

1 Article

2 **Interscapular and perivascular brown adipose tissue respond differently to a**
3 **short-term high-fat diet**

4

5 Peter Aldiss¹, Jo E Lewis³, David Boocock⁴, Amanda K Miles⁴, Ian Bloor¹, Francis J P Ebling³, Helen
6 Budge¹ and Michael E Symonds^{1,2*}.

7

8 ¹ *The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of*
9 *Medicine, University of Nottingham; peter.aldis@nottingham.ac.uk; ian.bloor@nottingham.ac.uk;*
10 *helen.budge@nottingham.ac.uk; michael.symonds@nottingham.ac.uk*

11 ² *Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, University of*
12 *Nottingham*

13 ³ *School of Life Sciences, Queen's Medical Centre, University of Nottingham;*
14 *fran.ebling@nottingham.ac.uk; jl2033@medsch.cam.ac.uk*

15 ⁴ *John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8N;*
16 *david.boocock@ntu.ac.uk; amanda.miles@ntu.ac.uk*

17
18 * Correspondence: michael.symonds@nottingham.ac.uk

19
20 **Abstract:** Brown adipose tissue (BAT) function may depend on its anatomical location and
21 developmental origin. Interscapular BAT (iBAT) regulates acute macronutrient metabolism, whilst
22 perivascular BAT (PVAT) regulates vascular function. Although phenotypically similar, whether
23 these depots respond differently to acute nutrient excess is unclear. Given their distinct anatomical
24 locations and developmental origins and we hypothesised that iBAT and PVAT would respond
25 differently to brief period of nutrient excess. Sprague-Dawley rats aged 12 weeks (n=12) were fed
26 either a standard (10% fat, n=6) or high fat diet (HFD: 45% fat, n=6) for 72h and housed at
27 thermoneutrality. Following an assessment of whole body physiology, fat was collected from both
28 depots for analysis of gene expression and the proteome. HFD consumption for 72h induced rapid
29 weight gain (c. 2.6%) and reduced serum NEFA with no change in either total adipose or depot mass.
30 In iBAT, an upregulation of genes involved in insulin signalling and lipid metabolism was
31 accompanied by enrichment of lipid-related processes and functions, plus glucagon and PPAR
32 signalling pathways. In PVAT, HFD induced a pronounced down-regulation of multiple metabolic
33 pathways which was accompanied with increased abundance of proteins involved in apoptosis (e.g.
34 Hdgf and Ywaq) and toll-like receptor signalling (Ube2n). There was also an enrichment of DNA-
35 related processes and functions (e.g. nucleosome assembly and histone exchange) and RNA
36 degradation and cell adhesion pathways. In conclusion, we show that iBAT and PVAT elicit
37 divergent responses to short-term nutrient excess highlighting early adaptations in these depots
38 before changes in fat mass.

39 **Keywords:** brown fat, white fat, proteome, nutrient excess

40

41

42 1. Introduction

43 Adipose tissue function differs with its anatomical location and developmental origin [1]. For
44 instance, whilst interscapular brown adipose tissue (iBAT) shares its lineage with skeletal muscle
45 (e.g. Myf5+), perivascular brown adipose tissue (PVAT) is thought to derive from vascular smooth
46 muscle cells (e.g. SM22 α +)[1, 2]. iBAT can play a role in whole body glucose, and lipid homeostasis
47 as well as thermoregulation through the activation of uncoupling protein (UCP)1 which dissipates
48 chemical energy as heat bypassing the conversion of ADP to ATP [3-5]. Despite PVAT being
49 phenotypically similar to iBAT, i.e. abundant in UCP1 and other thermogenic genes, its primary
50 physiological role is the regulation of vascular function rather than systemic metabolism *per se* [2].
51 Dysfunctional BAT may contribute to obesity and associated metabolic disease, whereas
52 compromised PVAT may enhance the atherogenic processes due to its close proximity to and
53 crosstalk with the endothelium [6, 7].

54

55 The effect of diet-induced obesity on BAT is well established [8], but less is known on its response
56 to brief periods of high-fat feeding. Central inflammation occurs after only 24h of a high-fat diet
57 (HFD) with central and peripheral insulin resistance, adipose tissue inflammation and hepatic
58 steatosis occurring within 3-4 days [9-16]. In humans, insulin resistance can be induced after 24h of
59 a saturated-fatty acid (SFA) rich diet, with longer periods of overfeeding causing similar results to
60 those seen in animal models [17]. Although both iBAT and PVAT contain abundant UCP1 and
61 express glycolytic/lipolytic genes [18], their response to brief nutrient excess is unclear. Therefore,
62 we determined whether iBAT and PVAT differ in their response to a short-term (i.e. 72h) caloric
63 surplus. Given the evidence that ambient housing temperature is a critical factor in determining
64 adipose tissue function [19, 20], we determined the response to a HFD at thermoneutrality (Tn, 28-
65 30°C) so as to mimic human physiology by studying BAT under basal conditions (i.e. when UCP1 is
66 not active).

67

68 2. Materials and Methods

69 All studies were approved by the University of Nottingham Animal Welfare and Ethical Review
70 Board, and were carried out in accordance with the UK Animals (Scientific Procedures) Act of 1986.
71 Twelve male Sprague-Dawley rats aged 8 weeks were purchased from Charles River (Kent, UK).
72 Animals were randomised (<http://www.graphpad.com/quickcalcs/randomize1.cfm>) to either the
73 control or intervention group. The study was carried out at thermoneutrality (c. 28°C) to negate any
74 confounding effects of active BAT on the response to nutrient excess, and animals were acclimated
75 to this environment for 4 weeks. Following the 4 week acclimation, all animals were weighed and
76 received either the control diet (824050 SDS, Kent, UK) or a 45% high-fat (HFD, n=6) diet (824018
77 SDS, Kent, UK) for 72h. During this time, animals had ad libitum access to food and water and all
78 procedures were carried out under a 12:12-hour reverse light-dark cycle (i.e. the during the active
79 phase) so as to minimise animal stress and maximise data quality and translatability[21].

80

81 2.1 Metabolic cages

82 All animals were placed in an open-circuit calorimeter known as the 'comprehensive laboratory
83 animal monitoring system' (CLAMS: Columbus Instruments, Linton Instrumentation, UK) for the

84 last 24h. Oxygen consumption (VO_2) and carbon dioxide production (VCO_2) were measured [22]
85 and were then used to calculate energy expenditure (EE) and respiratory exchange ratio (RER) [23,
86 24], as previously described. Measurements were taken at 9 minute intervals for 24h. At the end of
87 the 72h period, all animals were weighed and fasted overnight prior to euthanasia by rising CO_2
88 gradient. Relevant tissues were then rapidly dissected, weighed, snap-frozen in liquid nitrogen and
89 stored at -80°C for subsequent analysis.

90

91 **2.2 Gene expression analysis**

92 Total RNA was extracted from iBAT and PVAT with the RNeasy Plus Micro extraction kit (Qiagen,
93 West Sussex, UK) using an adapted version of the single step acidified phenol-chloroform method.
94 RNA purity was subsequently quantified with the Nanodrop ND-100 (Nanodrop Technologies,
95 Wilmington, USA) and all samples were normalised to 1 ng μL^{-1} . Reverse transcription was carried
96 out using the High Capacity RNA-to-cDNA kit (Life Technologies, Paisley, UK) and cDNA was
97 then amplified on a Touchgene Gradient thermocycler (Techne Inc, Bibby Scientific Limited,
98 Staffordshire, UK). Genes regulating thermogenesis, insulin signalling and energy metabolism were
99 analysed by quantitative PCR on the Step One Plus q-PCR system and v.2.2 software (Applied
100 Biosciences) using either iTaq Universal SybrGreen mastermix (BioRad) or Taqman universal
101 mastermix (ThermoFisher) with rat-specific oligonucleotide primers (Sigma) or FAM-MGB Taqman
102 probes (see Supp Table 1 and 2 for primer list). Gene expression was determined using the
103 GeNorm algorithm against two selected reference genes: *YWHAZ* and *TBP* (stability value M = 0.18
104 in BAT and 0.25 in PVAT).

105

106 **2.3 Targeted insulin resistance PCR arrays**

107 We utilised the Insulin Resistance (SAB target list) PCR Array (BioRad) to screen for 86 genes
108 involved in the onset of adipose tissue insulin resistance (n=3 per group). All procedures were
109 carried out according to manufacturers' instructions. Probe validation data available in
110 supplementary data.

111

112 **2.4 Protein Extraction, clean-up and trypsinization**

113 Proteins were extracted by homogenisation of c. 50-100 mg of frozen tissue in 500 μL CellLytic MT
114 cell lysis buffer (Sigma, C3228) and 5 μL of Halt Protease Inhibitor Cocktail (Thermo, 78430) with
115 subsequent centrifugation at 20,000 $\times g$ for 10 min. The concentration of each supernatant was
116 determined using the Pierce BCA Protein Assay Kit (Thermo, 23225) prior to storage at -80°C. Lipid
117 and other contaminants were removed from 100 μL of each protein lysate using the ReadyPrep 2D
118 cleanup Kit (Biorad, 1632130) with the final protein pellet reconstituted in 100 μL of 50 mM TEAB
119 buffer (6 M Urea, pH 8.0). Following quantification of the post-clean up concentration each sample
120 was normalised (50 μg) and 5 μL of 200 mM DTT/50 mM TEAB (pH 8.0) was added to each for the
121 reduction of proteins over a 1 h period. Following this, 20 μL of 200 mM Iodoacetamide/50 mM
122 TEAB (pH 8.0) was added for alkylation (1 h) and finally, 20 μL of 200 mM DTT/50 mM TEAB (pH
123 8.0) to consume unreacted Iodoacetamide (1 h) with the latter two incubations carried out in the
124 dark. 775 μL of 50 mM TEAB was then added to reduce the urea concentration to c. 0.6 M and
125 Sequencing Grade Modified Trypsin (Promega, V5113) solution was added in a final concentration
126 of 1:20 (w:w trypsin/protein). All samples were gently vortexed and incubated overnight for 18 h at

127 37°C, following which 2.5 µL of formic acid was added to reduce the pH and halt trypsin activity.
128 All samples were then dried down at 60°C for 4 h and stored at 80°C before resuspending in LCMS
129 grade 5% acetonitrile in 0.1% formic acid for subsequent analysis.
130

131 **2.5 Mass spectrometry**

132 Samples (4 µL) were injected by Eksigent 425 LC system onto a trap column (Mobile Phase A; 0.1%
133 formic acid, B; Acetonitrile with 0.1% formic acid; YMC Triart C₁₈ guard column 0.3 x 5 mm, 300 µm
134 ID) at 10 µL/min mobile phase A for 2 min before gradient elution onto the analytical column (YMC
135 Triart C₁₈ 150 x 0.3mm ID, 3 µm) in line to a Sciex TripleTOF 6600 Duospray Source using a 50 µm
136 electrode, positive mode +5500V. Samples were analysed in both IDA (Information Dependent
137 Acquisition, for the generation of a spectral library) and SWATH (Data Independent Acquisition, to
138 generate quantitative data) modes. The following linear gradients were used: for IDA, mobile phase
139 B increasing from 2% to 30% over 68 min; 40% B at 72 min followed by column wash at 80% B and
140 re-equilibration (87 min total run time). For SWATH, 3-30% B over 38 min; 40% B at 43 min
141 followed by wash and re-equilibration as before (57 min total run time). IDA acquisition mode was
142 used with a top 30 ion fragmentation (TOFMS *m/z* 400-1250; product ion 100-1500) followed by 15
143 sec exclusion using rolling collision energy, 50 ms accumulation time; 1.8 s cycle. SWATH
144 acquisition was using 100 variable windows (optimised on sample type) 25 ms accumulation time,
145 2.6 s cycle (*m/z* 400-1250). IDA data was searched together using ProteinPilot 5.0.2, iodoacetamide
146 alkylation, thorough search with emphasis on biological modifications (Swissprot rat database June
147 2018). SWATH data was analysed using Sciex OneOmics software [25] extracted against the locally
148 generated library with the parameters 12 peptides per protein, 6 transitions per peptide, XIC width
149 30 ppm, 5 min retention time window.
150

151 **2.6 Statistical analysis**

152 Statistical analysis was performed in GraphPad Prism version 8.0 (GraphPad Software, San Diego,
153 CA). Data are expressed as Mean±SEM and details of specific statistical tests are given in figure
154 legends.
155

156 Functional analysis of the proteome was performed using the Advaita Bioinformatic
157 iPathwayGuide software (www.advaitabio.com/ipathwayguide.html) with a fold change ± 0.5 and
158 confidence score cut-off of 0.75. Significantly impacted biological processes, molecular interactions
159 and pathways were analysed in the context of pathways obtained from the Kyoto Encyclopedia of
160 Genes and Genomes (KEGG) database (Release 84.0+/10-26, Oct 17) [26] and the Gene Ontology
161 Consortium database (2017-Nov) [27]. The Elim pruning method, which removes genes mapped to
162 a significant gene ontology (GO) term from more general (higher level) GO terms, was used to
163 overcome the limitation of errors introduced by considering genes multiple times [28].
164

165 **3. Results**166 **3.1 Short-term HFD downregulates genes involved in thermogenesis and insulin signalling in**
167 **PVAT only**

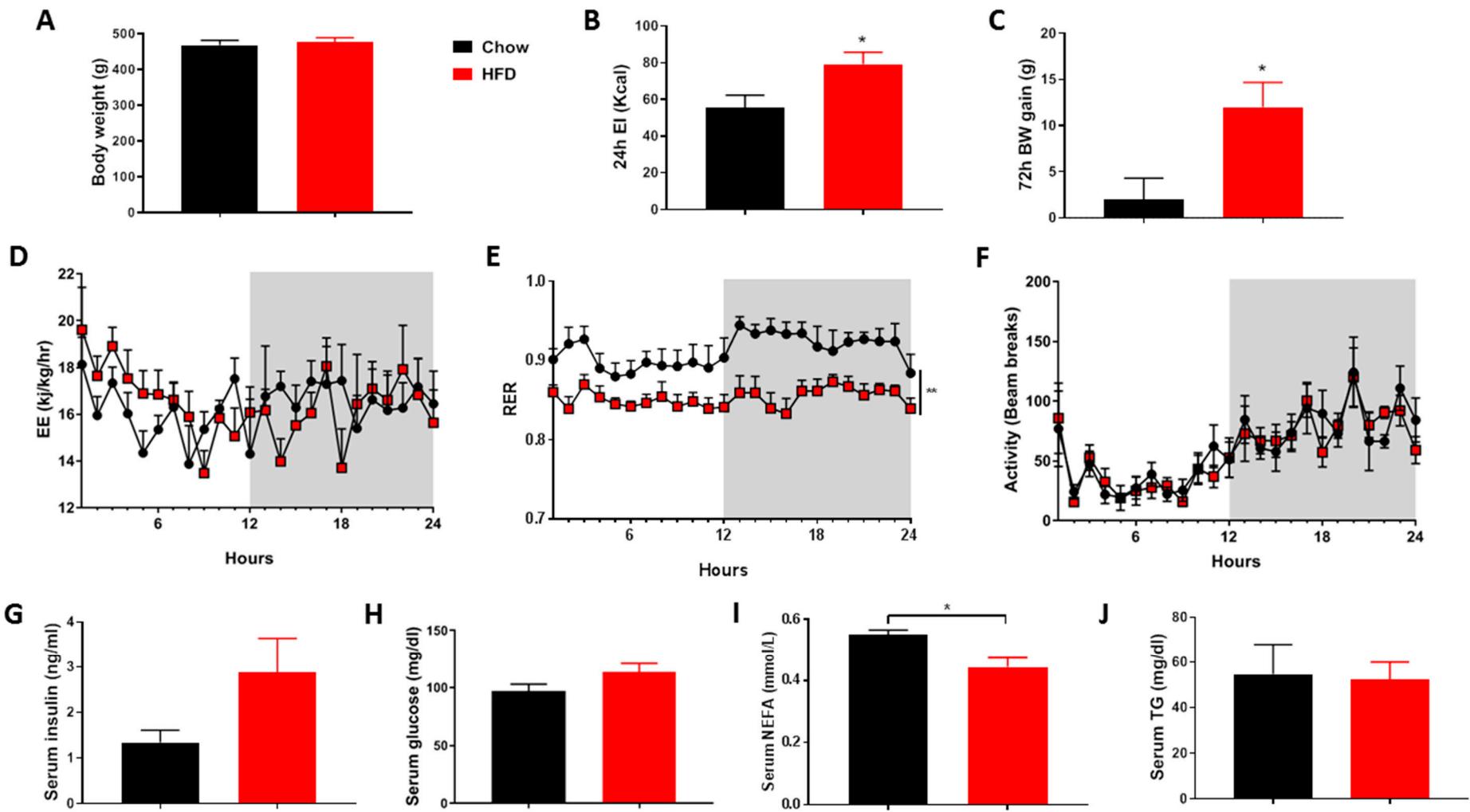
168 As expected, there was no difference between groups with regard to final body weight (Figure 1A),
169 total fat mass (Control: 22.87±3.31; HFD: 23.51±3.68 g) or between fat depots (Supp. Table 3).
170 Increased 24h energy intake (Figure 1B) led to significant weight gain (Figure 1C) equal to c. 2.6%
171 body weight. Whilst there was no change in ambulatory activity or energy expenditure Figures 1D,
172 1F) the reduction in RER (Figure 1E) reflects a shift towards fat as the major fuel substrate in the
173 HFD group. Interestingly, despite this rapid weight gain, there were no differences in serum
174 insulin, glucose or triglycerides, although NEFA was reduced (Figure 1G-J). Thermogenic genes in
175 BAT were unaffected, whereas PVAT was more susceptible to the HFD (Figure 2A and C). Despite
176 similar UCP1 mRNA, there was a reduction in gene expression for β 3AR, DIO2 and PRDM16 in
177 PVAT. There were no differences with the HFD in PGC1 α , CIDEA, FGF21, CITED1, SLC36a2 or
178 P2RX5 in iBAT, whilst only SLC36a2 was reduced in PVAT. Markers of beige adipocytes, TBX1 and
179 TMEM26, were expressed in both iBAT and PVAT and the HFD only reduced TMEM26 in iBAT.
180 The white adipocyte specific cell-surface marker, ASC1 [29], was expressed in both iBAT and PVAT
181 and reduced with HFD in the latter.

182 **3.2 Short-term HFD alters insulin signalling pathways in a depot-specific manner**

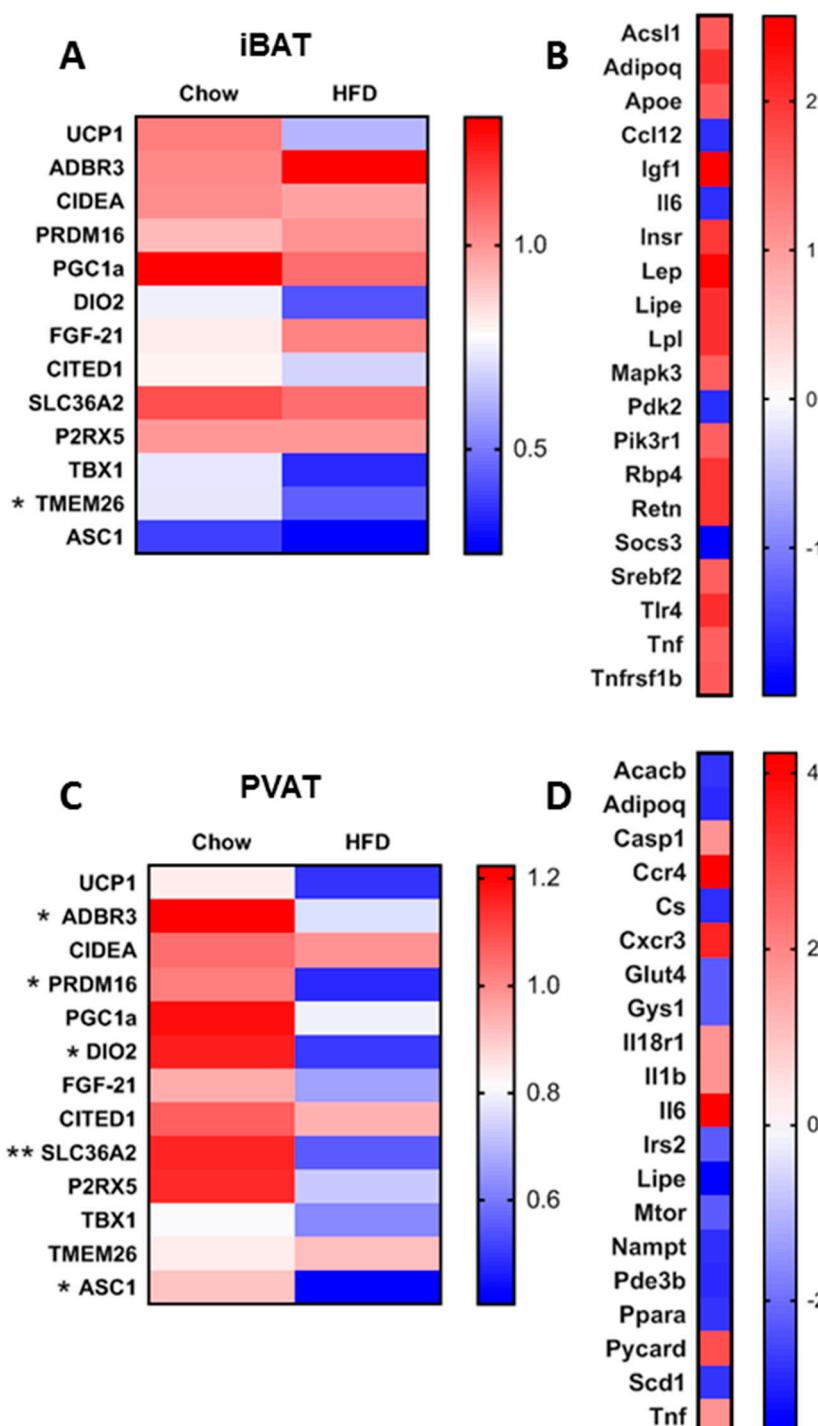
183 Due to the marked reduction in thermogenic genes in PVAT in response to the HFD, a number of
184 genes that regulate insulin signalling and energy metabolism were measured to determine if these
185 were affected by short-term nutrient excess. Targeted array profiling demonstrated that genes
186 involved in insulin signalling (i.e. Igf1, Insr, and Mapk3) and lipid metabolism (i.e. Hsl, Lpl, Acsl1
187 and Srebf2) were upregulated in iBAT (Figure 2B and D). iBAT also exhibited increased expression
188 of genes associated with 'whitening' (i.e. Lep, Retn and Adipoq) and inflammation (i.e. Tlr4, Emr1
189 and Tnfrsf1b). Only four genes were down-regulated in iBAT including Pdk2 and Il6. PVAT
190 exhibited a marked upregulation of Ccr4 and Cxcr3 which govern T-cell differentiation and
191 infiltration. The HFD increased in markers of inflammasome activation, Pycard, Il1 β and Casp1 in
192 PVAT, concomitant with a down-regulation of genes governing lipid (i.e. Hsl, Pde3B, Acacb and
193 Ppara) and glucose metabolism (i.e. Cs, Gys1, Irs2 and mTOR).

194

195 **3.3 Short-term high fat feeding induces divergent alterations in the BAT and PVAT proteome**


196 As the HFD induced clear differences in depot response, we analysed the proteome to identify
197 novel proteins and pathways regulated by short-term high-fat feeding. A total of 107 proteins were
198 differentially regulated in iBAT with those involved in the 20S core proteasome complex (Psma3l),
199 endocytosis (Vps4a), calcium signalling (Camk2d) and glycolysis (Pkm) amongst the most
200 significant (Table 1). In PVAT, 183 proteins were differentially regulated including those involved
201 in glycolysis (Pfkp), apoptosis (Hdgp, Ywhaq and Ghitm), TLR signalling (Ube2n) and peroxisomal
202 lipid metabolism (Acox1) (Table 2).

203


204

205

206

209 **Figure 1.** High fat diet (HFD) modified total energy balance but had no effect on insulin, glucose,
 210 triglycerides or non-esterified fatty acids. (A) Final body weight, (B) 24h energy intake, (C) 3 day
 211 weight gain, (D) 24h energy expenditure (EE), respiratory exchange ratio (RER) and ambulatory
 212 activity and (E) serum metabolites. Data expressed as mean \pm SEM, n=6 per group. For comparison,
 213 data was analysed by either Students t-test (A-C, E) or two-way ANOVA (D) and Sidak post-hoc
 214 tests. Significance denoted as * <0.05; ** <0.01 or *** <0.001.

216 **Figure 2.** Summary of the differences in thermogenic genes involved in BAT, beige and WAT
 217 adipocyte function in iBAT (A) and PVAT (C). Top 20 up/down-regulated genes involved in
 218 adipose tissue insulin resistance in iBAT (B) and PVAT (D). Data expressed as mean (A and C, n=5-
 219 6) or fold change (B and D, n=3). Data were analysed by Students t-test (A and C) with significance
 220 denoted as * <0.05 or ** <0.01.

221
 222

Table 1. Top 10 differentially regulated proteins in BAT

Symbol	Gene name	Entrez	Logfc	Adjpv
Psma3l	Proteasome subunit alpha type-3	408248	0.793509	0.000116
Tmem126a	Transmembrane protein 126A	293113	-1.83882	0.000185
Ssr3	Signal Sequence Receptor Subunit 3	81784	-1.61099	0.0002
Ccdc51	Coiled-Coil Domain Containing 51	316008	-0.693	0.000763
Pkm	Pyruvate Kinase M1/2	25630	0.7335	0.00279
Vps4a	Vacuolar Protein Sorting 4 Homolog A	246772	-0.71726	0.003363
Apoa4	Apolipoprotein A4	25080	-1.0162	0.004051
Prss1	Serine Protease 1	24691	0.827668	0.005684
Serpina3n	Serpin Family A Member 3	24795	-0.58665	0.006792
Camk2d	Calcium/Calmodulin Dependent Protein Kinase II Delta	24246	-2.55115	0.007442

223
 224

Table 2. Top 10 differentially regulated proteins in PVAT

Symbol	Gene name	Entrez	Logfc	Adjpv
Pfkp	Phosphofructokinase, Platelet	60416	-1.38584	0.000225
Hdgf	Heparin Binding Growth Factor	114499	0.69362	0.000445

Rbmxrtl	RNA-binding motif protein, X chromosome retrogene-like	307779	1.91652	0.001389
Ywhaq	14-3-3 Protein Theta	25577	0.613265	0.001405
Ghitm	Growth Hormone Inducible Transmembrane Protein	290596	-0.71467	0.001854
Capza1	Capping Actin Protein Of Muscle Z-Line Subunit Alpha 1	691149	1.194102	0.002081
Mtpn	Myotrophin	79215	0.669685	0.002234
Ube2n	Ubiquitin Conjugating Enzyme E2 N	116725	0.80585	0.002495
B2m	Beta-2-Microglobulin	24223	0.809804	0.002742
Acox1	Acyl-CoA Oxidase 1	50681	-3.50641	0.004222

225

226 Gene ontology (GO) analysis demonstrated the proteins in iBAT (Table 3) were significantly
 227 enriched for lipid-related processes and functions including *positive regulation of lipid catabolic*
 228 *process, high-density lipoprotein particle assembly, phosphatidylcholine-sterol O-acyltransferase activator*
 229 *activity and very-low-density lipoprotein particle*. In PVAT (Table 4), however, proteins were
 230 significantly enriched for nuclear and DNA-related processes and functions, including *nucleosome*
 231 *assembly, histone exchange, sequence-specific DNA binding and nuclear chromosomes*. Impact analysis,
 232 which combines classical overrepresentation analysis with the perturbation of a given pathway,
 233 demonstrated that *fat and digestion, glucagon signalling and PPAR signalling* pathways were amongst
 234 those impacted in iBAT (Figure 3A-D) whilst *RNA degradation, cell adhesion molecules and ribosome*
 235 pathways were among those impacted in PVAT (Figure 3E-G).

