Preprint
Review

Ebolavirus Entry: From Molecular Characterization to Drug Discovery

Submitted:

20 February 2019

Posted:

21 February 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Ebola Virus Disease (EVD) is one of the most lethal transmissible infections characterized by a high fatality rate, and caused by members of the Filoviridae family. The recent large outbreak of EVD in West Africa (2013-2016), highlighted the worldwide danger of this disease and its impact on global public health and economy. The development of highly needed anti-Filoviridae antivirals has been so far hampered by the shortage of tools to study their life cycle in vitro, and therefore screen for potential active compounds outside a biosafety level-4 (BSL-4) containment. Importantly, the development of surrogate models to in vitro study of Filoviridae entry in a BSL-2 setting, such as viral pseudotypes and Ebola virus like particles, tremendously boosted both our knowledge on viral life cycle and the identification of promising anti-Filoviridae compounds interfering with viral entry. In this context, the combination of such surrogate systems with large-scale small molecule compounds and haploid genetic screenings, as well as rational drug design and drug repurposing approaches will prove priceless in our quest for the development of a treatment for EVD.
Keywords: 
Subject: 
Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated