Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2019 d0i:10.20944/preprints201902.0183.v1

Two-Echelon Routing Problem for Parcel Delivery by Cooperated Truck

and Drone

Yao Liu?, Jianmai Shi**, Guohua Wu®, Zhong Liu®, Witold Pedrycz®

@ Science and Technology on Information Systems Engineering Laboratory, College of System Engineering,
National University of Defense Technology, Changsha, 410073, P. R. China.

b School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China.

¢ Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB T6R 2V4 Canada

* Corresponding author, jianmaishi@gamil.com.

Abstract

A new variant of two-echelon routing problem is investigated, where the truck and the drone are used
to cooperatively complete the deliveries of all parcels. The truck not only acts as a tool for parcel
delivery, but also serves as a moving depot for the drone. The drone can carry several parcels and take
off from the truck, while returning to the truck after completing the delivery. The energy consumption
model for the routing process of the drone is analyzed, when it is utilized to deliver multiple parcels. A
two-stage route-based modelling approach is proposed to optimize both the truck’s main route and the
drone’s adjoint flying routes. A hybrid heuristic integrating nearest neighbor and cost saving strategies
is developed to quickly construct a feasible solution. The simulated annealing algorithm is applied to
improve the quality of the solution, where a Tabu list is employed to improve the search efficiency.
Random instances at different scales are used to test the performance of the proposed algorithm. A case
study based on the practical road network in Changsha, China, is presented, through which the
sensitivity analysis is conducted with respect to some critical factors.
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1. Introduction

Over the years, the full-blooming E-commerce has incentivized the express delivery to skyrocket. It is
expected to distribute goods with shorter delivery time and lower courier cost, which throws out many
challenges to the last mile delivery. Traditional distribution based on ground vehicles can hardly satisfy
the customers for their increasing requirement on shorter delivery time, as they expect to receive their
parcels in one or two days after they complete the online orders. Ground delivery vehicles are limited
by the established infrastructure and geographical obstacles such as roads and rivers, which would
vastly add to the distribution time and operating costs. A large number of ground vehicles bring about
atmospheric pollution and traffic jam in urban areas, which is certainly against the public wish for the
environmental protection. These problems drive many researchers to look for more efficient delivery
ways and thus show great interests in drone delivery.

Delivery by unmanned aerial vehicles (UAVs), or drones, has been feasible due to the rapid
development of automation and artificial intelligence technologies. In general, drones can significantly
decrease the delivery cost and time, as they can fly directly to recipients with being less blocked by
obstacles and not considering ground traffic condition. Besides, drones are more environment-friendly
with lower power consumption and less air pollution. Thus, realizing these advantages, many companies
have investigated drone delivery problems. In addition to the first few companies applying UAVs, such
as Amazon, DHL and Google (Murray and Chu, 2015; Ha et al., 2018), JD has also tried the drone
delivery in several provinces in China. Alibaba Group and Baidu also utilize the parcel copter for take-
out. However, depending upon the characteristics of drones, it may not be optimal to deliver-by-drone
to all customers. Restricted by short endurance and low load capacity, drones have limited flight time
and can only carry small packages.

Considering these practical difficulties, both trucks and drones have their own limitations and
advantages, which are summarized in Table 1. Nevertheless, if they work together, there are several
advantages due to their strong complementarity. Primarily, the effective delivery range of drone is
enlarged, when the ground vehicle acts as a moving depot for carrying the drone. With longer travelling
distance and larger load capacity, ground vehicles can serve dual roles as both a mobile depot and a
delivery resource. Furthermore, drones are less limited by the ground traffic and can perform better in

some areas hard for trucks to reach, such as some places with traffic congestion or inconvenient
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transportation. As for the drone’s short endurance, it can be reused with replacing the battery or charging
on the ground vehicles. Thus, the combination of drone and truck has promised a bright prospect. Some
companies have applied this interesting approach. Mercedes-Benz released a conceptual car called
"Vision Van" in September 2016. Equipped with a fully automated cargo loading system, this van
deploys the delivery drone to get parcels to customers quickly. As described, it can significantly reduce
delivery time, and increase efficiency. In addition, UPS also develops a project named “Last Mile” to

deploy UAVs on a mobile truck, and a trial run in Florida was conducted in February 2017.

Table 1. Comparison of drone and ground vehicle for delivery

Drone Ground Vehicle
Load capacity Small Large
Endurance range Short Unlimited
Cost per kilometer Low High
Carbon emission Low High
Traffic No impact Traffic jam
Route Direct in air Along road network

There has been some pioneering work for investigating the parcel delivery problem for cooperated
truck and drone, e.g. Murray and Chu (2015), Ha et al. (2017) and Agatz et al. (2018). These works
studied the cooperated routing problem through extending the classical travelling salesman problem,
and also assume that the drone can only take one parcel in each flight. However, the drone can carry
several small parcels and complete their delivery in one flight, as the investigation in Dorling et al.
(2017). When the drone can take multiple parcels, the routing problem for the cooperated truck and
drone becomes a new variant of two-echelon routing problem as shown in Figure 1, in which more new

challenges are confronted.

A Depot O Customer node —» Truck route -=-» Drone route
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Figure 1. Two solutions with different directs for an example with five customer nodes

In the two-echelon routing problem for the truck and drone (2E-RP-T&D), it is usually


http://dx.doi.org/10.20944/preprints201902.0183.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2019 d0i:10.20944/preprints201902.0183.v1

assumed that the drone can take off and land on the truck at any customer node where the truck
stops. Also, the second echelon route of the drone is open, which is different from common
two-echelon routing problems. Both distinguishing features make the problem more complex.

In the parcel delivery process of the drone carrying multiple parcels, not only the payload
capacity and the endurance capacity must be considered, but also the energy consumption
process of the drone’s battery should also be considered. The energy consuming rate is a piece-
wise function depending on the sequence of parcels’ delivery, and the energy consumed is quite
different even for two routes with the same length while different directions. For example, in
Figure 1, if the package of Customer 4 is heavier than that of Customer 5, it is better for the
drone to first serve Customer 4 to unload the heavy cargo. However, when the drone travels in
the contrary direction, the heavy payload would consume more energy on the route of 3—5—4,
which causes more cost. Therefore, with the directivity of the paths in consideration, the search
space of 2E-RP-T&D is further enlarged, compared to traditional two-echelon routing problems.

Motivated both by the adaption of new technologies and delivering tool (drone) in practical
transportation industry, and the theoretical gap existing in the current literature, a new two-
echelon routing problem for the cooperated truck and drone is studied. As far as we know, it is
the first time to study the truck & drone cooperatively routing problem simultaneously
considering the following two aspects: (1) the drone can deliver multiple parcels in a single
flying route, and (2) the effect of varying payload on energy consumption is considered. To
formulate the problem a two-stage route-based modelling approach is proposed, where the
routes for the truck and drone are optimized. Due to the complexity of the problem, a hybrid
heuristic through integrating the nearest neighbor and cost saving strategies are developed to
construct a feasible solution in short time, and the simulated annealing algorithm combined
with the Tabu list is proposed to further improve the quality of the solution. Both random
instances and practical case are used to test the proposed algorithms, and computational results
show that our approach can efficiently solve the problem.

The paper is structured as follows. Section 2 presents the literature review, and Section 3
illustrates the problem and the model. Section 4 introduces the heuristic algorithms. The
experiment for random instances is carried out and sensitivity analysis is conducted with an

actual case in Section 5. At last, Section 6 presents the conclusion and outlines future works.
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2. Literature Review

Due to the high efficiency and low cost, the drone presents huge application opportunities
in various industries in recent years. One of the applications is parcel delivery which has been
investigated in many researches. Sundar and Rathinam (2014) consider a single drone routing
problem with multiple depots available for refueling the drone and minimize the total fuel the
drone required for visiting all the targets. San et al. (2016) propose the implementation steps of
assigning multiple drones to effectively deliver items to target locations. The actual operation
of autonomous deliveries is simplified and a Genetic Algorithm is proposed to solve the
problem. There is also a research on the automated drone delivery system (Choi and Schonfeld,
2017), in which drones can lift multiple packages within a service area of given radius.
Numerical analysis is applied to minimize the total costs by exploring the relationship among
four parameters: working period, drone speed, demand density of service area, and battery
capacity. Furthermore, multiple vehicles and time windows are considered in Ham (2018),
whose study extends the problem by considering the drone can either fly back to depot for next
delivery or fly directly to another customer for pickup.

With regards to the military applications, unmanned combat aerial vehicles are considered
to destruct predetermined targets with munitions, which has the limitations of the lower bound
and upper bound (Shetty, et al., 2008). Besides, drones can gather intelligence information from
a set of known targets after equipped with sensors. Avellar et al. (2015) solve the problem of
minimum time coverage of ground areas using a group of drones equipped with image sensors.
Persistent Intelligence, Surveillance and Reconnaissance (PISR) routing problem are also
considered by minimizing the time of delivering the collected data to the control station
(Manyam et al., 2017).

In the works mentioned above, the endurance capacity is set as a fixed value. However,
based on the actual situation, the effect of the payload weight on energy consumption of the
drone during the flight should not be ignored. There are several studies mentioned the
relationship between the endurance and payload weight. Mufalli et al. (2012) consider the
surveillance mission in which the available flight time would be reduced after attaching a sensor.

Dorling et al. (2017) propose two vehicle routing problem (VRP) variants for drone delivery.
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Calculated with a linear approximation function, the energy consumption varies linearly with
payload and battery weight. Besides, Song et al. (2018) mainly focus on the characteristics of
the UAV logistics system and discuss the effect of cargo weight on flight ability. However, in
these problems, only drones are applied for the delivery, and the truck is not included.

Since the combination of drone and truck can greatly improve the delivery efficiency, we
are aware of some works investigating the problem. Murray and Chu (2015) introduced the
problem, “Flying Sidekick Traveling Salesman Problem” (FSTSP), which proposes a mixed
integer liner programming formulation and a heuristic. In detail, the heuristic is based on the
idea of “Truck First, Drone Second”, in which they first construct a truck-only route and
iteratively replace the truck nodes by drone nodes to reduce the objective value. Recently, this
problem is also solved by some variable neighborhood heuristics (Freitas and Penna, 2018),
which perform much better on the large-scale instances. There are also a slightly different
problem——called “Traveling Salesman Problem with Drone” (TSP-D) (Agatz et al., 2018), in
which the drone has to follow the same road network as the truck. This problem is also modelled
as a MILP formulation and solved by a heuristic based on local search. Furthermore, some
variants of this problem are also explored. Ha (2018) introduces a time span into the TSP-D,
which the drone and the truck can wait for each other with the limited waiting time. Besides,
two heuristics of two concepts: "Drone First, Truck Second" (DFTS) and "Truck First, Drone
Second" (TFDS) are designed. Different from the former paper with the objective of
minimizing the cost, the author also tried to reduce the total time in another publication (Ha et
al., 2015). However, in these works, only one customer’s parcel can be arranged on the drone
in each flying route.

Cooperation between drone and truck is also widely used for surveillance and mapping.
There is a research exploiting the cooperative air and ground surveillance, in which the
framework and algorithm are proposed for search and localization (Grocholsky et al., 2006).
Additionally, with the restriction of the UAV's fuel capacity, Maini et al. (2015) consider the
refueling Unmanned Ground Vehicle (UGV) for successful mission completion. Savuran and
Karakaya (2015) propose a route optimization method for a carrier-launched UAV. In this
problem, the UAV visits the targets to execute the mission while the carrier keeps on moving

on its own route. Furthermore, a similar routing problem is investigated (Luo et al., 2017) and
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the difference is that the GV travels on the road network while its UAV visits the targets beyond
the road. Although these problems all investigate the routing problem in the combination of
trucks and drones, the payload of the drone stays the same while visiting multiple targets in one
route, in which the relationship between payload and energy consumption would not be
involved.

From the above review, we can see that a new variant of the classical vehicle routing
problem has not been studied, which is the two-echelon routing problem for cooperated truck
and drone, especially when multiple parcels can be delivered in one drone’s flying route and
the effect of varying payload on energy consumption is considered. Therefore, this new problem
is studied in this paper. The energy consumption model of the drone during the parcel delivering
process is analyzed, and a mathematical model is developed to optimize both the truck and

drone’s routes in the next section.

3. Problem Description and Model Development

3.1 Definitions and notations

In order to facilitate the model formulation, several definitions are first introduced as
follows:

Directed main-route is a closed path traveled by the truck starting from the depot for
visiting some customer nodes and returning to the depot, e.g. (0,1,2,3,0) shown in Figure 1(a).

Directed sub-route is path segment of a directed main-route. For example, there are ten
directed sub-routes in the directed main-route, (0,1,2,3,0), in Figure 1a, which are (0,1), (1,2),
(2,3), (3,0), (0,1,2), (1,2,3), (2,3,0), (0,1,2,3), (1,2,3,0) and (0,1,2,3,0).

Adjoint sub-route is directed path including one or several customer nodes that can be
visited by the drone when the truck travels a corresponding sub-route. For example, in Figure
la, (1,4,5,3) is an adjoint sub-route of directed sub-route (1,2,3), which means the drone takes
off from the truck at node 1, conducts the delivery tasks of nodes 4 and 5, and then returns to
the truck at node 3. Also, sub-routes (1,4,3) and (1,5,3) are also potential adjoint sub-routes of
directed sub-route (1,2,3).

The notations used in the problem description and model development are presented as

follows.
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Sets:
G the undirected graph where the problem is defined;
N the set of vertices;
E the set of all arcs;
Vo ={0}, the depot;
V. ={1,2,...,n}, the set of all customer nodes;
R the set of directed main-routes that can be traveled by the truck;
E,  the set of arcs included in route », where reR,;
S, the set of directed sub-routes included in route », where reR;
the set of customer nodes which are visited by the truck in route », where reR and
VeV,
the set of customer nodes that should be visited by the drone when directed main-
4 route r is selected for the truck, where reR and V,'=V/ V,;
the set of arcs that are included in directed sub-route / of main-route », where /.S,
and reR;
R the set of adjoint sub-routes that can be traveled by the drone as the truck travels sub-
route / of main-route r, where /€S, and reR;
the set of customer nodes that are visited by the drone in adjoint sub-route m
Vym  corresponding to directed sub-route [ of main-route », where meR,, [€S, and re
R;
Parameters:
w;  weight of the parcel that should be delivered to customers 7, where i e V;

J the truck’s travelling distance between any two customers (or customers and depot)
" iandj, whereijeVyuV;

e the drone’s flying distance between any two customers (or customers and depot) i
" andj, where ijeVyu V;

L1 unit travelling cost per kilometer of the truck;

P2 unit flying cost per kilowatt hour of the drone;

wa  weight of the drone;

Wy maximum payload of the drone;

D maximum capacity of the drone’s battery;

P maximum flying power of drone;

Ty maximum endurance time of the drone;

G;  the drone’s payload when it leaves customer (or depot) i, whereieVyu V;

the flying speed of the drone when the drone leaves customer (or depot) i to
customer (or depot) j, where i,je Vyu V;

¢;  the travelling cost of the truck from customer i to customer j;

cr the truck’s travelling cost of direct route , where reR;
the drone’s travelling cost of adjoint sub-route m corresponding to directed sub-route
! of main-route r, where meR,, [eS, and reR;
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a1 ifarc (i, j)eEn, 0 otherwise, where i,jeV,', [S, and r R,
bitm  1ifieVim, 0 otherwise, where ie V,), meR,, [eS, and reR;
Variables:
Xr 1 if directed main-route r is selected for the truck, 0 otherwise, where reR;

1 if adjoint sub-route m corresponding to directed sub-route / in directed main-route

Jrim r is selected for the drone, 0 otherwise, where meR,;, [eS, and reR.

3.2 Problem description

Figure 2. An illustration of the solution for an example 2E-RP-T&D

In the two-echelon routing problem for truck and drone (2E-RP-T&D)), it is assumed that
the capacity of the truck is always sufficient for all parcels, and thus can be viewed as
uncapacitated. The payload capacity of the drone is limited and known. The problem aims at
finding the optimal directed main-route of the truck and a set of directed adjoint sub-routes of
the drone to complete the delivery of all parcels, while the drone’s capacity constraints on
payload and battery are not violated. Figure 2 shows a feasible solution for an example of 2E-
RP-T&D. The route belonging to the first echelon is traveled by the truck, represented as solid
lines, whereas the drone routes, depicted as dashed lines, belong to the second echelon.

More formally, the 2E-RP-T&D can be described as follows. An undirected graph G = (N,
E) is defined. Set N = Vyu V' is the set of vertices, where Vy = {0} represents the depot and V'
= {1,2,...,n} is the set of all customer nodes. Set £ is the set of edges that can be traveled by
the truck or the drone.

The truck starts from the depot, taking all the parcels and the drone. The truck can only
travel on the road network and deliver the parcel to its customer. When the truck delivers the
parcel, the drone can also carry some small parcels and take off from the truck to complete
some deliver tasks simultaneously. We assume that the drone can only take off / land on the

truck when it stops at customer nodes (or depot), where the drone can be charged or change the
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battery. After completing the delivery of all parcels, the truck must return to the depot with the
drone. The objective is to find the main-route for the truck and all the adjoint sub-routes for the
drone to complete the delivery of all parcels and minimize the overall travelling cost of the

truck and drone.
3.3 The energy consuming process for the drone’s battery in an adjoint sub-route

The weight of each parcel cannot be neglected compared to the self-weight of the drone.
The energy consumption rate of the drone depends on its self-weigh and the weight of the
parcels it carried, which would become smaller step by step once the parcels have been dropped
off at the customer nodes. The energy consumption model for an adjoint sub-route with multiple
customer nodes is important for estimating the cost of this sub-route.

After selecting the adjoint sub-route and assigning the delivery tasks, the drone would load
all the corresponding parcels in order. Then it would travel to visit the assigned customers and
unload the packages one by one, which means that the payload would show a phased reduction.
Since the energy consumption rate can be viewed to vary linearly with payload (D'Andrea, 2014;
Dorling et al., 2017), the shape of the function for estimating this rate would show a piece-wise
form, which becomes lower step by step as the parcels are delivered to the customers. Figure
3(a) presents an illustration of changes on the drone’s battery power in a sub-route with 3

parcels, while Figure 3(b) displays the changes on the battery remaining capacity in this route.

=
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flying process in the flying process

Figure 3. The illustration of the energy consumption process for the drone in a sub-route with 3 parcels

When leaving customer (or the depot) i to customer (or the depot) j (i,j e Vou V), we assume

that the drone has the self-weight wy and a payload G.. Besides, the flying speed of the drone is
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denoted as v;. Then in the path segment from customer i to customer j, the battery power p;; can
be represented as follows.

(W, +G)vy

= +e
Py 370ny ’

(€]
Where 7 is the conversion efficiency of the motor, y is the lift ratio, and e is the energy loss
of the drone battery (D'Andrea, 2014).

Then the flying time from customer i to customer j and the corresponding energy
consumption is as shown below.

Vij

. @

W, = [ pai = {(W”G)” ﬁjvlcz 3)

370ny

When the brand and type of the drone is pre-determined, the value of all the related
parameters in (1)-(3) are known. Usually, the drone has a maximum power, P, due to the
limitations of battery and motor. In order to obtain the highest delivery efficiency, we assume

that the drone would maintain its maximum power during the flight, which means
p;=P. “)

Thus, based on the above assumption, the flying speed and time from customer i for

customer j can be estimated as presented below.

370ny(P—e)

yo=— U 5
Y w, +G, )

B dij(wd +Gi)

7 370ny (P —e) ©

And the relationship between payload and energy consumption can be expressed as

Equation (7), which is the energy consumption model.

d P
W, =Pt =(w, +G ) b—»~——
=Pty =+ ')370777/(P—e) {0

Based on the above expressions, we can calculate the overall amount of energies consumed by

the drone in an adjoint sub-route, and thus judge if it is over the capacity of the battery. Also, the
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cost of the adjoint sub-route can be obtained.
3.4 Model development

When multiple parcels are delivered by the drone in a single flight, the model development
for the two-echelon routing problem becomes quite difficult. Thus, to offer some more precisely
understanding on the problem definition, we presented a two-stage route-based mathematical
formulation. Given the network G = (N, E), we assume that all possible directed main-routes
of the truck can be enumerated and let R be the set of these main-routes. Each route r e R starts
from the depot V) = {0}, visits one or several customers in V, and return to the departure, e.g.
(0,1,2,3,4,5,0) in Figure 2. For any directed main-route » (reR), its cost can be calculated and
noted as ¢. When route #(r € R) is selected for the truck, let V; is the set of customers that visited
by the truck and ¥,’ is the set of drone customers. Also, we assume that all the directed sub-
route in a given main-route r (€ R) can be enumerated and let S, be the set of all sub-routes in
main-route ». Similarly, let £,; be denoted as the set of arcs that are included in directed sub-
route / and R, be denoted as the set of all possible adjoint sub-routes that can be traveled by the
drone as the truck travels sub-route / in route . Each adjoint sub-route m (m < R,;) starts from
the first customer of the corresponding sub-route / and ends at the last customer of / after visiting
one or several customers in V,'. Besides, V. is the set of customer nodes that are visited by the
drone in adjoint sub-route m (m e R,;) corresponding to directed sub-route / in route . And
according to the energy consumption model, the drone’s travelling cost of adjoint sub-route m
can be calculated and denoted as cim.

Let x,€{0,1} be a binary variable equal to 1 if directed route r (r<R) is selected for the
truck, and 0 otherwise. Given a truck route reR and a directed sub-route /€S, let y.me {0,1}
be a binary variable equal to 1 if adjoint sub-route m (meR,) is selected for the drone, and 0
otherwise. Furthermore, given two customers i,j (i,j € Vou V) and an adjoint sub-route m (me
R, let ;1€ {0,1} be a binary parameter equal to 1 if arc (i, j) e E,; and 0 otherwise, let bim
€ {0,1}be a binary parameter equal to 1 if i e Vs and 0 otherwise.

Based on the above assumptions and definitions, we develop a two-stage route-based
mathematical formulation for 2E-RP-T&D. In the first stage, the model for optimizing the

drone’s adjoint sub-routes for a given main-route of the truck is proposed, which can be used
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to calculate the minimum cost of the drone for all the possible main-routes in R. In the second
stage, the overall cost for both truck and drone is optimized.
3.4.1 Model 1: Optimizing the drone’s adjoint sub-routes

For any given truck route r (reR), the sets, E,, V, and V,, are determined. On this basis, all
possible and feasible drone adjoint sub-routes corresponding to route » can be known. Then the
minimum cost for the drone’s adjoint sub-routes to visit all nodes in V.’ can be calculated

through Model 1, which is formulated as follows.

Min z, = Z o Vo ©
Im
S.L.
Z aijr/yrlm < 1: vt,j S Er (9)
Im
Zbirlmyrlm = 15 Vie Vr” (10)

1,m

Ve 6{0,1}, VmeR

ol €S, (11)

The objective function (8) minimizes the cost of the drone for delivering all the parcels that
are not delivered by the truck in route . Given a truck route 7 (r € R), the constraint (9) ensures
that each path segment of truck route » can only correspond to at most one adjoint sub-route,
which avoid intersection among drone routes. Constraint (10) impose that all customer nodes
in ¥,/ must be visited exactly once. Finally, constraints (11) define the decision variables.
3.4.2 Model 2: Optimizing the truck’s directed main-route

To solve the problem, we have to enumerate all the possible directed main-routes for the
truck, and find the optimal result with the minimum total cost for both the truck and the drone,
in which the drone’s optimal cost for each truck route , z,, is calculated by solving Model 1.

The model for optimizing the truck’s directed main route is noted as Model 2 and presented as

follows.

Min 7 = Zcrxr + Zer: (12)

S.L.

x =1 (13)

r


http://dx.doi.org/10.20944/preprints201902.0183.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2019 d0i:10.20944/preprints201902.0183.v1

x,€{0,1}, VreR (14)

The objective function (14) minimizes the total cost given by two main components, which
are the truck’s travelling cost and the drone’s flying cost. z," is obtained through solving Model
1. Constraints (15) ensure that only one truck route can be selected. Constraints (14) define the
decision variables. For some directed main-route » (r € R), there may be no feasible solution can
be obtained in Model 1, and we let z," to be +oo in this situation.

We can see that the 2E-RP-T&D can be solved by utilizing Model 1 and Model 2. First, all
the possible directed main-routes of the truck should be enumerated to obtain set R. For each
main-route 7 ( € R), all the adjoint sub-routes should be enumerated and the optimal sub-routes
of the drone can be obtained by solving Model 1. Then the optimal solution for minimizing the
overall cost of the truck and drone can be calculated by Model 2. However, this approach can
only solve problems with a very small number of customer nodes. That is because the 2E-RP-
T&D is NP-hard as it generalizes other known NP-hard problems, such as the Capacitated VRP
(CVRP). It would become much more difficult to explore the solution space as the size of the
instance increases, which means the massive problem cannot be solved by the two-stage

approach. Thus, efficient heuristic algorithms have to be developed.
4. Solution

This section proposes a solution algorithm based on simulated annealing. An initial solution
is first constructed by a new heuristic integrating nearest neighbor and cost saving strategies.
Then the Simulated Annealing algorithm combined with a Tabu list is applied to improve the
initial solution.

4.1 Hybrid heuristic integrating nearest neighbor and saving strategies

The hybrid heuristic is designed based on the idea of "Truck First, Drone Second", which
integrates both nearest neighbor and saving strategies. Firstly, Nearest Neighbor Search (NNS)
is applied to build a directed main-route for the truck to visit all customer nodes. Then the idea
of maximum cost savings is adopted to find the set of the drone’s adjoint sub-routes by

replacing some truck nodes with drone nodes.


http://dx.doi.org/10.20944/preprints201902.0183.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2019 d0i:10.20944/preprints201902.0183.v1

(a) truck-only tour solution solved by NNS (b) truck & drone solution by cost saving replace

Figure 4. An illustration of the solution for six customer nodes

4.1.1 Construct a directed main-route based on nearest neighbor strategy

The heuristic based on Nearest Neighbor search is a well-known constructive search
algorithm, which is one of the earliest methods proposed for solving TSP problems (Cover and
Hart, 1967). The nearest neighbor search heuristic is utilized to construct a complete tour for
visiting all customers by the truck. It adopts the principle of selecting the next nearest unvisited
node until all nodes have been covered. It runs fast, however, the optimality of the tours it
produces highly depends on the layout of the customer nodes.
4.1.2 Construct adjoint sub-routes based on cost saving strategy

After completing the Nearest Neighbor Search, a directed main-route can be built, which
forms a customer list. The weights of the parcels for different customers are different. Some of
them are heavy packages that can only be delivered by the truck, while the others are light ones
that can be delivered by the drone. For the light parcels in the complete tour obtained in section
4.1.1, if they can be delivered by the drone, we utilize the drone to replace the truck for
delivering them. The replacing process is conducted one by one according to a cost saving
strategy proposed by Clarke and Wright (1964). The CW algorithm was originally applied to
Vehicle Routing Problem (VRP), which aims to find the optimal routes to deliver all the given
customers. Its main idea is to combine the two routes into one route under the limitations of the
vehicle load and find the maximum distance reduction. Similarly, the algorithm in this paper
tries to save the most cost by replacing a truck customer by a drone customer.

