Preprint
Article

Optical Constants of rare-Earth Substituted Ferrite-Type Amorphous Garnets and Nanoscale Garnet-Oxide Layers

Altmetrics

Downloads

843

Views

400

Comments

0

Submitted:

26 February 2019

Posted:

27 February 2019

You are already at the latest version

Alerts
Abstract
Amorphous ferrite-type rare-earth (RE) substituted garnets and garnet-oxide nanocomposite layers are prepared on clear glass substrates by using RF magnetron sputter-deposition process. By using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method, the spectral dispersion function of optical constants and the layer thicknesses are derived accurately from the transmission spectra of the as-deposited samples. The effects of excess metal-oxides added to the base material systems during the co-deposition process are found to affect the refractive index and the optical absorption coefficients of garnet-oxide composites. A number of optical constant datasets are presented, enabling the experimentalists to design nanophotonic or integrated-optics devices employing these functional materials.
Keywords: 
Subject: Physical Sciences  -   Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated