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Abstract—In recent times, with the increase of Artificial
Neural Network (ANN), deep learning has brought a dramatic
twist in the field of machine learning by making it more
artificially intelligent. Deep learning is remarkably used in vast
ranges of fields because of its diverse range of applications such
as surveillance, health, medicine, sports, robotics, drones, etc.
In deep learning, Convolutional Neural Network (CNN) is at
the center of spectacular advances that mixes Artificial Neural
Network (ANN) and up to date deep learning strategies. It has
been wused broadly in pattern recognition, sentence
classification, speech recognition, face recognition, text
categorization, document analysis, scene, and handwritten digit
recognition. The goal of this paper is to observe the variation of
accuracies of CNN to classify handwritten digits using various
numbers of hidden layers and epochs and to make the
comparison between the accuracies. For this performance
evaluation of CNN, we performed our experiment using
Modified National Institute of Standards and Technology
(MNIST) dataset. Further, the network is trained using
stochastic gradient descent and the backpropagation algorithm.
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I. INTRODUCTION

With time the numbers of fields are increasing in which
deep learning can be applied. In deep learning,
Convolutional Neural Networking (CNN) [1, 2] is being
used for visual imagery analyzing. Object detection, face
recognition, robotics, video analysis, segmentation, pattern
recognition, natural language processing, spam detection,
topic categorization, regression analysis, speech recognition,
image classification are some of the examples that can be
done using Convolutional Neural Networking. The
accuracies in these fields including handwritten digits
recognition using Deep Convolutional Neural Networks
(CNNs) have reached human level perfection. Mammalian
visual systems’ biological model is the one by which the
architecture of the CNN is inspired. Cells in the cat’s visual
cortex are sensitized to a tiny area of the visual field
identified which is recognized as the receptive field [3]. It
was found by D. H. Hubel et al. in 1062. The neocognitron
[4], the pattern recognition model inspired by the work of D.
H. Hubel et al. [5, 6] was the first computer vision. It was
introduced by Fukushima in 1980. In 1998, the framework
of CNNs is designed by LeCun et al. [7] which had seven
layers of convolutional neural networks. It was adept in
handwritten digits classification direct from pixel values of

images [8]. Gradient descent and back propagation
algorithm [9] is used for training the model. In handwritten
recognition digits, characters are given as input. The model
can be recognized by the system. A simple artificial neural
network (ANN) has an input layer, an output layer and some
hidden layers between the input and output layer. CNN has a
very similar architecture as ANN. There are several neurons
in each layer in ANN. The weighted sum of all the neurons
of a layer becomes the input of a neuron of the next layer
adding a biased value. In CNN the layer has three
dimensions. Here all the neurons are not fully connected.
Instead, every neuron in the layer is connected to the local
receptive field. A cost function generates in order to train the
network. It compares the output of the network with the
desired output. The signal propagates back to the system,
again and again, to update the shared weights and biases in
all the receptive fields to minimize the value of cost function
which increases the network’s performance [10-12]. The
goal of this article is to observe the influence of hidden
layers of a CNN for handwritten digits. We have applied a
different type of Convolutional Neural Network algorithm
on Modified National Institute of Standards and Technology
(MNIST) dataset using Tensorflow, a Neural Network
library written in python. The main purpose of this paper is
to analyze the variation of outcome results for using a
different combination of hidden layers of Convolutional
Neural Network. Stochastic gradient and backpropagation
algorithm are used for training the network and the forward
algorithm is used for testing.