236

237

Table 3. GO terms enriched in BAT

GoId	GoName	CountDE	CountAll	Pv_elim
Biological Process				
GO:0039536	negative regulation of RIG-I signaling pathway	3	3	0.0011
GO:0050996	positive regulation of lipid catabolic process	4	6	0.0014

GO:0046470	phosphatidylcholine metabolic process	5	7	0.0038
GO:0030300	regulation of intestinal cholesterol absorption	3	4	0.004
GO:0034380	high-density lipoprotein particle assembly	3	4	0.004

Molecular Function

GO:0031210	phosphatidylcholine binding	3	3	0.0011
GO:0060228	phosphatidylcholine-sterol O-acyltransferase activator activity	3	4	0.004
GO:0003713	transcription coactivator activity	4	8	0.0054
GO:0001047	core promoter binding	3	5	0.0091
GO:0017127	cholesterol transporter activity	3	5	0.0091

Cellular Component

GO:0034366	spherical high-density lipoprotein particle	3	4	0.0041
GO:0042627	chylomicron	3	4	0.0041
GO:0005667	transcription factor complex	3	6	0.0174
GO:0034361	very-low-density lipoprotein particle	3	6	0.0174

238

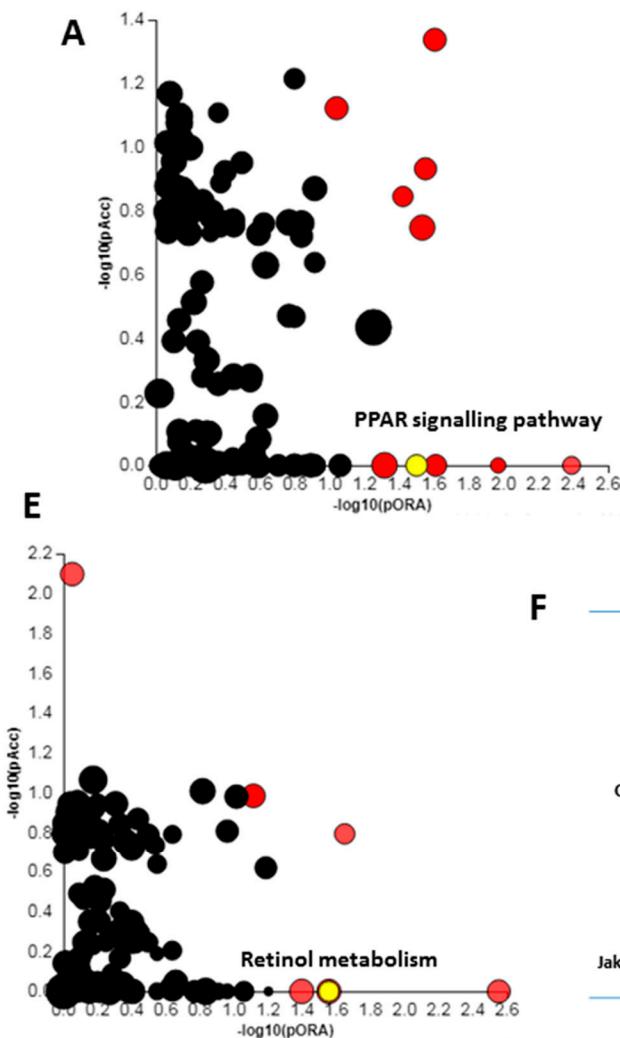
Table 4. GO terms enriched in PVAT

Gold	GoName	CountDE	CountAll	Pv_elim
Biological Process				
GO:0006334	nucleosome assembly	8	10	0.00023
GO:0017144	drug metabolic process	5	8	0.00287
GO:0043486	histone exchange	3	3	0.00343
GO:1901655	cellular response to ketone	8	21	0.00825
GO:0021766	hippocampus development	6	14	0.0116

Molecular Function					
GO:0042393	histone binding	7	8	0.000011	
GO:0003785	actin monomer binding	3	3	0.0033	
GO:0043565	sequence-specific DNA binding	8	23	0.0143	
GO:0035091	phosphatidylinositol binding	5	8	0.0219	
GO:0005506	iron ion binding	6	16	0.0227	
Cellular Component					
GO:0000788	nuclear nucleosome	3	3	0.0035	
GO:0000784	nuclear chromosome, telomeric region	3	4	0.0123	
GO:0030054	cell junction	38	183	0.0174	
GO:0071013	catalytic step 2 spliceosome	5	12	0.0246	
GO:0001931	uropod	3	5	0.0273	

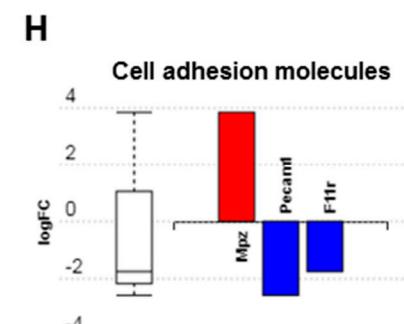
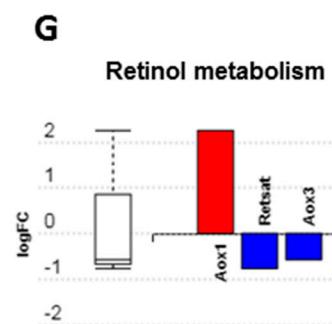
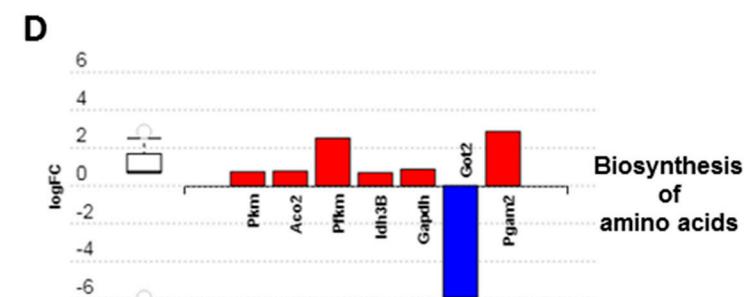
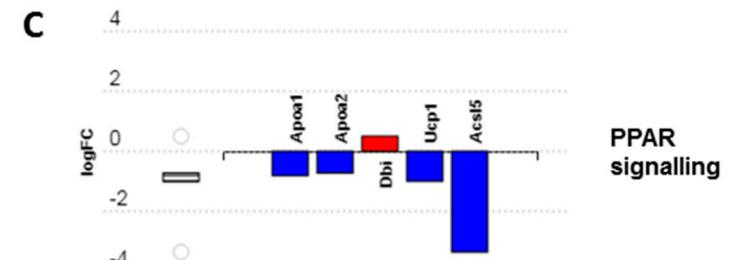
239 **4. Discussion**

240 BAT plays a major role in regulating whole body glucose and lipid homeostasis under cold
 241 conditions (i.e. when UCP1 is active) with apparent anti-obesity potential in rodents [8]. Here, we
 242 demonstrate that when animals are housed at thermo neutrality (i.e. when UCP1 is not active)
 243 short-term exposure to a HFD is sufficient to induce rapid whole-body weight gain which may be
 244 due to uptake of circulating NEFA. Furthermore, iBAT and PVAT, whilst phenotypically similar,
 245 differ in their response to this brief period of nutrient excess. This is the first study to investigate
 246 whether these anatomically and developmentally distinct depots [1, 2] respond differently to a brief
 247 caloric surplus, and suggests that not all BAT is similar with regards to its potential to regulate
 248 nutrient metabolism.


249

250 An important aspect of our study is the finding that adaptations in iBAT and PVAT with rapid
 251 whole-body weight gain occur prior to increased fat mass and it is likely this weight gain is a
 252 consequence of lipid accumulation across all fat depots. The changes in iBAT and PVAT could,
 253 therefore, be early events in the transition from BAT to a whiter phenotype, the development of
 254 adipose tissue dysfunction and /or adaptations in response to caloric surplus. For instance, PSMA3,
 255 a component of the core 20S proteasome complex is upregulated in visceral adipose tissue of obese
 256 rats [30].

257





258

259

pName	pv
Fat digestion and absorption	0.004075
Glucagon signalling pathway	0.008899
Vitamin digestion and absorption	0.010764
ErbB signaling pathway	0.022128
Biosynthesis of amino acids	0.024601
PPAR signalling pathway	0.031685
Protein processing in endoplasmic reticulum	0.032858
Central carbon metabolism in cancer	0.033734
HIF-1 signaling pathway	0.041226
Purine metabolism	0.048448

pName	pv
Spliceosome	0.002804
RNA degradation	0.023996
Retinol metabolism	0.027811
Cell adhesion molecules (CAMs)	0.027811
Ribosome	0.040122
Fluid shear stress and atherosclerosis	0.04228
Jak-STAT signalling pathway	0.046621

261 **Figure 3.** Overview of alterations in the proteome of iBAT and PVAT following 72h of high fat
262 feeding. Impact analysis: iBAT (A), PVAT (E); Most impacted pathways: iBAT (B), PVAT (F);
263 Proteins altered in specified pathways: iBAT (C and D), PVAT (G and H). Figures created with
264 Advaita Bio IPPathwayGuide.

265

266 In BAT however, activation of the proteasome is essential for cold-induced thermogenesis with
267 selective induction of proteostasis in BAT improving metabolic activity and body weight
268 independent of insulin tolerance in diet-induced obesity [31]. In this study, downregulation of
269 TMEM126a in iBAT is of particular interest. It is an inner-mitochondrial, cristae associated
270 transmembrane protein strongly expressed in multiple tissues in adult humans and co-localises
271 with ATP5A [32, 33]. Intriguingly, TMEM126 also co-localises with, and binds to, a CD137 ligand
272 (CD137L) in macrophages to regulate reverse signaling [34, 35]. CD137 is a common marker of
273 beige adipocytes. Whether TMEM126a regulates mitochondrial function in iBAT or in the
274 development of beige adipocytes is unknown. Another mitochondrial protein, CCDC51, has
275 previously been shown to be a target of the transcription factor iroquois homeobox 3 (IRX3). In
276 human obesity, IRX3 is a target of the FTO risk loci with allele carriers having increased IRX3
277 expression in early adipogenesis where it is proposed to regulate adipocyte function and browning
278 through the modulation of mitochondrial genes [36].

279

280 Our finding that the response to brief nutrient excess differs in PVAT compared to iBAT may be
281 explained, in part, by the proximity of PVAT to, and local interaction with, the vascular system. The
282 downregulation of PFKP, which catalyses fructose 6-phosphate to fructose 1,6-bisphosphate, is
283 intriguing given that elevated expression is associated with raised BMI and obesity in genome wide
284 association studies [37, 38]. In iBAT, however, PFKP expression is induced by cold exposure and
285 sympathetic activation with a β 3-agonist and reduced at thermoneutrality [39]. This is in line with
286 the downregulation of both thermogenic and metabolic genes and would suggest perturbed
287 adipocyte function. Furthermore, GHITM, a mitochondrial protein involved in cristae organisation,
288 cytochrome C release and apoptosis was downregulated [40]. Alongside an upregulation of
289 Ube2n which regulates the TLR4 signalling pathway, and genes governing the inflammasome it
290 points towards a pro-inflammatory, apoptotic environment in PVAT following only brief exposure
291 to a HFD. Interestingly, MTPN and CAPZA1, both of which play a role in the growth of actin
292 filaments, were upregulated in PVAT. Of these, MTPN drives the growth of cardiomyocytes and
293 promotes cardiac hypertrophy, whilst reduced CAPZA1 improves post-ischemic cardiac function
294 [41, 42]. Whether these proteins in PVAT signal to the endothelium to regulate vascular
295 remodelling is currently unknown.

296

297 The enrichment of lipid and cholesterol-related GO terms in iBAT are in accordance with a major
298 role in lipoprotein metabolism [43, 44]. Downregulation of proteins involved in reverse-transport of
299 cholesterol from fat to liver and the formation of high-density lipoproteins and chylomicrons
300 (APOA1, 2 and 4) suggests changes in the uptake and processing of triglyceride-rich lipoproteins as
301 fuel for iBAT [45]. Alternatively, and in the context of the rapid whole body weight gain,
302 perturbation of PPAR signaling including reduced UCP1 and upregulation of white adipose
303 adipokines i.e. adiponectin mRNA may indicate early stages of iBAT remodeling towards a white

304 phenotype. In contrast, the enrichment of nuclear related GO terms in PVAT are indicative of
305 dynamic changes in DNA replication, repair and gene transcription [46-48]. Whether the genes and
306 proteins in these nuclear-related pathways act on the vascular wall to regulate vascular function
307 following brief exposure to a HFD remains to be determined.

308

309 Impact analysis further highlights the divergent response in these two BAT depots with *fat digestion*
310 and *absorption glucagon signaling* and *PPAR signalling* among those impacted in iBAT. Importantly,
311 downregulation of UCP1 in the PPAR signalling pathway suggests impaired BAT function which
312 may contribute to the rapid weight gain seen within 72h. Furthermore, downregulation of the long-
313 chain fatty-acid co-enzyme ACSL5 in the PPAR pathway and GOT2, which facilitates cellular long
314 chain fatty acid uptake and metabolite exchange between the cytosol and mitochondria, is
315 significant as long-chain fatty acids activate UCP1 and are the preferred fuel of BAT for adaptive
316 thermogenesis [5]. Conversely in PVAT, impacted pathways included retinol metabolism, cell
317 adhesion molecules, ribosome and fluid shear stress and atherosclerosis. Retinoic acid regulates
318 adipogenesis and cell migration, differentiation, apoptosis and vascular calcification in vascular
319 smooth muscle cells [49]. A downregulation of RETSAT may also be indicative of the early stages of
320 PVAT dysfunction. RETSAT knockout mice exhibit increased adiposity due to an upregulation of
321 PPAR γ and FABP4 and it is downregulated in obese humans where the infiltration of macrophages
322 represses its function [50, 51]. Altered cell adhesion and shear stress pathways in PVAT are
323 intriguing due to their well-known role in driving atherogenesis [52, 53]. For instance, the platelet
324 and cell adhesion molecule PECAM1 is essential for vascular remodeling in mice with PECAM1
325 knockout mice, which are partially protected from atherosclerosis, exhibiting reduced aortic arch
326 and sinus lesions [54, 55]. How these proteins in PVAT regulate vascular function is currently
327 unknown but we predict these may be the initial stages of PVAT dysfunction in response to a HFD
328 and, as such, could be important in the initial stages of vascular dysfunction.

329 5. Conclusions

330 In conclusion, we show that two anatomically and developmentally distinct BAT depots exhibit a
331 divergent response to short-term nutrient excess. We propose these alterations, which occur
332 following rapid weight gain but prior to increased fat mass, are of importance in the development
333 of subsequent adipocyte dysfunction in obesity.

334 **Declarations:** Authors have nothing to declare

335 Ethical approval: University of Nottingham Animal Welfare and Ethical Review Board, in
336 accordance with the UK Animals (Scientific Procedures) Act (1986).

337 Consent for publication: not applicable

338 Availability of data and material: The datasets used and analysed during the current study are
339 available from the corresponding author on reasonable request

340 Competing interests: The authors declare that they have no competing interests.

341 Funding: The British Heart Foundation [grant number FS/15/4/31184/].

342 Authors' contributions: P.A., H.B. and M.E.S. conceived the study and attained the funding; P.A. and
343 M.E.S. developed and designed the experiments; P.A., J.E.L., A.K.M. I.B. and D. J. B. performed the
344 experiments; P.A., A.K.M. and D.J.B. analyzed the data; P.A. and M.E.S. wrote the paper which was
345 revised critically by D.J.B., H.B., F.J.P.E, and J.E.L. for important intellectual content. All authors read
346 and approved the final manuscript.

347

348 **References**

- 349 1. Sanchez-Gurmaches, J. and D.A. Guertin, *Adipocyte lineages: tracing back the origins of fat*.
350 *Biochim Biophys Acta*, 2014. **1842**(3): p. 340-51.
- 351 2. Chang, L., et al., *Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis*. *Circulation*, 2012. **126**(9): p. 1067-78.
- 352 3. Blondin, D.P., et al., *Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men*.
353 *Nat Commun*, 2017. **8**: p. 14146.
- 354 4. Lee, P., et al., *Brown Adipose Tissue Exhibits a Glucose-Responsive Thermogenic Biorhythm in Humans*. *Cell Metab*, 2016. **23**(4): p. 602-9.
- 355 5. Cannon, B. and J. Nedergaard, *Brown adipose tissue: function and physiological significance*.
356 *Physiol Rev*, 2004. **84**(1): p. 277-359.
- 357 6. Scheele, C. and S. Nielsen, *Metabolic regulation and the anti-obesity perspectives of human brown fat*. *Redox Biol*, 2017. **12**: p. 770-775.
- 358 7. Nosalski, R. and T.J. Guzik, *Perivascular adipose tissue inflammation in vascular disease*. *Br J Pharmacol*, 2017. **174**(20): p. 3496-3513.
- 359 8. Marlatt, K.L. and E. Ravussin, *Brown Adipose Tissue: an Update on Recent Findings*. *Curr Obes Rep*, 2017. **6**(4): p. 389-396.
- 360 9. Waise, T.M.Z., et al., *One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice*. *Biochem Biophys Res Commun*, 2015. **464**(4): p. 1157-1162.
- 361 10. Boghossian, S., et al., *High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala*. *Am J Physiol Regul Integr Comp Physiol*, 2009. **297**(5): p. R1302-11.
- 362 11. Clegg, D.J., et al., *Consumption of a high-fat diet induces central insulin resistance independent of adiposity*. *Physiol Behav*, 2011. **103**(1): p. 10-6.
- 363 12. Xiao, Y., et al., *The effects of short-term high-fat feeding on exercise capacity: multi-tissue transcriptome changes by RNA sequencing analysis*. *Lipids Health Dis*, 2017. **16**(1): p. 28.
- 364 13. Ji, Y., et al., *Short term high fat diet challenge promotes alternative macrophage polarization in adipose tissue via natural killer T cells and interleukin-4*. *J Biol Chem*, 2012. **287**(29): p. 24378-86.
- 365 14. Lee, Y.S., et al., *Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance*. *Diabetes*, 2011. **60**(10): p. 2474-83.
- 366 15. Wiedemann, M.S., et al., *Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance*. *Am J Physiol Endocrinol Metab*, 2013. **305**(3): p. E388-95.
- 367 16. Mullen, K.L., et al., *Skeletal muscle inflammation is not responsible for the rapid impairment in adiponectin response with high-fat feeding in rats*. *Am J Physiol Regul Integr Comp Physiol*, 2010. **299**(2): p. R500-8.
- 368 17. Cuthbertson, D.J., et al., *What have human experimental overfeeding studies taught us about adipose tissue expansion and susceptibility to obesity and metabolic complications?* *Int J Obes (Lond)*, 2017. **41**(6): p. 853-865.

386 18. Fitzgibbons, T.P., et al., *Similarity of mouse perivascular and brown adipose tissues and their*
387 *resistance to diet-induced inflammation.* Am J Physiol Heart Circ Physiol, 2011. **301**(4): p. H1425-
388 37.

389 19. Gordon, C.J., *The mouse thermoregulatory system: Its impact on translating biomedical data to*
390 *humans.* Physiol Behav, 2017. **179**: p. 55-66.

391 20. Tian, X.Y., et al., *Thermoneutral Housing Accelerates Metabolic Inflammation to Potentiate*
392 *Atherosclerosis but Not Insulin Resistance.* Cell Metab, 2016. **23**(1): p. 165-78.

393 21. Hawkins, P. and H.D.R. Golledge, *The 9 to 5 Rodent - Time for Change? Scientific and animal*
394 *welfare implications of circadian and light effects on laboratory mice and rats.* J Neurosci Methods, 2018. **300**: p. 20-25.

395 22. Warner, A., et al., *Effects of photoperiod on daily locomotor activity, energy expenditure, and feeding*
396 *behavior in a seasonal mammal.* Am J Physiol Regul Integr Comp Physiol, 2010. **298**(5): p. R1409-
397 16.

398 23. Samms, R.J., et al., *Antibody-Mediated Inhibition of the FGFR1c Isoform Induces a Catabolic Lean*
399 *State in Siberian Hamsters.* Curr Biol, 2015. **25**(22): p. 2997-3003.

400 24. Frayn, K.N., *Calculation of substrate oxidation rates in vivo from gaseous exchange.* J Appl Physiol
401 Respir Environ Exerc Physiol, 1983. **55**(2): p. 628-34.

402 25. Lambert, J.P., et al., *Mapping differential interactomes by affinity purification coupled with data-*
403 *independent mass spectrometry acquisition.* Nat Methods, 2013. **10**(12): p. 1239-45.

404 26. Kanehisa, M., *The KEGG database.* Novartis Found Symp, 2002. **247**: p. 91-101; discussion 101-
405 3, 119-28, 244-52.

406 27. Ashburner, M., et al., *Gene ontology: tool for the unification of biology. The Gene Ontology*
407 *Consortium.* Nat Genet, 2000. **25**(1): p. 25-9.

408 28. Alexa, A., J. Rahnenfuhrer, and T. Lengauer, *Improved scoring of functional groups from gene*
409 *expression data by decorrelating GO graph structure.* Bioinformatics, 2006. **22**(13): p. 1600-7.

410 29. Ussar, S., et al., *ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown*
411 *adipocytes.* Sci Transl Med, 2014. **6**(247): p. 247ra103.

412 30. Sakamuri, S.S., et al., *Transcriptome profiling of visceral adipose tissue in a novel obese rat model,*
413 *WNIN/Ob & its comparison with other animal models.* Indian J Med Res, 2016. **144**(3): p. 409-423.

414 31. Bartelt, A., et al., *Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal*
415 *activity.* Nat Med, 2018. **24**(3): p. 292-303.

416 32. Hanein, S., et al., *TMEM126A is a mitochondrial located mRNA (MLR) protein of the mitochondrial*
417 *inner membrane.* Biochim Biophys Acta, 2013. **1830**(6): p. 3719-33.

418 33. Hanein, S., et al., *TMEM126A, encoding a mitochondrial protein, is mutated in autosomal-recessive*
419 *nonsyndromic optic atrophy.* Am J Hum Genet, 2009. **84**(4): p. 493-8.

420 34. Bae, J.S., et al., *Novel transmembrane protein 126A (TMEM126A) couples with CD137L reverse*
421 *signals in myeloid cells.* Cell Signal, 2012. **24**(12): p. 2227-36.

422 35. Kim, E.C., et al., *TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal*
423 *transduction pathway in macrophages.* Mol Immunol, 2015. **64**(2): p. 244-51.

424 36. Claussnitzer, M., et al., *FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.* N

425 *Engl J Med, 2015. 373*(10): p. 895-907.

426 37. Scuteri, A., et al., *Genome-wide association scan shows genetic variants in the FTO gene are*
427 *associated with obesity-related traits.* PLoS Genet, 2007. **3**(7): p. e115.

428

429 38. Liu, Y.J., et al., *Genome-wide association scans identified CTNNBL1 as a novel gene for obesity*. *Hum*
430 *Mol Genet*, 2008. **17**(12): p. 1803-13.

431 39. Basse, A.L., et al., *Regulation of glycolysis in brown adipocytes by HIF-1alpha*. *Sci Rep*, 2017. **7**(1):
432 p. 4052.

433 40. Oka, T., et al., *Identification of a novel protein MICS1 that is involved in maintenance of*
434 *mitochondrial morphology and apoptotic release of cytochrome c*. *Mol Biol Cell*, 2008. **19**(6): p. 2597-
435 608.

436 41. Yang, F.H. and W.G. Pyle, *Reduced cardiac CapZ protein protects hearts against acute ischemia-*
437 *reperfusion injury and enhances preconditioning*. *J Mol Cell Cardiol*, 2012. **52**(3): p. 761-72.

438 42. Sarkar, S., et al., *Cardiac overexpression of myotrophin triggers myocardial hypertrophy and heart*
439 *failure in transgenic mice*. *J Biol Chem*, 2004. **279**(19): p. 20422-34.

440 43. Bartelt, A., et al., *Brown adipose tissue activity controls triglyceride clearance*. *Nature Medicine*,
441 2011. **17**(2): p. 200-U93.

442 44. Berbee, J.F., et al., *Brown fat activation reduces hypercholesterolaemia and protects from*
443 *atherosclerosis development*. *Nat Commun*, 2015. **6**: p. 6356.

444 45. Hoeke, G., et al., *Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis*. *Circ Res*, 2016.
445 **118**(1): p. 173-82.

446 46. Krude, T., *Chromatin. Nucleosome assembly during DNA replication*. *Curr Biol*, 1995. **5**(11): p.
447 1232-4.

448 47. Venkatesh, S. and J.L. Workman, *Histone exchange, chromatin structure and the regulation of*
449 *transcription*. *Nat Rev Mol Cell Biol*, 2015. **16**(3): p. 178-89.

450 48. Houseley, J. and D. Tollervey, *The many pathways of RNA degradation*. *Cell*, 2009. **136**(4): p.
451 763-76.

452 49. Rhee, E.J., S. Nallamshetty, and J. Plutzky, *Retinoid metabolism and its effects on the vasculature*.
453 *Biochim Biophys Acta*, 2012. **1821**(1): p. 230-40.

454 50. Schupp, M., et al., *Retinol saturase promotes adipogenesis and is downregulated in obesity*. *Proc*
455 *Natl Acad Sci U S A*, 2009. **106**(4): p. 1105-10.

456 51. Moise, A.R., et al., *Increased adiposity in the retinol saturase-knockout mouse*. *FASEB J*, 2010. **24**(4):
457 p. 1261-70.

458 52. Galkina, E. and K. Ley, *Vascular adhesion molecules in atherosclerosis*. *Arterioscler Thromb Vasc*
459 *Biol*, 2007. **27**(11): p. 2292-301.

460 53. Caro, C.G., *Discovery of the role of wall shear in atherosclerosis*. *Arterioscler Thromb Vasc Biol*,
461 2009. **29**(2): p. 158-61.

462 54. Stevens, H.Y., et al., *PECAM-1 is a critical mediator of atherosclerosis*. *Dis Model Mech*, 2008.
463 **1**(2-3): p. 175-81; discussion 179.

464 55. Chen, Z. and E. Tzima, *PECAM-1 is necessary for flow-induced vascular remodeling*. *Arterioscler*
465 *Thromb Vasc Biol*, 2009. **29**(7): p. 1067-73.

466

467

468 **Supplementary data**

469

Supplementary Table 1: Details of probe assays used for qPCR

Gene	Assay ID
ADRB3 (Thermo)	Rn00565393_m1
ASC1 (Thermo)	qRnoCIP0039017
CITED1 (BioRad)	qRnoCIP0039088
DIO2 (Thermo)	Rn00581867_m1
FGF21 (BioRad)	qRnoCEP0024589
P2RX5 (BioRad)	qRnoCIP0024301
PGC1a (BioRad)	qRnoCIP0022855
SLC36a2 (BioRad)	qRnoCIP0039017
TBX1 (BioRad)	qRnoCIP0027898
TMEM26 (BioRad)	qRnoCEP0028673

470

471

Supplementary Table 2: Rat specific Forward and Reverse Oligonucleotide Primers Used for Real-Time PCR

Gene	Forward primer	Reverse Primer
CIDEA	TCAGTGTGTTATGATATCCGCT	ACCTGGGCAGCATAAGGATG
PRDM16	CGAGAAGTTCTGCGTGGATG	GGCACCTTCTTCACATGCA
UCP1	GCCTAGCAGACATCATCACCT	GTTTCGGCAATCCTCTGTC

472

473

Supplementary Table 3. Depot fat mass following 72h HFD (grams)

Depot	Chow	HFD
Paracardial AT	0.138±0.012g	0.138±0.023g
iBAT	0.627±0.096g	0.709±0.077g
Perirenal AT	7.48±1.67g	6.98±2.48g
Gonadal AT	6.31±0.83g	5.62±0.38g
Mesenteric AT	4.42±0.94g	5.60±0.71g
Inguinal AT	3.91±0.44g	4.51±0.7g
Total AT	22.87±3.31g	23.51±3.68g

474