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Abstract 

A new variant of two-echelon routing problem is investigated, where the truck and the drone are used 

to cooperatively complete the deliveries of all parcels. The truck not only acts as a tool for parcel 

delivery, but also serves as a moving depot for the drone. The drone can carry several parcels and take 

off from the truck, while returning to the truck after completing the delivery. The energy consumption 

model for the routing process of the drone is analyzed, when it is utilized to deliver multiple parcels. A 

two-stage route-based modelling approach is proposed to optimize both the truck’s main route and the 

drone’s adjoint flying routes. A hybrid heuristic integrating nearest neighbor and cost saving strategies 

is developed to quickly construct a feasible solution. The simulated annealing algorithm is applied to 

improve the quality of the solution, where a Tabu list is employed to improve the search efficiency. 

Random instances at different scales are used to test the performance of the proposed algorithm. A case 

study based on the practical road network in Changsha, China, is presented, through which the 

sensitivity analysis is conducted with respect to some critical factors. 

Keywords: two-echelon routing; vehicle routing; truck and drone; heuristic; simulated annealing 

algorithm 
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1. Introduction 

Over the years, the full-blooming E-commerce has incentivized the express delivery to skyrocket. It is 

expected to distribute goods with shorter delivery time and lower courier cost, which throws out many 

challenges to the last mile delivery. Traditional distribution based on ground vehicles can hardly satisfy 

the customers for their increasing requirement on shorter delivery time, as they expect to receive their 

parcels in one or two days after they complete the online orders. Ground delivery vehicles are limited 

by the established infrastructure and geographical obstacles such as roads and rivers, which would 

vastly add to the distribution time and operating costs. A large number of ground vehicles bring about 

atmospheric pollution and traffic jam in urban areas, which is certainly against the public wish for the 

environmental protection. These problems drive many researchers to look for more efficient delivery 

ways and thus show great interests in drone delivery. 

Delivery by unmanned aerial vehicles (UAVs), or drones, has been feasible due to the rapid 

development of automation and artificial intelligence technologies. In general, drones can significantly 

decrease the delivery cost and time, as they can fly directly to recipients with being less blocked by 

obstacles and not considering ground traffic condition. Besides, drones are more environment-friendly 

with lower power consumption and less air pollution. Thus, realizing these advantages, many companies 

have investigated drone delivery problems. In addition to the first few companies applying UAVs, such 

as Amazon, DHL and Google (Murray and Chu, 2015; Ha et al., 2018), JD has also tried the drone 

delivery in several provinces in China. Alibaba Group and Baidu also utilize the parcel copter for take-

out. However, depending upon the characteristics of drones, it may not be optimal to deliver-by-drone 

to all customers. Restricted by short endurance and low load capacity, drones have limited flight time 

and can only carry small packages. 

Considering these practical difficulties, both trucks and drones have their own limitations and 

advantages, which are summarized in Table 1. Nevertheless, if they work together, there are several 

advantages due to their strong complementarity. Primarily, the effective delivery range of drone is 

enlarged, when the ground vehicle acts as a moving depot for carrying the drone. With longer travelling 

distance and larger load capacity, ground vehicles can serve dual roles as both a mobile depot and a 

delivery resource. Furthermore, drones are less limited by the ground traffic and can perform better in 

some areas hard for trucks to reach, such as some places with traffic congestion or inconvenient 
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transportation. As for the drone’s short endurance, it can be reused with replacing the battery or charging 

on the ground vehicles. Thus, the combination of drone and truck has promised a bright prospect. Some 

companies have applied this interesting approach. Mercedes-Benz released a conceptual car called 

"Vision Van" in September 2016. Equipped with a fully automated cargo loading system, this van 

deploys the delivery drone to get parcels to customers quickly. As described, it can significantly reduce 

delivery time, and increase efficiency. In addition, UPS also develops a project named “Last Mile” to 

deploy UAVs on a mobile truck, and a trial run in Florida was conducted in February 2017. 

 

 Table 1. Comparison of drone and ground vehicle for delivery 

 Drone Ground Vehicle 

Load capacity Small Large 

Endurance range Short Unlimited 

Cost per kilometer Low High 

Carbon emission Low High 

Traffic No impact Traffic jam 

Route Direct in air Along road network 

 

There has been some pioneering work for investigating the parcel delivery problem for cooperated 

truck and drone, e.g. Murray and Chu (2015), Ha et al. (2017) and Agatz et al. (2018). These works 

studied the cooperated routing problem through extending the classical travelling salesman problem, 

and also assume that the drone can only take one parcel in each flight. However, the drone can carry 

several small parcels and complete their delivery in one flight, as the investigation in Dorling et al. 

(2017). When the drone can take multiple parcels, the routing problem for the cooperated truck and 

drone becomes a new variant of two-echelon routing problem as shown in Figure 1, in which more new 

challenges are confronted. 

Depot Customer node Truck route Drone route
 

0 1

4

2 3 0

5

     
0 1

4

2 3 0

5

 

(a)  (b) 

Figure 1. Two solutions with different directs for an example with five customer nodes 

 

In the two-echelon routing problem for the truck and drone (2E-RP-T&D), it is usually 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   doi:10.20944/preprints201902.0183.v1

http://dx.doi.org/10.20944/preprints201902.0183.v1


assumed that the drone can take off and land on the truck at any customer node where the truck 

stops. Also, the second echelon route of the drone is open, which is different from common 

two-echelon routing problems. Both distinguishing features make the problem more complex. 

In the parcel delivery process of the drone carrying multiple parcels, not only the payload 

capacity and the endurance capacity must be considered, but also the energy consumption 

process of the drone’s battery should also be considered. The energy consuming rate is a piece-

wise function depending on the sequence of parcels’ delivery, and the energy consumed is quite 

different even for two routes with the same length while different directions. For example, in 

Figure 1, if the package of Customer 4 is heavier than that of Customer 5, it is better for the 

drone to first serve Customer 4 to unload the heavy cargo. However, when the drone travels in 

the contrary direction, the heavy payload would consume more energy on the route of 3→5→4, 

which causes more cost. Therefore, with the directivity of the paths in consideration, the search 

space of 2E-RP-T&D is further enlarged, compared to traditional two-echelon routing problems. 

Motivated both by the adaption of new technologies and delivering tool (drone) in practical 

transportation industry, and the theoretical gap existing in the current literature, a new two-

echelon routing problem for the cooperated truck and drone is studied. As far as we know, it is 

the first time to study the truck & drone cooperatively routing problem simultaneously 

considering the following two aspects: (1) the drone can deliver multiple parcels in a single 

flying route, and (2) the effect of varying payload on energy consumption is considered. To 

formulate the problem a two-stage route-based modelling approach is proposed, where the 

routes for the truck and drone are optimized. Due to the complexity of the problem, a hybrid 

heuristic through integrating the nearest neighbor and cost saving strategies are developed to 

construct a feasible solution in short time, and the simulated annealing algorithm combined 

with the Tabu list is proposed to further improve the quality of the solution. Both random 

instances and practical case are used to test the proposed algorithms, and computational results 

show that our approach can efficiently solve the problem. 

The paper is structured as follows. Section 2 presents the literature review, and Section 3 

illustrates the problem and the model. Section 4 introduces the heuristic algorithms. The 

experiment for random instances is carried out and sensitivity analysis is conducted with an 

actual case in Section 5. At last, Section 6 presents the conclusion and outlines future works. 
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2. Literature Review 

Due to the high efficiency and low cost, the drone presents huge application opportunities 

in various industries in recent years. One of the applications is parcel delivery which has been 

investigated in many researches. Sundar and Rathinam (2014) consider a single drone routing 

problem with multiple depots available for refueling the drone and minimize the total fuel the 

drone required for visiting all the targets. San et al. (2016) propose the implementation steps of 

assigning multiple drones to effectively deliver items to target locations. The actual operation 

of autonomous deliveries is simplified and a Genetic Algorithm is proposed to solve the 

problem. There is also a research on the automated drone delivery system (Choi and Schonfeld, 

2017), in which drones can lift multiple packages within a service area of given radius. 

Numerical analysis is applied to minimize the total costs by exploring the relationship among 

four parameters: working period, drone speed, demand density of service area, and battery 

capacity. Furthermore, multiple vehicles and time windows are considered in Ham (2018), 

whose study extends the problem by considering the drone can either fly back to depot for next 

delivery or fly directly to another customer for pickup. 

With regards to the military applications, unmanned combat aerial vehicles are considered 

to destruct predetermined targets with munitions, which has the limitations of the lower bound 

and upper bound (Shetty, et al., 2008). Besides, drones can gather intelligence information from 

a set of known targets after equipped with sensors. Avellar et al. (2015) solve the problem of 

minimum time coverage of ground areas using a group of drones equipped with image sensors. 

Persistent Intelligence, Surveillance and Reconnaissance (PISR) routing problem are also 

considered by minimizing the time of delivering the collected data to the control station 

(Manyam et al., 2017). 

In the works mentioned above, the endurance capacity is set as a fixed value. However, 

based on the actual situation, the effect of the payload weight on energy consumption of the 

drone during the flight should not be ignored. There are several studies mentioned the 

relationship between the endurance and payload weight. Mufalli et al. (2012) consider the 

surveillance mission in which the available flight time would be reduced after attaching a sensor. 

Dorling et al. (2017) propose two vehicle routing problem (VRP) variants for drone delivery. 
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Calculated with a linear approximation function, the energy consumption varies linearly with 

payload and battery weight. Besides, Song et al. (2018) mainly focus on the characteristics of 

the UAV logistics system and discuss the effect of cargo weight on flight ability. However, in 

these problems, only drones are applied for the delivery, and the truck is not included. 

Since the combination of drone and truck can greatly improve the delivery efficiency, we 

are aware of some works investigating the problem. Murray and Chu (2015) introduced the 

problem, “Flying Sidekick Traveling Salesman Problem” (FSTSP), which proposes a mixed 

integer liner programming formulation and a heuristic. In detail, the heuristic is based on the 

idea of “Truck First, Drone Second”, in which they first construct a truck-only route and 

iteratively replace the truck nodes by drone nodes to reduce the objective value. Recently, this 

problem is also solved by some variable neighborhood heuristics (Freitas and Penna, 2018), 

which perform much better on the large-scale instances. There are also a slightly different 

problem—called “Traveling Salesman Problem with Drone” (TSP-D) (Agatz et al., 2018), in 

which the drone has to follow the same road network as the truck. This problem is also modelled 

as a MILP formulation and solved by a heuristic based on local search. Furthermore, some 

variants of this problem are also explored. Ha (2018) introduces a time span into the TSP-D, 

which the drone and the truck can wait for each other with the limited waiting time. Besides, 

two heuristics of two concepts: "Drone First, Truck Second" (DFTS) and "Truck First, Drone 

Second" (TFDS) are designed. Different from the former paper with the objective of 

minimizing the cost, the author also tried to reduce the total time in another publication (Ha et 

al., 2015). However, in these works, only one customer’s parcel can be arranged on the drone 

in each flying route.  

Cooperation between drone and truck is also widely used for surveillance and mapping. 

There is a research exploiting the cooperative air and ground surveillance, in which the 

framework and algorithm are proposed for search and localization (Grocholsky et al., 2006). 

Additionally, with the restriction of the UAV's fuel capacity, Maini et al. (2015) consider the 

refueling Unmanned Ground Vehicle (UGV) for successful mission completion. Savuran and 

Karakaya (2015) propose a route optimization method for a carrier-launched UAV. In this 

problem, the UAV visits the targets to execute the mission while the carrier keeps on moving 

on its own route. Furthermore, a similar routing problem is investigated (Luo et al., 2017) and 
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the difference is that the GV travels on the road network while its UAV visits the targets beyond 

the road. Although these problems all investigate the routing problem in the combination of 

trucks and drones, the payload of the drone stays the same while visiting multiple targets in one 

route, in which the relationship between payload and energy consumption would not be 

involved.  

From the above review, we can see that a new variant of the classical vehicle routing 

problem has not been studied, which is the two-echelon routing problem for cooperated truck 

and drone, especially when multiple parcels can be delivered in one drone’s flying route and 

the effect of varying payload on energy consumption is considered. Therefore, this new problem 

is studied in this paper. The energy consumption model of the drone during the parcel delivering 

process is analyzed, and a mathematical model is developed to optimize both the truck and 

drone’s routes in the next section. 

3. Problem Description and Model Development 

3.1 Definitions and notations 

In order to facilitate the model formulation, several definitions are first introduced as 

follows: 

Directed main-route is a closed path traveled by the truck starting from the depot for 

visiting some customer nodes and returning to the depot, e.g. (0,1,2,3,0) shown in Figure 1(a). 

Directed sub-route is path segment of a directed main-route. For example, there are ten 

directed sub-routes in the directed main-route, (0,1,2,3,0), in Figure 1a, which are (0,1), (1,2), 

(2,3), (3,0), (0,1,2), (1,2,3), (2,3,0), (0,1,2,3), (1,2,3,0) and (0,1,2,3,0). 

Adjoint sub-route is directed path including one or several customer nodes that can be 

visited by the drone when the truck travels a corresponding sub-route. For example, in Figure 

1a, (1,4,5,3) is an adjoint sub-route of directed sub-route (1,2,3), which means the drone takes 

off from the truck at node 1, conducts the delivery tasks of nodes 4 and 5, and then returns to 

the truck at node 3. Also, sub-routes (1,4,3) and (1,5,3) are also potential adjoint sub-routes of 

directed sub-route (1,2,3). 

The notations used in the problem description and model development are presented as 

follows. 
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Sets: 

G  the undirected graph where the problem is defined; 

N  the set of vertices; 

E  the set of all arcs; 

V0 ={0}, the depot; 

V ={1,2,…,n}, the set of all customer nodes; 

R  the set of directed main-routes that can be traveled by the truck; 

Er the set of arcs included in route r, where rR;  

Sr the set of directed sub-routes included in route r, where rR; 

Vr 
the set of customer nodes which are visited by the truck in route r, where rR and 

VrV;  

rV  
the set of customer nodes that should be visited by the drone when directed main- 

route r is selected for the truck, where rR and Vr′=V/ Vr; 

Erl 
the set of arcs that are included in directed sub-route l of main-route r, where lSr 

and rR; 

Rrl 
the set of adjoint sub-routes that can be traveled by the drone as the truck travels sub-

route l  of main-route r, where lSr and rR; 

Vrlm 

the set of customer nodes that are visited by the drone in adjoint sub-route m 

corresponding to directed sub-route l  of main-route r, where mRrl, lSr and r
R; 

Parameters: 

wi weight of the parcel that should be delivered to customers i, where iV; 

1
ijd  the truck’s travelling distance between any two customers (or customers and depot) 

i and j, where i,jV0 V; 

2
ijd  the drone’s flying distance between any two customers (or customers and depot) i 

and j, where i,jV0 V; 

1 unit travelling cost per kilometer of the truck; 

2 unit flying cost per kilowatt hour of the drone; 

wd weight of the drone; 

WH maximum payload of the drone; 

D  maximum capacity of the drone’s battery; 

P  maximum flying power of drone; 

TH maximum endurance time of the drone; 

Gi the drone’s payload when it leaves customer (or depot) i , where iV0 V; 

ijv  
the flying speed of the drone when the drone leaves customer (or depot) i   to 

customer (or depot) j, where i,jV0 V; 

T
ijc  the travelling cost of the truck from customer i to customer j; 

cr the truck’s travelling cost of direct route r, where rR; 

crlm 
the drone’s travelling cost of adjoint sub-route m corresponding to directed sub-route 

l  of main-route r, where mRrl, lSr and rR; 
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aijrl 1 if arc (i, j)Erl, 0 otherwise, where i,jVr′, lSr and rR; 

birlm 1 if iVrlm, 0 otherwise, where iVr′, mRrl, lSr and rR; 

Variables: 

xr 1 if directed main-route r is selected for the truck, 0 otherwise, where rR; 

yrlm 
1 if adjoint sub-route m corresponding to directed sub-route l in directed main-route 

r is selected for the drone, 0 otherwise, where mRrl, lSr and rR. 

3.2 Problem description 

0

1

4

2
3

5

6

7

8

 

Figure 2. An illustration of the solution for an example 2E-RP-T&D 

 

In the two-echelon routing problem for truck and drone (2E-RP-T&D), it is assumed that 

the capacity of the truck is always sufficient for all parcels, and thus can be viewed as 

uncapacitated. The payload capacity of the drone is limited and known. The problem aims at 

finding the optimal directed main-route of the truck and a set of directed adjoint sub-routes of 

the drone to complete the delivery of all parcels, while the drone’s capacity constraints on 

payload and battery are not violated. Figure 2 shows a feasible solution for an example of 2E-

RP-T&D. The route belonging to the first echelon is traveled by the truck, represented as solid 

lines, whereas the drone routes, depicted as dashed lines, belong to the second echelon. 

More formally, the 2E-RP-T&D can be described as follows. An undirected graph G = (N, 

E) is defined. Set N = V0 V is the set of vertices, where V0 = {0} represents the depot and V 

= {1,2,…,n} is the set of all customer nodes. Set E is the set of edges that can be traveled by 

the truck or the drone.  

The truck starts from the depot, taking all the parcels and the drone. The truck can only 

travel on the road network and deliver the parcel to its customer. When the truck delivers the 

parcel, the drone can also carry some small parcels and take off from the truck to complete 

some deliver tasks simultaneously. We assume that the drone can only take off / land on the 

truck when it stops at customer nodes (or depot), where the drone can be charged or change the 
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battery. After completing the delivery of all parcels, the truck must return to the depot with the 

drone. The objective is to find the main-route for the truck and all the adjoint sub-routes for the 

drone to complete the delivery of all parcels and minimize the overall travelling cost of the 

truck and drone. 

3.3 The energy consuming process for the drone’s battery in an adjoint sub-route 

The weight of each parcel cannot be neglected compared to the self-weight of the drone. 

The energy consumption rate of the drone depends on its self-weigh and the weight of the 

parcels it carried, which would become smaller step by step once the parcels have been dropped 

off at the customer nodes. The energy consumption model for an adjoint sub-route with multiple 

customer nodes is important for estimating the cost of this sub-route. 

After selecting the adjoint sub-route and assigning the delivery tasks, the drone would load 

all the corresponding parcels in order. Then it would travel to visit the assigned customers and 

unload the packages one by one, which means that the payload would show a phased reduction. 

Since the energy consumption rate can be viewed to vary linearly with payload (D'Andrea, 2014; 

Dorling et al., 2017), the shape of the function for estimating this rate would show a piece-wise 

form, which becomes lower step by step as the parcels are delivered to the customers. Figure 

3(a) presents an illustration of changes on the drone’s battery power in a sub-route with 3 

parcels, while Figure 3(b) displays the changes on the battery remaining capacity in this route. 
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(a) The changes of the battery power in the 

flying process 

(b) The changes of the battery remaining capacity 

in the flying process 

Figure 3. The illustration of the energy consumption process for the drone in a sub-route with 3 parcels 

 

When leaving customer (or the depot) i to customer (or the depot) j (i,jV0 V), we assume 

that the drone has the self-weight wd and a payload Gi. Besides, the flying speed of the drone is 
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denoted as vij. Then in the path segment from customer i to customer j, the battery power pij can 

be represented as follows. 

 
370
d i ij

ij

w G v
p e




  ,                                (1) 

Where 𝜂 is the conversion efficiency of the motor, 𝛾 is the lift ratio, and e is the energy loss 

of the drone battery (D'Andrea, 2014). 

Then the flying time from customer i to customer j and the corresponding energy 

consumption is as shown below. 

0

1ijd

ij
ij

t ds
v

                                              (2) 

 
0

1

370

ijd
d i ij

ij
ij

w G v
W pdt e ds

v
  

   
 

                       (3) 

When the brand and type of the drone is pre-determined, the value of all the related 

parameters in (1)-(3) are known. Usually, the drone has a maximum power, P, due to the 

limitations of battery and motor. In order to obtain the highest delivery efficiency, we assume 

that the drone would maintain its maximum power during the flight, which means 

ijp P .                                               (4) 

Thus, based on the above assumption, the flying speed and time from customer i for 

customer j can be estimated as presented below.  

 370
ij

d i

P e
v

w G

 



                                       (5) 

 
 370

ij d i
ij

d w G
t

P e





                                       (6) 

And the relationship between payload and energy consumption can be expressed as 

Equation (7), which is the energy consumption model. 

   370
ij

ij ij d i

d P
W Pt w G

P e
  


                         (7) 

Based on the above expressions, we can calculate the overall amount of energies consumed by 

the drone in an adjoint sub-route, and thus judge if it is over the capacity of the battery. Also, the 
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cost of the adjoint sub-route can be obtained. 

3.4 Model development 

When multiple parcels are delivered by the drone in a single flight, the model development 

for the two-echelon routing problem becomes quite difficult. Thus, to offer some more precisely 

understanding on the problem definition, we presented a two-stage route-based mathematical 

formulation. Given the network G = (N, E), we assume that all possible directed main-routes 

of the truck can be enumerated and let R be the set of these main-routes. Each route rR starts 

from the depot V0 = {0}, visits one or several customers in V, and return to the departure, e.g. 

(0,1,2,3,4,5,0) in Figure 2. For any directed main-route r (rR), its cost can be calculated and 

noted as cr. When route r(rR) is selected for the truck, let Vr is the set of customers that visited 

by the truck and Vr′ is the set of drone customers. Also, we assume that all the directed sub-

route in a given main-route r (rR) can be enumerated and let Sr be the set of all sub-routes in 

main-route r. Similarly, let Erl be denoted as the set of arcs that are included in directed sub-

route l and Rrl be denoted as the set of all possible adjoint sub-routes that can be traveled by the 

drone as the truck travels sub-route l in route r. Each adjoint sub-route m (mRrl) starts from 

the first customer of the corresponding sub-route l and ends at the last customer of l after visiting 

one or several customers in Vr′. Besides, Vrlm is the set of customer nodes that are visited by the 

drone in adjoint sub-route m (m Rrl) corresponding to directed sub-route l in route r. And 

according to the energy consumption model, the drone’s travelling cost of adjoint sub-route m 

can be calculated and denoted as crlm. 

Let xr{0,1} be a binary variable equal to 1 if directed route r (rR) is selected for the 

truck, and 0 otherwise. Given a truck route rR and a directed sub-route lSr, let yrlm{0,1} 

be a binary variable equal to 1 if adjoint sub-route m (mRrl) is selected for the drone, and 0 

otherwise. Furthermore, given two customers i,j (i,jV0 V) and an adjoint sub-route m (m

Rrl), let aijrl{0,1} be a binary parameter equal to 1 if arc  (i, j)Erl and 0 otherwise, let birlm

{0,1}be a binary parameter equal to 1 if iVrlm and 0 otherwise. 

Based on the above assumptions and definitions, we develop a two-stage route-based 

mathematical formulation for 2E-RP-T&D. In the first stage, the model for optimizing the 

drone’s adjoint sub-routes for a given main-route of the truck is proposed, which can be used 
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to calculate the minimum cost of the drone for all the possible main-routes in R. In the second 

stage, the overall cost for both truck and drone is optimized. 

3.4.1 Model 1: Optimizing the drone’s adjoint sub-routes 

For any given truck route r (rR), the sets, Er, Vr and Vr′, are determined. On this basis, all 

possible and feasible drone adjoint sub-routes corresponding to route r can be known. Then the 

minimum cost for the drone’s adjoint sub-routes to visit all nodes in Vr′  can be calculated 

through Model 1, which is formulated as follows. 

 

Min 
,

r rlm rlm
l m

z c y                                                    (8) 

s.t. 

,

1, ,ijrl rlm r
l m

a y i j E                                                (9) 

,

1, ,irlm rlm r
l m

b y i V                                               (10) 

 0,1 , , .rlm rl ry m R l S                                           (11) 

The objective function (8) minimizes the cost of the drone for delivering all the parcels that 

are not delivered by the truck in route r. Given a truck route r (rR), the constraint (9) ensures 

that each path segment of truck route r can only correspond to at most one adjoint sub-route, 

which avoid intersection among drone routes. Constraint (10) impose that all customer nodes 

in Vr′ must be visited exactly once. Finally, constraints (11) define the decision variables. 

3.4.2 Model 2: Optimizing the truck’s directed main-route 

To solve the problem, we have to enumerate all the possible directed main-routes for the 

truck, and find the optimal result with the minimum total cost for both the truck and the drone, 

in which the drone’s optimal cost for each truck route r, zr
*, is calculated by solving Model 1. 

The model for optimizing the truck’s directed main route is noted as Model 2 and presented as 

follows. 

 

Min *
r r r r

r r

Z c x x z                                                  (12) 

s.t. 

1r
r

x                                                           (13) 
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 0,1 , .rx r R                                                  (14) 

The objective function (14) minimizes the total cost given by two main components, which 

are the truck’s travelling cost and the drone’s flying cost. zr
* is obtained through solving Model 

1. Constraints (15) ensure that only one truck route can be selected. Constraints (14) define the 

decision variables. For some directed main-route r (rR), there may be no feasible solution can 

be obtained in Model 1, and we let zr
* to be   in this situation. 

We can see that the 2E-RP-T&D can be solved by utilizing Model 1 and Model 2. First, all 

the possible directed main-routes of the truck should be enumerated to obtain set R. For each 

main-route r (rR), all the adjoint sub-routes should be enumerated and the optimal sub-routes 

of the drone can be obtained by solving Model 1. Then the optimal solution for minimizing the 

overall cost of the truck and drone can be calculated by Model 2. However, this approach can 

only solve problems with a very small number of customer nodes. That is because the 2E-RP-

T&D is NP-hard as it generalizes other known NP-hard problems, such as the Capacitated VRP 

(CVRP). It would become much more difficult to explore the solution space as the size of the 

instance increases, which means the massive problem cannot be solved by the two-stage 

approach. Thus, efficient heuristic algorithms have to be developed. 

4. Solution 

This section proposes a solution algorithm based on simulated annealing. An initial solution 

is first constructed by a new heuristic integrating nearest neighbor and cost saving strategies. 

Then the Simulated Annealing algorithm combined with a Tabu list is applied to improve the 

initial solution.  

4.1 Hybrid heuristic integrating nearest neighbor and saving strategies 

The hybrid heuristic is designed based on the idea of "Truck First, Drone Second", which 

integrates both nearest neighbor and saving strategies. Firstly, Nearest Neighbor Search (NNS) 

is applied to build a directed main-route for the truck to visit all customer nodes. Then the idea 

of maximum cost savings is adopted to find the set of the drone’s adjoint sub-routes by 

replacing some truck nodes with drone nodes.  
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(a) truck-only tour solution solved by NNS (b) truck & drone solution by cost saving replace 

Figure 4. An illustration of the solution for six customer nodes 

4.1.1 Construct a directed main-route based on nearest neighbor strategy 

The heuristic based on Nearest Neighbor search is a well-known constructive search 

algorithm, which is one of the earliest methods proposed for solving TSP problems (Cover and 

Hart, 1967). The nearest neighbor search heuristic is utilized to construct a complete tour for 

visiting all customers by the truck. It adopts the principle of selecting the next nearest unvisited 

node until all nodes have been covered. It runs fast, however, the optimality of the tours it 

produces highly depends on the layout of the customer nodes. 

4.1.2 Construct adjoint sub-routes based on cost saving strategy 

After completing the Nearest Neighbor Search, a directed main-route can be built, which 

forms a customer list. The weights of the parcels for different customers are different. Some of 

them are heavy packages that can only be delivered by the truck, while the others are light ones 

that can be delivered by the drone. For the light parcels in the complete tour obtained in section 

4.1.1, if they can be delivered by the drone, we utilize the drone to replace the truck for 

delivering them. The replacing process is conducted one by one according to a cost saving 

strategy proposed by Clarke and Wright (1964). The CW algorithm was originally applied to 

Vehicle Routing Problem (VRP), which aims to find the optimal routes to deliver all the given 

customers. Its main idea is to combine the two routes into one route under the limitations of the 

vehicle load and find the maximum distance reduction. Similarly, the algorithm in this paper 

tries to save the most cost by replacing a truck customer by a drone customer. 

Specifically, in order to find the most saving customer in each replacing operation, four 

conditions are identified according to the delivery ways of the former customer and the latter 

customer. The four conditions are illustrated in Figure 5. In condition 1, there are three 

customers visited by the truck in sequence, and the parcel of the middle one (Customer 2) is 
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light, whose delivering way can be changed from the truck to drone. The drone would be 

launched from Customer 1 and return to Customer 3 after serving Customer 2, and a new adjoint 

sub-route can be generated. Then, the saved cost of this replacement can be calculated as 

   12 23 13 1 2 3
T T T Dc c c c     , where 1 2 3

Dc    is the flying cost of the adjoint sub-route, (1,2,3).  

In condition 2, a truck visiting node, which is also the landing node of a drone’s adjoint 

sub-route, is added to the end of this adjoint sub-route. As illustrated in Figure 5(b), Customer 

1 is delivered by the drone while Customer 2 and 3 are delivered by the truck in sequence. At 

this case, the feasibility should be judged whether the drone can serve Customer 2 after 

finishing the delivery of Customer 1. Besides the limitation of payload, energy consumption of 

the whole route needs to be re-calculated according to the method in section 3.3. The same 

check should also be conducted for the third and fourth condition. If the replacement in 

condition 2 is feasible, the saved cost can be calculated as    42 23 1 2 43 1 2 3
T T D T Dc c c c c       , 

where 1 2 3
Dc    is the flying cost of the original sub-route (---1−2) and 1 2 3

Dc    is the flying cost 

of the sub-route with Customer 3 added. 

In condition 3, a truck visiting node, which is the taking off node of a drone’s adjoint sub-

route, is added to the start of this adjoint sub-route. As illustrated in Figure 5(c), Customer 2 is 

visited by the truck and is the taking off node of the drone. If the parcel in customer 2 can be 

delivered by drone and added to the start of the adjoint sub-route, the saved cost can be 

calculated as    12 24 2 3 14 1 2 3
T T D T Dc c c c c        , where 2 3

Dc     is the flying cost of the 

original sub-route (2−3---) and 1 2 3
Dc     is the flying cost of the sub-route with node 1 added. 

In condition 4, two drone’s adjoint sub-routes are merged, which is illustrated in Figure 

5(d). It can be seen that, in Figure 5(d), Customer 2 is visited by the truck, which is the landing 

node of adjoint sub-route (---1−2) and the taking off node of adjoint sub-route (2−3---). If the 

two adjoint sub-routes can be merged into one adjoint sub-route, the saved cost can be 

calculated as    42 25 1 2 2 3 45 1 2 3
T T D D T Dc c c c c c           , where 1 2

Dc   is the flying cost of 

the sub-route  (---1−2), 2 3
Dc    is the flying cost of the sub-route (2−3---) and 1 2 3

Dc     is the 

flying cost of the sub-route (---1−2−3---). 
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Based on the above four conditions, check all the nodes visited by the truck, calculate the 

saved cost for every possible nodes and replace the one with maximum cost saving by drone 

visiting. Repeat this evaluation and replacing step until no more positive cost saving can be 

found, which means the total cost cannot be decreased through changing the delivery ways of 

customers. 

 
(a) Condition 1: generating a new adjoint sub-route 

 
(b) Condition 2: adding a node at the end of a drone’s adjoint sub-route 

  

(c) Condition 3: adding a node at the start of a drone’s adjoint sub-route 

 
(d) Condition 4: merging two drone’s adjoint sub-routes 

Figure 5. Four conditions for replacing the truck visiting node by the drone visiting node 

 

4.1.3 Main optimization procedure 

The main procedure for the hybrid heuristic is shown in Algorithm 1. At first, according to 

the actual road distance, the truck is assigned to leave from the depot and choose to serve the 

nearest customer every time until all the parcels haven been delivered. When the truck returns 

to the depot, a truck-only route is generated (Line 1). Then loops would be executed following 

the sequence of the customer list in this main route. In every loop, every customer node would 

be judged whether they can be served by drone. We calculate the saved cost if it can be accessed 

by the drone (Line 3). If one or more customers can be found, choose the most cost-saving 

customer and adjust two-echo routes to change the delivery way of the chosen customer (Line 
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5). If not, end the loop (Line 7) and output the solution, which is a two-echelon route for the 

truck and drone (Line 10). 

 

Algorithm 1: The hybrid heuristic 

1 COMPUTE truck-only route 

2 WHILE (1) DO 

3     Find MostSavingCustomer 

4 IF MostSavingCustomer THEN 

5     change the delivery way of MostSavingCustomer 

6 ELSE 

7     break 

8     END IF 

9 END WHILE 

10 PRINT truck & drone routes 

 

4.2 Simulated Annealing Algorithm 

Simulated Annealing algorithm is proposed by Kirkpatrick et al. (1983). Since it accepts 

the worse solution with a certain probability, random factors are introduced into the search 

process and the global optimal solution would be possibly obtained. This algorithm provides 

an effective way for solving the TSP and VRP problems which are difficult to deal with by 

traditional methods (Reinelt, 1994). Simulated annealing is a heuristic based on an analogy of 

thermodynamics with the way metals cool and anneal. Its essential idea is not to restrict the 

search moves only to those solutions that decrease the objective function value, which can avoid 

being trapped prematurely in a local minimum. The main algorithm is shown below (Algorithm 

2). 

Initially, the optimization procedure starts from defining several parameters, such as the 

start temperature and the termination temperature (Line 1). After constructing the initial 

solution with the hybrid heuristic in 4.1 (Line 2), the initial solution would be assigned to the 

best solution for initialization and recorded as the current solution (Line 3). At each temperature, 

the number of iterations is predetermined and a Tabu list is initialized to improve the 

performance of simulated annealing in the inner loop (Line 5). Then in each iteration, the 

algorithm finds a temp solution from the neighborhood of the current solution (Line 8), which 

will be explained later in further detail. Also some invalid moves would be added into Tabu list 

(Line 8). If an improvement has been obtained (Line 10), the temp solution would become the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   doi:10.20944/preprints201902.0183.v1

http://dx.doi.org/10.20944/preprints201902.0183.v1


current solution for the next iteration (Line 11). And it would remarked as the best solution if 

its objective is better than the best objective so far (Line 13). However, a worse solution may 

also be accepted with a small probability, determined by the current temperature and the 

objective fitness difference which is known as the Boltzmann function (Line 17). Under this 

condition, the best solution would not be changed. When the number of iterations reaches the 

termination conditions, the temperature would be cooled down (Line 22) and the Tabu list 

would be released (Line 23). As the current temperature is cooled to the end temperature, the 

algorithm is terminated and the best solution is outputted (Line 25).  

 

Algorithm 2: The Simulated Annealing algorithm 

1 INITIALIZE startTemperature, endTemperature, iterationNumber, coolingRate 

2 COMPUTE initialSolution 

3 INITIALIZE currentSolution, bestSolution 

4 currentTemperature = startTemperature 

5 iteration = 0, tabuList = [] 

6 WHILE currentTemperature > endTemperature DO 

7 WHILE iteration < iterationNumber DO 

8 find tempSolution in neighborhood of the currentSolution and add tabuList 

9 detaObjective = tempObjective - currentObejective 

10 IF detaObjective < 0 THEN 

11         currentSolution = tempSolution 

12         IF tempObjective < bestObjective THEN 

13             bestSolution = tempSolution 

14         END IF 

15 ELSE 

16         IF random([0,1])< exp(-detaObjective/currentTemperature) THEN 

17             currentSolution = tempSolution 

18         END IF 

19         END IF 

20         iteration ++ 

21     END WHILE 

22     currentTemperature = currentTemperature × coolingRate 

23     release tabuList 

24 END WHILE 

25 PRINT bestSolution, bestObjective 

 

4.2.1 Neighborhoods 

Since the two-echelon routes presents great complexity, it would produce many infeasible 

solutions with the traditional neighborhood structures used in TSP and VRP problems, which 
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consumes large amount of useless computation. Thus, in this section, different situations are 

considered when the neighborhood move is performed in mixed customers and some 

adjustment is applied to ensure the feasibility of the solution. To be specific, three 

neighborhoods are designed. In each iteration, these neighborhoods of the current solution are 

all searched. And the generated feasible solutions would be compared to select the solution with 

the least cost. 

(1) Neighborhood 1: Deletion-Reinsertion 

The deletion-reinsertion neighborhood is commonly used in solving TSP related problems, 

which removes a customer and reinserts it in other position in a tentative solution. Different 

from traditional TSP problems, there are two kinds of routes, which are ground vehicle route 

and drone routes. We restrict that the deleted node can only be reinserted into the same type 

route, that is, the delivery tool of the parcel for the customers should not be changed. The 

removal move can either randomly select a customer or delete the customer that has the greatest 

impact on the distance of the route. Specifically, this move starts from generating a random 

number to determine the removal way. If it is removed based on the distance, the distance of 

both two sides of every customer would be calculated and the customer with the longest 

distance of two sides would be removed. However, if it is removed randomly, the search space 

for the solution would be diversified. As for the reinserting operation, it would greedily choose 

the best insertion position with a minimum increase in cost after considering all the feasibility. 

(a)
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(c)
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Figure 6. Sketch map for reinsertions of nodes visited by the truck 

 

Since drone customers are only located on one drone route, the reinsertion of drone 
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customers would only be limited to the endurance and capacity of the drone. Nevertheless, it is 

more complex for truck customers. Several typical operations for the deletion-reinsertion 

neighborhood is presented in Figure 6. Figure 6(a) illustrates a relatively straightforward move 

in which customer 3 is only located on the truck route and the reinsertion of customer 3 has no 

influence on the drone route. Additionally, the operations represented in Figure 6(b) and (c) 

relocate the customer 2, locating on both the truck route and a drone route. In case (b), although 

the truck route is relocated, the drone still launches from customer 2. However, in case (c) the 

drone route is inverted, turning customer 2 the return node of the drone route. According to the 

energy consumption model, the energy that the drone consumes on this route would change. 

(2) Neighborhood 2: 2-Exchange 

 

Figure 7. Sketch map for 2-exchange 

 

The 2-exchange neighborhood is to swap a customer with another one in a solution. Due to 

the complexity of the two-echelon routes, here the 2-exchange operation is more complex than 

that utilized in traditional TSP, and also the capacities on the drone’s endurance and payload 

should be checked in each operation. The exchange between two nodes in a single type route, 

e.g. the truck route or the drone route, is simple if the structure the two-echelon routes are not 

changed. In other cases, if the truck visiting node serves as the launch or landing node, the role 

of this node in the drone route should be replaced by the other exchanging node. Some special 

cases are presented in Figure 7. As shown in Figure 7(a), the departure node of the drone 

changes from customer 2 to customer 7, and the new route of the drone needs to be verified. In 

Figure (b), if the launch and return customers remain the same, the drone route (3, 7, 1) would 

be inside another drone route (4, 5, 2). Thus, it is supposed to do some adjustment after 

exchange and choose customer 6 to be the new returning customer. 
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(3) Neighborhood 3: Relocation 

The relocation neighborhood is similar with the deletion-reinsertion neighborhood, and 

their main difference is that the relocation must change the delivery way of customers. It is 

simple for drone visiting customers to be changed into truck visiting ones, so we will focus on 

how to turn truck visiting customers into drone visiting customers. Figure 8 presents three 

typical moves for relocation nodes between truck route and drone route. After removing a 

customer from the route of the truck, the simplest way is inserting it in a new drone trip as 

illustrated in Figure 8(a). Also, as Figure 8(b) presents, inserting the customer into current drone 

route is another method. Comparing between two possible solutions, the better one with lower 

cost would be chosen. 

 

Figure 8. Sketch map for some cases of relocation between truck and drone nodes 

 

It should be noted that if the selected truck customer is the launch node or landing node, an 

alternative customer is required after converting the selected customer to the drone customer. 

For instance, to ensure the feasibility of the solution, another customer should be chosen to be 

the launch of the drone after customer 2 is visited by drone, such as customer 4 in Figure 8(c). 

4.2.2 Integration of Tabu list 

Integrated with the transition probability, the simulated annealing algorithm has the 

capability to escape from local optima in the solution search process. However, the lack of 

memory may be regarded as the main deficiency of this method，which would result in short-

term cycling and revisiting (El-Bouri et al., 2007). Thus, with memorizing a list of forbidden 

moves (Tabu list), the performance of simulated annealing can be improved. And the integration 
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of Tabu list into the simulated annealing algorithm has been reported to be effective in previous 

study (Wu et al., 2014). 

In each interaction, some neighborhoods would be selected to generate a new neighborhood 

solution. If the new solution is better (with lower cost) than the old one, then it would be 

accepted. Or if the new solution has worse objective fitness than the old one, the new one can 

be accepted with a certain probability. Once the new solution has been accepted, selected 

neighborhoods would be added to the Tabu list. Consistently, neighborhoods in the Tabu list are 

not allowed to be inserted into the new solution until released after the temperature cools down. 

5. Experiments and Results 

In this section, experiments based on randomly generated instances are carried out to test 

the effectiveness of the proposed algorithms and a practical case is applied for the sensitivity 

analysis on some critical factors, which are the ratio of light parcels, drone’s capacity on 

payload, and the capacity of drone’s battery power. 

5.1 Experiment on random instances 

5.1.1 Experiment Design 

The value of parameters related with the truck and drone is set according to typical ones in 

practical use. The drone’s weigh is about 2kg with a maximum payload of 3kg and its endurance 

distance is about 6 miles (about 10 kilometers) under maximum payload condition. As for the 

truck cost, a typical truck for parcel delivery travels 6 miles per gallon of diesel, which yields 

that the fuel consumption is 0.392 L/km. On January 8, 2018, the national average price of 

diesel is $ 2.996 per gallon, which is $0.310/km. Besides, it is estimated that the variable 

operating cost of trucks is $0.484 km-1 after considering maintenance cost, depreciation cost 

and salaries (Cachon, 2014). Thus, the unit distance cost for the truck is $0.794/km. When it 

comes to the drone cost, it is set by default that the truck’s unit distance cost is 25 times the 

drone’s unit distance cost (Ha et al., 2018). With the battery power 5000mAh and the maximum 

travel distance 10 kilometers, it can be estimated that the unit energy cost for the drone is $0.635 

* 10^(-4)/mAh. Thus, after referring to public parameters of various drones, the performance 

of two vehicles is initially determined and reported in Table 3. 
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Table 2. The Parameters of Truck and Drone 

Truck 
speed 50km/h 

unit distance cost $0.794 /km 

Drone 

payload capacity 3kg 

maximum rate of power 160W 

battery power 5000mAh 

coefficient k = 370𝜂𝛾(P−e) 1280 

unit energy cost  $0.635 × 10^(-4)/mAh 

 

The random experiment is conducted with instances in three different scales which is 

displayed in Table 4. When generating the position of nodes, the quartering method is used as 

dividing the map into four parts and randomly generating the equal number of nodes in each 

part. As for the weight of parcels, Amazon has announced that about 90% - 95% of its parcels 

are no heavier than 5 pounds (about 2.27kg). Thus, with some prior research, the weight of 

parcel is preset in the range of 0-10kg and the parcels with the weight lighter than 2.3kg 

accounts for 90 percent. If the parcel is too heavy to be delivered by drone, it is thought as a 

heavy parcel, otherwise a light parcel. 

Table 3. Instances in Three Different Scales 

Scale Number of Nodes Map size 

Small 20 8km*8km 

Medium 40 10km*10km 

Large 100 12km*12km 

Figure 9 presents an example of small scale instance. The depot is represented by triangle 

block. The dots indicate all the customers with the size distinguishing the heavy parcel and light 

parcel.  
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Figure 9. An example distribution of nodes for small scale instance 
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5.1.2 Experiment Result 

To explore the performance of the algorithm, ten instances for each different scale are 

randomly generated by the method described above and used to conduct the experiment. For 

every instance, the results for the initial solution obtained by the hybrid heuristic (HH) and the 

final impoved solution obtianed by the simulated alnnealing algorithm (SA) are compared.  

In addition, the result for the truck-only route of each instance (TO) is calculated by the 

simulated annealing algorithm, which can be seen as the optimal solution if the parcels are 

delivered only by traditional truck. Then the comparison between final solution (SA) and the 

optimal truck-only solution (TO) is also presented, which demonstrates the impact on the total 

cost with the drone assisted mode. 

Table 5 presents the computational results for all ten instances of small scale. We can see 

that the SA algorithm can significantly improve the initial solutions obtained by the HH 

algorithm, and the costs of improved solution presented by SA decrease from 13.47% to 57.14% 

comparing to the costs of the initial solutions by HH. With the drone introduced, the final costs 

obtained by SA for the truck-drone delivery mode decrease from 20.92% to 65.63% comparing 

to the costs of truck-only mode. The computational time for all small instances is controlled in 

12 seconds. 

Table 4. Results of 10 Random Instances in Small Scale 

Map 

Size 

Cost / $  Comparison 

Computational 

Time (s) 

Truck- 

Only 

(TO) 

Truck & 

Drone 

(HH) 

Truck & 

Drone 

(SA) 

 (HH-SA)/HH (TO-SA)/TO 

Small 

Scale 

58.36  45.74  27.47   39.94% 52.93% 10.340 

47.14  37.66  20.33   46.02% 56.87% 9.015 

61.08  51.24  27.82   45.71% 54.45% 8.868 

56.39  45.32  27.59   39.12% 51.07% 10.961 

52.20  45.25  32.86   27.38% 37.05% 9.504 

58.61  35.93  26.50   26.25% 54.79% 11.952 

55.01  50.27  43.50   13.47% 20.92% 7.693 

52.66  48.86  32.95   32.56% 37.43% 7.810 

57.36  53.06  26.64   49.79% 53.56% 8.353 

48.82  39.15  16.78   57.14% 65.63% 9.278 

Table 6 presents the results for ten instances of medium scale. We can see that the solutions 

obtained by HH can be improved by SA for 27.35% - 49.33%. The final costs for the truck-

drone delivery mode decrease for 38.03% - 54.72% comparing to the costs of truck-only mode. 
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The computational time of SA for the medium instances is a little more than that for the small 

instances, which is still controlled in 23 seconds. 

Table 5. Results of 10 Random Instances in Medium Scale 

Map 

Size 

Cost / $  Comparison 

Computational 

Time (s) 

Truck- 

Only 

(TO) 

Truck & 

Drone 

(HH) 

Truck & 

Drone 

(SA) 

 (HH-SA)/HH (TO-SA)/TO 

Med 

Scale 

84.39  75.40  38.21   49.32% 54.72% 20.426 

85.86  71.36  39.95   44.02% 53.47% 18.594 

98.13  83.26  57.04   31.49% 41.87% 18.909 

88.14  75.18  54.62   27.35% 38.03% 16.859 

98.28  85.03  52.73   37.99% 46.35% 19.309 

98.67  75.87  53.89   28.97% 45.38% 22.829 

95.45  77.55  44.02   43.24% 53.88% 18.463 

102.21  86.19  52.82   38.72% 48.32% 20.679 

94.95  71.94  51.16   28.89% 46.12% 17.417 

83.82  69.30  49.64   28.37% 40.78% 19.082 

Table 7 shows the results for ten instances of large scale. It can be seen that the 

computational time for the large instances is much longer than that for the medium instances, 

while it is acceptable and controlled in 62 seconds. The performance of SA on solution 

improvement for large instances is similar to that of medium instances. 

 
Table 6. Results of 10 Random Instances in Large Scale 

Map 

Size 

Cost / $  Comparison 

Computational 

Time (s) 

Truck- 

Only 

(TO) 

Truck & 

Drone 

(HH) 

Truck & 

Drone 

(SA) 

 (HH-SA)/HH (TO-SA)/TO 

Large 

Scale 

184.05  150.08  99.64   33.61% 45.86% 61.279 

173.21  146.02  102.79   29.61% 40.66% 57.073 

170.53  136.21  94.27   30.79% 44.72% 53.689 

188.55  170.21  101.80   40.19% 46.01% 47.574 

170.94  150.85  93.44   38.06% 45.34% 53.540 

181.98  172.02  82.87   51.83% 54.46% 42.790 

191.25  159.25  85.27   46.46% 55.41% 56.360 

186.92  160.30  91.31   43.04% 51.15% 49.839 

163.57  146.10  84.87   41.91% 48.11% 50.131 

201.65  179.79  82.41   54.16% 59.13% 57.998 

From the overall results presented in Table 4-6, it can be observed that the adoption of 

cooperated truck and drone for parcel delivery can greatly reduce the delivery costs, compared 

with the truck-only mode. In many instances, the costs of the truck-drone mode are even less 
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than the half of that with truck only. Besides, the neighborhood operators have also proven to 

be an effective local optimization method, and for most of the instances, the costs of the initial 

solution obtained by HH is reduced by SA for over 30%.  

Furthermore, the performance of the whole algorithm is more stable with larger scale 

instances. In small-scale instances, the distribution of customers is relatively scattered. At this 

time, the optimization process is directly affected by the layout of the nodes, which is the reason 

why the optimization proportions in Table 4 differ greatly. The density of customers would 

increase as enlarging the scale, which is more favorable to the drone delivery. 

5.2 Case Study 

5.2.1 Case description 

A case is built based on the practical road network and customer nodes in Changsha, China, 

which is used for the sensitivity analysis. As Figure 10 displays, in the east urban area of 

Changsha, 95 crossings of the main roads are drawn and 30 customer nodes are marked. 

Through connecting these crossings, there forms a road network for the delivery truck. 

Specifically, the latitude and longitude coordinates of the crossings are obtained from the 

Baidu map. As for the road distance of the truck, a tool provided by Baidu is applied for the 

distance calculation of the actual road segments, generating the initial distance matrix. Then 

the crossing distance matrix is filled by the Floyd algorithm to acqure the shortest distance 

between any two crossings based on the road network. The weight for each customer is 

randomly generated with the mentioned weight ratio, 90%.  

 

Figure 10. The layout of road network and the instance for 30 customers in Changsha  
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To display the result visually, the basic simulated annealing algorithm and the constructed 

algorithm are both applied to solve the example instance in Figure 10 and the result is shown 

in Figure 11. Figure 11(a) presents the optimal truck-only solution with the cost of 28.63 while 

(b) is the final truck & drone solution with the cost of 16.72. In the final solution, there are 10 

customers delivered by the truck, including 6 customers with heavy parcels. The other 20 

customers are visited by drone, which vastly reduces the delivery cost. And the computional 

time is 9.39 seconds. 

 

 
(a) the truck-only solution 

  
(b) final truck & drone solution 

Figure 11. Comparison of solutions for different delivery modes 

5.2.2 Sensitivity analysis 

Three critical factors are considered with sensitivity tests, which are the ratio of light parcels, 

drone’s capacity on payload, and the capacity of drone’s battery power. 
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(1) Impact analysis for the Ratio of light parcels 

When generating the weight of customers’ parcels, a ratio of light parcels is defined, which 

means the percentage of light parcels under 2.3kg (about 5 pounds) in all parcels. To monitor 

the effect of this ratio, the comparison experiments are conducted with different ratios from 

0.50 to 0.95. The results are presented in Figure 12. 

As the ratio of light parcel increases, the total cost shows an obvious reduction from 29.07 

to 16.63. And the cost generated by the truck also falls from 24.69 to 8.30 while the cost 

generated by the drone rises from 4.38 to 8.33. It can be inferred that with the proportion of 

parcels within the maximum payload of drone rises, more customers would be served by the 

drone, which can save the overall delivery cost. Furthermore, when the ratio of package is larger 

than 0.8, the costs do not change a lot. At this time, the capacity of the payload no longer 

restricts the delivery of drone, but the endurance capacity becomes the main constraint.  

 
Figure 12. Computational results under different ratios of light parcels 

(2) Impact analysis of the drone’s capacity on payload 

The method of increasing the drone’s capacity on payload depends on the same ides with 

the way of improving the ratio of light parcels, which can promote the utilizing efficiency of 

the drone. Thus, the result of changing the payload from 2kg to 8kg is similar to the above test, 

which are shown in Figure 13. 

It is obvious that both total cost and truck cost experienced a significant decline as the drone 

payload capacity rises, especially from 2.0 kg to 3.0 kg. The total cost decreases from 23.16 to 

14.27 and the reduction is even bigger for the truck cost from 18.78 to 5.33. It can be noticed 
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that the drone cost would be greater than the truck cost with maximum payload above 3 kg, 

which can be inferred that the drone delivery would play a major role as long as it gets rid of 

the limitations of the payload capacity. However, when the maximum drone payload exceeds 

5.0 kg, the continuous increase of the maximum payload will not lead to a significant reduction 

in the total cost. That is because the constraints on the drone endurance restricts it to be used 

for delivering more parcels in one route. 

 

  

Figure 13. Computational results under different capacities of drone’s payload 

(3) Impact analysis of the drone’s battery power 

To investigate the effects of the capacity of drone’s battery power, the sensitivity test is 

carried out in a way that the only difference is the battery power varying from 4000 to 8000mAh.  

As Figure 14 displays, when the capacity of the battery power increases from 3000 to 

5500mAh, the total cost reduces within a wide range from 29.16 to 15.41. It is obvious that 

increasing battery power can be a valid way to reduce the delivery cost. As for the other part of 

the cost, the truck cost decreases a lot from 25.78 to 7.09 while the cost of drone increases from 

3.38 to 8.32. However, the total cost basically keeps the same when the capacity of battery is 

over 6000mAh, since the endurance of drone would not be the primary limitation for drone 

delivery. In this situation, due to the limitation on drone’s payload, the drone cannot serve more 

customers in one route, although the power is still sufficient. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2019                   doi:10.20944/preprints201902.0183.v1

http://dx.doi.org/10.20944/preprints201902.0183.v1


 

Figure 14. Computational results under different capacities of drone’s battery power 

6. Conclusions 

In this paper, recognizing the importance and necessity of the coordination of the truck and 

the drone in parcel delivery, the drone-assisted parcel delivery problem is studied. Since 

multiple parcels are allowed to be delivered by the drone in one flight, the investigated problem 

can be viewed as a new variant of two-echelon routing problem. Besides, the effect of payload 

on the energy consumption is estimated by a proposed energy consumption model. Then an 

algorithm based on simulated annealing is presented. A heuristic combining Nearest Neighbor 

Algorithm and Saving Algorithm is designed to generate the initial solution. And variable local 

search is conducted with removal operators and insertion operator in every iteration to find 

better solution. 

Radom test experiments with different scales are conducted and indicated the efficiency of 

the proposed algorithm. Furthermore, three factors are considered in sensitivity tests based on 

a practical case, which are the ratio of light parcels, maximum payload of drone, and drone’s 

battery power. Experimental results show that the employment of the drone can save more costs 

when there are more light parcels for delivery. Also, proper improvement on technologies for 

enlarging the capacities of the drone’s payload and battery power would help save more 

delivery cost. 

It is an emerging phenomenon in recent years that the drone is employed in parcel delivery 

to cooperate with the truck. There are many research topics that are not studied in the 

management and operation research area, such as the two-echelon truck & drone routing 

problems with time window, with multiple vehicles, and with multiple depots. More interesting 

and valuable variants of this problem are waiting to be explored. Due to the complexity for the 

optimization of the two-echelon routes, more efficient algorithms also have to be developed in 

future work. 
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