Il. LITERATURE REVIEW

CNN is playing an important role in many sectors like
image processing. It has a powerful impact on many fields.
Even, in  nano-technologies  like  manufacturing
semiconductors, CNN is used for fault detection and
classification [13]. Handwritten digit recognition has
become an issue of interest among researchers. There are a
large number of papers and articles are being published these
days about this topic. In research, it is shown that Deep
Learning algorithm like multilayer CNN using Keras with
Theano and Tensorflow gives the highest accuracy in
comparison with the most widely used machine learning
algorithms like SVM, KNN & RFC. Because of its highest
accuracy, Convolutional Neural Network (CNN) is being
used on a large scale in image classification, video analysis,
etc. Many researchers are trying to make sentiment
recognition in a sentence. CNN is being used in natural
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language processing and sentiment recognition by varying
different parameters [14]. It is pretty challenging to get a
good performance as more parameters are needed for the
large-scale neural network. Many researchers are trying to
increase the accuracy with less error in CNN. In another
research, they have shown that deep nets perform better
when they are trained by simple back-propagation. Their
architecture results in the lowest error rate on MNIST
compare to NORB and CIFAR10 [15]. Researchers are
working on this issue to reduce the error rate as much as
possible in handwriting recognition. In one research, an error
rate of 1.19% is achieved using 3-NN trained and tested on
MNIST [22]. Deep CNN can be adjustable with the input
image noise [16]. Coherence recurrent convolutional
network (CRCN) is a multimodal neural architecture [17]. It
is being used in recovering sentences in an image. Some
researchers are trying to come up with new techniques to
avoid drawbacks of traditional convolutional layer's. Ncfm
(No combination of feature maps) is a technique which can
be applied for better performance using MNIST datasets
[18]. Its accuracy is 99.81% and it can be applied for large-
scale data. New applications of CNN are developing day by
day with many kinds of research. Researchers are trying
hard to minimize error rates. Using MNIST datasets and
CIFAR, error rates are being observed [19]. To clean blur
images CNN is being used. For this purpose, a new model
was proposed using MNIST dataset. This approach reaches
an accuracy of 98% and loss range 0.1% to 8.5% [20]. In
Germany, a traffic sign recognition model of CNN is
suggested. It proposed a faster performance with 99.65%
accuracy [21]. Loss function was designed, which is
applicable for light-weighted 1D and 2D CNN. In this case,
the accuracies were 93% and 91% respectively [22, 23].

I1l. MODELING OF CONVOLUTIONAL NEURAL NETWORK TO
CLASSIFY HANDWRITTEN DIGITS

To recognize the handwritten digits, a seven-layered
convolutional neural network with one input layer followed
by five hidden layers and one output layer is designed and
illustrated in figure 1.
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Fig. 1. A seven-layered convolutional neural network for digit recognition

The input layer consists of 28 by 28 pixel images which
mean that the network contains 784 neurons as input data.
The input pixels are grayscale with a value 0 for a white
pixel and 1 for a black pixel. Here, this model of CNN has
five hidden layers. The first hidden layer is the convolution
layer 1 which is responsible for feature extraction from an
input data. This layer performs convolution operation to

small localized areas by convolving a filter with the previous
layer. In addition, it consists of multiple feature maps with
learnable kernels and rectified linear units (ReLU). The
kernel size determines the locality of the filters. ReLU is
used as an activation function at the end of each convolution
layer as well as a fully connected layer to enhance the
performance of the model. The next hidden layer is the
pooling layer 1. It reduces the output information from the
convolution layer and reduces the number of parameters and
computational complexity of the model. The different types
of pooling are max pooling, min pooling, average pooling,
and L2 pooling. Here, max pooling is used to subsample the
dimension of each feature map. Convolution layer 2 and
pooling layer 2 which has the same function as convolution
layer 1 and pooling layer 1 and operates in the same way
except for their feature maps and kernel size varies. A
Flatten layer is used after the pooling layer which converts
the 2D featured map matrix to a 1D feature vector and
allows the output to get handled by the fully connected
layers. A fully connected layer is another hidden layer also
known as the dense layer. It is similar to the hidden layer of
Artificial Neural Networks (ANNs) but here it is fully
connected and connects every neuron from the previous
layer to the next layer. In order to reduce overfitting, dropout
regularization method is used at fully connected layer 1. It
randomly switches off some neurons during training to
improve the performance of the network by making it more
robust. This causes the network to become capable of better
generalization and less compelling to overfit the training
data. The output layer of the network consists of ten neurons
and determines the digits numbered from 0 to 9. Since the
output layer uses an activation function such as softmax,
which is used to enhance the performance of the model,
classifies the output digit from 0 through 9 which has the
highest activation value.