Specifically, in order to find the most saving customer in each replacing operation, four
conditions are identified according to the delivery ways of the former customer and the latter
customer. The four conditions are illustrated in Figure 5. In condition 1, there are three

customers visited by the truck in sequence, and the parcel of the middle one (Customer 2) is
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light, whose delivering way can be changed from the truck to drone. The drone would be
launched from Customer 1 and return to Customer 3 after serving Customer 2, and a new adjoint

sub-route can be generated. Then, the saved cost of this replacement can be calculated as
(clT2 +el, ) - (clT3 +el, ) , where ¢, , is the flying cost of the adjoint sub-route, (1,2,3).

In condition 2, a truck visiting node, which is also the landing node of a drone’s adjoint
sub-route, is added to the end of this adjoint sub-route. As illustrated in Figure 5(b), Customer
1 is delivered by the drone while Customer 2 and 3 are delivered by the truck in sequence. At
this case, the feasibility should be judged whether the drone can serve Customer 2 after
finishing the delivery of Customer 1. Besides the limitation of payload, energy consumption of
the whole route needs to be re-calculated according to the method in section 3.3. The same

check should also be conducted for the third and fourth condition. If the replacement in

condition 2 is feasible, the saved cost can be calculated as (cf2 +el+c”? ) —(cf3 +c” ., ),

is the flying cost of the original sub-route (---1—2)and c”

D
where ¢’ s

1-2-3

is the flying cost

of the sub-route with Customer 3 added.

In condition 3, a truck visiting node, which is the taking off node of a drone’s adjoint sub-
route, is added to the start of this adjoint sub-route. As illustrated in Figure 5(c), Customer 2 is
visited by the truck and is the taking off node of the drone. If the parcel in customer 2 can be

delivered by drone and added to the start of the adjoint sub-route, the saved cost can be

calculated as (clT2 +cl, +c£3m)—(c{4 +c£273m) , where ¢, is the flying cost of the

original sub-route (2—3---) and ¢, , is the flying cost of the sub-route with node 1 added.

In condition 4, two drone’s adjoint sub-routes are merged, which is illustrated in Figure
5(d). It can be seen that, in Figure 5(d), Customer 2 is visited by the truck, which is the landing
node of adjoint sub-route (---1—2) and the taking off node of adjoint sub-route (2—3---). If the

two adjoint sub-routes can be merged into one adjoint sub-route, the saved cost can be
calculated as ((:4T2 teo el vel, ) - (cf5 +c” ), where ¢” , is the flying cost of
the sub-route  (---1-2), c7,  isthe flying cost of the sub-route (2—3---)and ¢”, , , isthe

flying cost of the sub-route (---1—2—3---).
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Based on the above four conditions, check all the nodes visited by the truck, calculate the
saved cost for every possible nodes and replace the one with maximum cost saving by drone
visiting. Repeat this evaluation and replacing step until no more positive cost saving can be

found, which means the total cost cannot be decreased through changing the delivery ways of

N

(a) Condition 1: generating a new adjoint sub-route

@ ’./30\'1@\
"@ © "'@ ©

(b) Condition 2: adding a node at the end of a drone’s adjoint sub-route

customers.

N
N

- ,@\
‘@~* ‘®\*

(c) Condition 3: adding a node at the start of a drone’s adjoint sub-route

@\
L4 N

) \*

(d) Condition 4: merging two drone’s adjoint sub-routes

Figure 5. Four conditions for replacing the truck visiting node by the drone visiting node

4.1.3 Main optimization procedure

The main procedure for the hybrid heuristic is shown in Algorithm 1. At first, according to
the actual road distance, the truck is assigned to leave from the depot and choose to serve the
nearest customer every time until all the parcels haven been delivered. When the truck returns
to the depot, a truck-only route is generated (Line 1). Then loops would be executed following
the sequence of the customer list in this main route. In every loop, every customer node would
be judged whether they can be served by drone. We calculate the saved cost if it can be accessed
by the drone (Line 3). If one or more customers can be found, choose the most cost-saving

customer and adjust two-echo routes to change the delivery way of the chosen customer (Line
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5). If not, end the loop (Line 7) and output the solution, which is a two-echelon route for the

truck and drone (Line 10).

Algorithm 1: The hybrid heuristic
1 COMPUTE truck-only route

2 WHILE (1) DO

3 Find MostSavingCustomer

4 IF MostSavingCustomer THEN

5 change the delivery way of MostSavingCustomer
6 ELSE

7 break

8 END IF

9 END WHILE

10 PRINT truck & drone routes

4.2 Simulated Annealing Algorithm

Simulated Annealing algorithm is proposed by Kirkpatrick et al. (1983). Since it accepts
the worse solution with a certain probability, random factors are introduced into the search
process and the global optimal solution would be possibly obtained. This algorithm provides
an effective way for solving the TSP and VRP problems which are difficult to deal with by
traditional methods (Reinelt, 1994). Simulated annealing is a heuristic based on an analogy of
thermodynamics with the way metals cool and anneal. Its essential idea is not to restrict the
search moves only to those solutions that decrease the objective function value, which can avoid
being trapped prematurely in a local minimum. The main algorithm is shown below (Algorithm
2).

Initially, the optimization procedure starts from defining several parameters, such as the
start temperature and the termination temperature (Line 1). After constructing the initial
solution with the hybrid heuristic in 4.1 (Line 2), the initial solution would be assigned to the
best solution for initialization and recorded as the current solution (Line 3). At each temperature,
the number of iterations is predetermined and a Tabu list is initialized to improve the
performance of simulated annealing in the inner loop (Line 5). Then in each iteration, the
algorithm finds a temp solution from the neighborhood of the current solution (Line 8), which
will be explained later in further detail. Also some invalid moves would be added into Tabu list

(Line 8). If an improvement has been obtained (Line 10), the temp solution would become the
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current solution for the next iteration (Line 11). And it would remarked as the best solution if
its objective is better than the best objective so far (Line 13). However, a worse solution may
also be accepted with a small probability, determined by the current temperature and the
objective fitness difference which is known as the Boltzmann function (Line 17). Under this
condition, the best solution would not be changed. When the number of iterations reaches the
termination conditions, the temperature would be cooled down (Line 22) and the Tabu list
would be released (Line 23). As the current temperature is cooled to the end temperature, the

algorithm is terminated and the best solution is outputted (Line 25).

Algorithm 2: The Simulated Annealing algorithm

1 INITIALIZE startTemperature, endTemperature, iterationNumber, coolingRate
2 COMPUTE initialSolution

3 INITIALIZE currentSolution, bestSolution

4 currentTemperature = startTemperature

5 iteration = 0, tabuList = []

6 WHILE currentTemperature > endTemperature DO

7 WHILE iteration < iterationNumber DO

8 find tempSolution in neighborhood of the currentSolution and add tabuList
9 detaObjective = tempObjective - currentObejective

10 IF detaObjective <0 THEN

11 currentSolution = tempSolution

12 IF tempObjective < bestObjective THEN

13 bestSolution = tempSolution

14 END IF

15 ELSE

16 IF random([0,1])< exp(-detaObjective/currentTemperature) THEN
17 currentSolution = tempSolution

18 END IF

19 END IF

20 iteration ++

21 END WHILE

22 currentTemperature = currentTemperature x coolingRate

23 release tabuList

24 END WHILE

25 PRINT bestSolution, bestObjective

4.2.1 Neighborhoods

Since the two-echelon routes presents great complexity, it would produce many infeasible

solutions with the traditional neighborhood structures used in TSP and VRP problems, which
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consumes large amount of useless computation. Thus, in this section, different situations are
considered when the neighborhood move is performed in mixed customers and some
adjustment is applied to ensure the feasibility of the solution. To be specific, three
neighborhoods are designed. In each iteration, these neighborhoods of the current solution are
all searched. And the generated feasible solutions would be compared to select the solution with
the least cost.
(1) Neighborhood 1: Deletion-Reinsertion

The deletion-reinsertion neighborhood is commonly used in solving TSP related problems,
which removes a customer and reinserts it in other position in a tentative solution. Different
from traditional TSP problems, there are two kinds of routes, which are ground vehicle route
and drone routes. We restrict that the deleted node can only be reinserted into the same type
route, that is, the delivery tool of the parcel for the customers should not be changed. The
removal move can either randomly select a customer or delete the customer that has the greatest
impact on the distance of the route. Specifically, this move starts from generating a random
number to determine the removal way. If it is removed based on the distance, the distance of
both two sides of every customer would be calculated and the customer with the longest
distance of two sides would be removed. However, if it is removed randomly, the search space
for the solution would be diversified. As for the reinserting operation, it would greedily choose
the best insertion position with a minimum increase in cost after considering all the feasibility.
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Figure 6. Sketch map for reinsertions of nodes visited by the truck
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Since drone customers are only located on one drone route, the reinsertion of drone
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customers would only be limited to the endurance and capacity of the drone. Nevertheless, it is
more complex for truck customers. Several typical operations for the deletion-reinsertion
neighborhood is presented in Figure 6. Figure 6(a) illustrates a relatively straightforward move
in which customer 3 is only located on the truck route and the reinsertion of customer 3 has no
influence on the drone route. Additionally, the operations represented in Figure 6(b) and (c)
relocate the customer 2, locating on both the truck route and a drone route. In case (b), although
the truck route is relocated, the drone still launches from customer 2. However, in case (c) the
drone route is inverted, turning customer 2 the return node of the drone route. According to the
energy consumption model, the energy that the drone consumes on this route would change.

(2) Neighborhood 2: 2-Exchange
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Figure 7. Sketch map for 2-exchange

The 2-exchange neighborhood is to swap a customer with another one in a solution. Due to
the complexity of the two-echelon routes, here the 2-exchange operation is more complex than
that utilized in traditional TSP, and also the capacities on the drone’s endurance and payload
should be checked in each operation. The exchange between two nodes in a single type route,
e.g. the truck route or the drone route, is simple if the structure the two-echelon routes are not
changed. In other cases, if the truck visiting node serves as the launch or landing node, the role
of this node in the drone route should be replaced by the other exchanging node. Some special
cases are presented in Figure 7. As shown in Figure 7(a), the departure node of the drone
changes from customer 2 to customer 7, and the new route of the drone needs to be verified. In
Figure (b), if the launch and return customers remain the same, the drone route (3, 7, 1) would
be inside another drone route (4, 5, 2). Thus, it is supposed to do some adjustment after

exchange and choose customer 6 to be the new returning customer.
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(3) Neighborhood 3: Relocation

The relocation neighborhood is similar with the deletion-reinsertion neighborhood, and
their main difference is that the relocation must change the delivery way of customers. It is
simple for drone visiting customers to be changed into truck visiting ones, so we will focus on
how to turn truck visiting customers into drone visiting customers. Figure 8 presents three
typical moves for relocation nodes between truck route and drone route. After removing a
customer from the route of the truck, the simplest way is inserting it in a new drone trip as
illustrated in Figure 8(a). Also, as Figure 8(b) presents, inserting the customer into current drone

route is another method. Comparing between two possible solutions, the better one with lower
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Figure 8. Sketch map for some cases of relocation between truck and drone nodes

cost would be chosen.

It should be noted that if the selected truck customer is the launch node or landing node, an
alternative customer is required after converting the selected customer to the drone customer.
For instance, to ensure the feasibility of the solution, another customer should be chosen to be
the launch of the drone after customer 2 is visited by drone, such as customer 4 in Figure 8(c).
4.2.2 Integration of Tabu list

Integrated with the transition probability, the simulated annealing algorithm has the
capability to escape from local optima in the solution search process. However, the lack of
memory may be regarded as the main deficiency of this method, which would result in short-
term cycling and revisiting (El-Bouri et al., 2007). Thus, with memorizing a list of forbidden

moves (Tabu list), the performance of simulated annealing can be improved. And the integration
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of Tabu list into the simulated annealing algorithm has been reported to be effective in previous
study (Wu et al., 2014).

In each interaction, some neighborhoods would be selected to generate a new neighborhood
solution. If the new solution is better (with lower cost) than the old one, then it would be
accepted. Or if the new solution has worse objective fitness than the old one, the new one can
be accepted with a certain probability. Once the new solution has been accepted, selected
neighborhoods would be added to the Tabu list. Consistently, neighborhoods in the Tabu list are

not allowed to be inserted into the new solution until released after the temperature cools down.
5. Experiments and Results

In this section, experiments based on randomly generated instances are carried out to test
the effectiveness of the proposed algorithms and a practical case is applied for the sensitivity
analysis on some critical factors, which are the ratio of light parcels, drone’s capacity on
payload, and the capacity of drone’s battery power.

5.1 Experiment on random instances
5.1.1 Experiment Design

The value of parameters related with the truck and drone is set according to typical ones in
practical use. The drone’s weigh is about 2kg with a maximum payload of 3kg and its endurance
distance is about 6 miles (about 10 kilometers) under maximum payload condition. As for the
truck cost, a typical truck for parcel delivery travels 6 miles per gallon of diesel, which yields
that the fuel consumption is 0.392 L/km. On January 8, 2018, the national average price of
diesel is $ 2.996 per gallon, which is $0.310/km. Besides, it is estimated that the variable
operating cost of trucks is $0.484 km-1 after considering maintenance cost, depreciation cost
and salaries (Cachon, 2014). Thus, the unit distance cost for the truck is $0.794/km. When it
comes to the drone cost, it is set by default that the truck’s unit distance cost is 25 times the
drone’s unit distance cost (Ha et al., 2018). With the battery power 5000mAh and the maximum
travel distance 10 kilometers, it can be estimated that the unit energy cost for the drone is $0.635
* 10°N(-4)/mAh. Thus, after referring to public parameters of various drones, the performance

of two vehicles is initially determined and reported in Table 3.
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Table 2. The Parameters of Truck and Drone

speed 50km/h
Truck
unit distance cost $0.794 /km
payload capacity 3kg
maximum rate of power 160W
Drone battery power 5000mAh
coefficient k = 370ny (P—e) 1280
unit energy cost $0.635 x 107(-4)/mAh

The random experiment is conducted with instances in three different scales which is
displayed in Table 4. When generating the position of nodes, the quartering method is used as
dividing the map into four parts and randomly generating the equal number of nodes in each
part. As for the weight of parcels, Amazon has announced that about 90% - 95% of its parcels
are no heavier than 5 pounds (about 2.27kg). Thus, with some prior research, the weight of
parcel is preset in the range of 0-10kg and the parcels with the weight lighter than 2.3kg
accounts for 90 percent. If the parcel is too heavy to be delivered by drone, it is thought as a

heavy parcel, otherwise a light parcel.

Table 3. Instances in Three Different Scales

Scale Number of Nodes Map size
Small 20 8km*8km
Medium 40 10km*10km

Large 100 12km*12km

Figure 9 presents an example of small scale instance. The depot is represented by triangle
block. The dots indicate all the customers with the size distinguishing the heavy parcel and light

parcel.
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Figure 9. An example distribution of nodes for small scale instance
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5.1.2 Experiment Result

To explore the performance of the algorithm, ten instances for each different scale are
randomly generated by the method described above and used to conduct the experiment. For
every instance, the results for the initial solution obtained by the hybrid heuristic (HH) and the
final impoved solution obtianed by the simulated alnnealing algorithm (SA) are compared.

In addition, the result for the truck-only route of each instance (TO) is calculated by the
simulated annealing algorithm, which can be seen as the optimal solution if the parcels are
delivered only by traditional truck. Then the comparison between final solution (SA) and the
optimal truck-only solution (TO) is also presented, which demonstrates the impact on the total
cost with the drone assisted mode.

Table 5 presents the computational results for all ten instances of small scale. We can see
that the SA algorithm can significantly improve the initial solutions obtained by the HH
algorithm, and the costs of improved solution presented by SA decrease from 13.47% to 57.14%
comparing to the costs of the initial solutions by HH. With the drone introduced, the final costs
obtained by SA for the truck-drone delivery mode decrease from 20.92% to 65.63% comparing

to the costs of truck-only mode. The computational time for all small instances is controlled in

12 seconds.
Table 4. Results of 10 Random Instances in Small Scale
Cost/$ Comparison
Map Truck- Truck &  Truck & Computational
Size Only Drone Drone (HH-SA)HH  (TO-SA)/TO Time (s)
(TO) (HH) (SA)
58.36 45.74 27.47 39.94% 52.93% 10.340
47.14 37.66 20.33 46.02% 56.87% 9.015
61.08 51.24 27.82 45.71% 54.45% 8.868
56.39 45.32 27.59 39.12% 51.07% 10.961
Small 52.20 45.25 32.86 27.38% 37.05% 9.504
Scale 58.61 35.93 26.50 26.25% 54.79% 11.952
55.01 50.27 43.50 13.47% 20.92% 7.693
52.66 48.86 32.95 32.56% 37.43% 7.810
57.36 53.06 26.64 49.79% 53.56% 8.353
48.82 39.15 16.78 57.14% 65.63% 9.278

Table 6 presents the results for ten instances of medium scale. We can see that the solutions
obtained by HH can be improved by SA for 27.35% - 49.33%. The final costs for the truck-

drone delivery mode decrease for 38.03% - 54.72% comparing to the costs of truck-only mode.
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The computational time of SA for the medium instances is a little more than that for the small

instances, which is still controlled in 23 seconds.

Table 5. Results of 10 Random Instances in Medium Scale

Cost/$ Comparison
Map Truck- Truck &  Truck & Computational
Size Only Drone Drone (HH-SA)HH  (TO-SA)/TO Time (s)
(TO) (HH) (SA)
84.39 75.40 38.21 49.32% 54.72% 20.426
85.86 71.36 39.95 44.02% 53.47% 18.594
98.13 83.26 57.04 31.49% 41.87% 18.909
88.14 75.18 54.62 27.35% 38.03% 16.859
Med 98.28 85.03 52.73 37.99% 46.35% 19.309
Scale 98.67 75.87 53.89 28.97% 45.38% 22.829
95.45 77.55 44.02 43.24% 53.88% 18.463
102.21 86.19 52.82 38.72% 48.32% 20.679
94.95 71.94 51.16 28.89% 46.12% 17.417
83.82 69.30 49.64 28.37% 40.78% 19.082

Table 7 shows the results for ten instances of large scale. It can be seen that the
computational time for the large instances is much longer than that for the medium instances,
while it is acceptable and controlled in 62 seconds. The performance of SA on solution

improvement for large instances is similar to that of medium instances.

Table 6. Results of 10 Random Instances in Large Scale

Cost/$ Comparison
Map Truck- Truck & Truck & Computational
Size Only Drone Drone (HH-SA)/HH  (TO-SA)/TO Time (s)
(TO) (HH) (SA)
184.05 150.08 99.64 33.61% 45.86% 61.279
173.21 146.02 102.79 29.61% 40.66% 57.073
170.53 136.21 94.27 30.79% 44.72% 53.689
188.55 170.21 101.80 40.19% 46.01% 47.574
Large 170.94 150.85 93.44 38.06% 45.34% 53.540
Scale 181.98 172.02 82.87 51.83% 54.46% 42.790
191.25 159.25 85.27 46.46% 55.41% 56.360
186.92 160.30 91.31 43.04% 51.15% 49.839
163.57 146.10 84.87 41.91% 48.11% 50.131
201.65 179.79 82.41 54.16% 59.13% 57.998

From the overall results presented in Table 4-6, it can be observed that the adoption of
cooperated truck and drone for parcel delivery can greatly reduce the delivery costs, compared

with the truck-only mode. In many instances, the costs of the truck-drone mode are even less
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than the half of that with truck only. Besides, the neighborhood operators have also proven to
be an effective local optimization method, and for most of the instances, the costs of the initial
solution obtained by HH is reduced by SA for over 30%.

