

/Input a Diophantine equation D (xi,...,x,) = 0/

|

Fix a computable surjection ¢: N — Q"

l(—k::k+1 —

Does the equation D?*(xy,...,x,) +
2

v ] zn](xl-—mz—l _ o =2

(F1yersF)ELO),...L(K)} i=1
is solvable in rationals xj,...,x,,y ?

lNo

Print "The equation D (xy,...,x,) = 0 has at
most finitely many rational solutions”

Flowchart 3

We explain in details why the algorithm in Flowchart 3 is correct. For a non-negative integer k, let
Wi(x1, ..., x,,y) = 0 be the equation

Dz(xl,...,xn)+[[ . 1_[ Z(x,-rl-)z]l
(ris..orm) €440, ..., L(k)} =1

Its coeflicients are rational, and they all can be computed. Therefore, for every k € N, we can compute a
positive integer dj such that the equivalent equation dy - Wy(xy, ..., Xk, ¥) = 0 has integer coefficients. O

2

=0
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Guess ([S p. 16]). The question of whether or not a given Diophantine equation has at most finitely
many rational solutions is decidable with an oracle that decides whether or not a given Diophantine
equation has a rational solution.

Originally, Minhyong Kim formulated the Guess as follows: for rational solutions, the finiteness
problem is decidable relative to the existence problem.

5 The question of whether or not a given Diophantine equation has at
most finitely many integer solutions is semi-decidable with an oracle
that decides whether or not a given Diophantine equation has an integer
solution

Lemma 7. ([I0 p. 177]). For every integer b, b # 0 if and only if the equation
y-b—Qu—-1DBu-1)=0
is solvable in integers.

Theorem 5. The question of whether or not a given Diophantine equation has at most finitely many
integer solutions is semi-decidable with an oracle that decides whether or not a given Diophantine
equation has an integer solution.

Proof. By Lemma [7] the algorithm in Flowchart 4 halts if and only if a Diophantine equation
D(x1,...,x,) = 0 has at most finitely many integer solutions.

Start

/Input a Diophantine equation D (x,...,x,) = O/

y

Fix a computable surjection 6: N — Z"

[c=0]

y
Does the equation D*(xi,...,x,) +
2
& Yes
y- [ 2, Gi=r)’ |~ @u=DGu~-1| =0
(r,...,m) €16(0),...,0(k)} =
is solvable in integers xi,...,X;,y,u ?
No

Print "The equation D (xy,...,x,;) = 0 has
at most finitely many integer solutions"

y

By the Davis-Putnam-Robinson-Matiyasevich theorem, the oracle in the claim of the theorem decides
the halting problem. This strong argument makes the proof trivial and without the use of Lemma[7] O

Flowchart 4
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