Furthermore, the performance of the whole algorithm is more stable with larger scale
instances. In small-scale instances, the distribution of customers is relatively scattered. At this
time, the optimization process is directly affected by the layout of the nodes, which is the reason
why the optimization proportions in Table 4 differ greatly. The density of customers would
increase as enlarging the scale, which is more favorable to the drone delivery.

5.2 Case Study
5.2.1 Case description

A case is built based on the practical road network and customer nodes in Changsha, China,
which is used for the sensitivity analysis. As Figure 10 displays, in the east urban area of
Changsha, 95 crossings of the main roads are drawn and 30 customer nodes are marked.
Through connecting these crossings, there forms a road network for the delivery truck.

Specifically, the latitude and longitude coordinates of the crossings are obtained from the
Baidu map. As for the road distance of the truck, a tool provided by Baidu is applied for the
distance calculation of the actual road segments, generating the initial distance matrix. Then
the crossing distance matrix is filled by the Floyd algorithm to acqure the shortest distance
between any two crossings based on the road network. The weight for each customer is

randomly generated with the mentioned weight ratio, 90%.
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Figure 10. The layout of road network and the instance for 30 customers in Changsha
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To display the result visually, the basic simulated annealing algorithm and the constructed
algorithm are both applied to solve the example instance in Figure 10 and the result is shown
in Figure 11. Figure 11(a) presents the optimal truck-only solution with the cost of 28.63 while
(b) is the final truck & drone solution with the cost of 16.72. In the final solution, there are 10
customers delivered by the truck, including 6 customers with heavy parcels. The other 20
customers are visited by drone, which vastly reduces the delivery cost. And the computional

time is 9.39 seconds.

/N Distribution Center Customer with Heavy Parcel @ Customer with Light Parcel

«—— Truck Routes <+ — — Drone Routes

(b) final truck & drone solution

Figure 11. Comparison of solutions for different delivery modes

5.2.2 Sensitivity analysis

Three critical factors are considered with sensitivity tests, which are the ratio of light parcels,

drone’s capacity on payload, and the capacity of drone’s battery power.
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(1) Impact analysis for the Ratio of light parcels

When generating the weight of customers’ parcels, a ratio of light parcels is defined, which
means the percentage of light parcels under 2.3kg (about 5 pounds) in all parcels. To monitor
the effect of this ratio, the comparison experiments are conducted with different ratios from
0.50 to 0.95. The results are presented in Figure 12.

As the ratio of light parcel increases, the total cost shows an obvious reduction from 29.07
to 16.63. And the cost generated by the truck also falls from 24.69 to 8.30 while the cost
generated by the drone rises from 4.38 to 8.33. It can be inferred that with the proportion of
parcels within the maximum payload of drone rises, more customers would be served by the
drone, which can save the overall delivery cost. Furthermore, when the ratio of package is larger
than 0.8, the costs do not change a lot. At this time, the capacity of the payload no longer

restricts the delivery of drone, but the endurance capacity becomes the main constraint.

30 T T T T T T
r —B— Total cost
—— Cost of drone
254 —&— Cost of truck

20

Cost/ §
-

0 1 1 1 1
0.5 0.55 0.6 0.65 07 0.75 0.8 0.85 0.9 0.95
Ratio of Light Parcels

Figure 12. Computational results under different ratios of light parcels

(2) Impact analysis of the drone’s capacity on payload

The method of increasing the drone’s capacity on payload depends on the same ides with
the way of improving the ratio of light parcels, which can promote the utilizing efficiency of
the drone. Thus, the result of changing the payload from 2kg to 8kg is similar to the above test,
which are shown in Figure 13.

It is obvious that both total cost and truck cost experienced a significant decline as the drone
payload capacity rises, especially from 2.0 kg to 3.0 kg. The total cost decreases from 23.16 to

14.27 and the reduction is even bigger for the truck cost from 18.78 to 5.33. It can be noticed
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that the drone cost would be greater than the truck cost with maximum payload above 3 kg,
which can be inferred that the drone delivery would play a major role as long as it gets rid of
the limitations of the payload capacity. However, when the maximum drone payload exceeds
5.0 kg, the continuous increase of the maximum payload will not lead to a significant reduction
in the total cost. That is because the constraints on the drone endurance restricts it to be used

for delivering more parcels in one route.

0 —B— Total cost
2+ ~—— Cost of drone
—&— Cost of truck

Cost/$§

[
o

Payload capacity of drone / kg

Figure 13. Computational results under different capacities of drone’s payload

(3) Impact analysis of the drone’s battery power

To investigate the effects of the capacity of drone’s battery power, the sensitivity test is
carried out in a way that the only difference is the battery power varying from 4000 to 8000mAh.

As Figure 14 displays, when the capacity of the battery power increases from 3000 to
5500mAbh, the total cost reduces within a wide range from 29.16 to 15.41. It is obvious that
increasing battery power can be a valid way to reduce the delivery cost. As for the other part of
the cost, the truck cost decreases a lot from 25.78 to 7.09 while the cost of drone increases from
3.38 to 8.32. However, the total cost basically keeps the same when the capacity of battery is
over 6000mAbh, since the endurance of drone would not be the primary limitation for drone
delivery. In this situation, due to the limitation on drone’s payload, the drone cannot serve more

customers in one route, although the power is still sufficient.
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Figure 14. Computational results under different capacities of drone’s battery power

6. Conclusions

In this paper, recognizing the importance and necessity of the coordination of the truck and
the drone in parcel delivery, the drone-assisted parcel delivery problem is studied. Since
multiple parcels are allowed to be delivered by the drone in one flight, the investigated problem
can be viewed as a new variant of two-echelon routing problem. Besides, the effect of payload
on the energy consumption is estimated by a proposed energy consumption model. Then an
algorithm based on simulated annealing is presented. A heuristic combining Nearest Neighbor
Algorithm and Saving Algorithm is designed to generate the initial solution. And variable local
search is conducted with removal operators and insertion operator in every iteration to find
better solution.

Radom test experiments with different scales are conducted and indicated the efficiency of
the proposed algorithm. Furthermore, three factors are considered in sensitivity tests based on
a practical case, which are the ratio of light parcels, maximum payload of drone, and drone’s
battery power. Experimental results show that the employment of the drone can save more costs
when there are more light parcels for delivery. Also, proper improvement on technologies for
enlarging the capacities of the drone’s payload and battery power would help save more
delivery cost.

It is an emerging phenomenon in recent years that the drone is employed in parcel delivery
to cooperate with the truck. There are many research topics that are not studied in the
management and operation research area, such as the two-echelon truck & drone routing
problems with time window, with multiple vehicles, and with multiple depots. More interesting
and valuable variants of this problem are waiting to be explored. Due to the complexity for the
optimization of the two-echelon routes, more efficient algorithms also have to be developed in

future work.
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