The MNIST handwritten digits [24] database is used for
the experiment. Out of 70,000 scanned images of
handwritten digits from the MNIST database, 60,000
scanned images of digits are used for training the network
and 10,000 scanned images of digits are used to test the
network. The images that are used for training and testing
the network all are the grayscale image with a size of 28x28
pixels. Character x is used to represent a training input
where x is a 784-dimensional vector as the input of x is
regarded as 28x28 pixels. The equivalent desired output is
expressed by y(x), where y is a 10-dimensional vector. The
network aims is to find the convenient weights and biases so
that the output of the network approximates y(x) for all
training inputs x as it completely depends on weight values
and bias values. To compute the network performances, a
cost function is defined, expressed by equation 1 [25].

cwb) = Y[ yw-a ] ®

Where w is the cumulation of weights in the network, b is all
the biases, n is the total number of training inputs and a is
the actual output. The actual output a depends on x, w, and
b. C(w,b) is non-negative as all the terms in the sum is non-
negative. Moreover, C(w,b)=0, precisely when desired
output y(x) is comparatively equal to the actual output, a, for
all training inputs, n. To reduce the cost C(w,b) to a smaller
degree as a function of weight and biases, the training
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algorithm has to find a set of weight and biases which cause
the cost to become as small as possible. This is done using
an algorithm known as gradient descent. In other words,
gradient descent is an optimization algorithm that twists its
parameters iteratively to minimize a cost function to its local
minimum. The gradient descent algorithm deploys the
following equations [25] to set the weight and biases.

Wnew — Wold _ 77 aWOld (2)
new 0 oC
b = b~y o 3)

And to attain the global minimum of the cost C(w,b) shown
in figure 2.
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Fig. 2. Graphical Representation of Cost vs. Weight

However, the gradient descent algorithm may be
unusable when the training data size is very large. Therefore,
to enhance the performance of the network, a stochastic
version of the algorithm is used. In Stochastic Gradient
Descent (SDG) a small number of iteration will find
effective solutions for the optimization problems. Moreover,
in SDG, a small number of iteration will lead to a suitable
solution. The Stochastic Gradient Descent algorithm utilizes
the following equations [25]:

oC,.
Wnew — Wold _% aWOTJd (4)
oC,;
new 0 n X
b™" = b —E—awol’d (5)
The output of the network can be expressed by:
a=f(z)=f(wa+b) (6)

To find the amount of weight that contributes to the total
error of the network Backpropagation method is used. The
backpropagation of the network is illustrated by the
following equations [25]:
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IV. MNIST DATASET

Modified National Institute of Standards and Technology
(MNIST) is a large set of computer vision dataset which is
extensively used for training and testing different systems. It
was created from the two special datasets of National
Institute of Standards and Technology (NIST) which holds
binary images of handwritten digits. The training set
contains handwritten digits from 250 people, among them
50% training dataset was employees from the Census
Bureau and the rest of it was from high school students [26].
However, it is often attributed as the first datasets among
other datasets to prove the effectiveness of the neural
networks.
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Fig. 3. Sample images of MNIST handwritten digit dataset

The database contains 60,000 images used for training as
well as few of them can be used for cross-validation
purposes and 10,000 images used for testing [27]. All the
digits are grayscale and positioned in a fixed size where the
intensity lies at the center of the image with 28x28 pixels.
Since all the images are 28x28 pixels, it forms an array
which can be flattened into 28*28=784 dimensional vector.
Each component of the vector is a binary value which
describes the intensity of the pixel.

V. RESULTS AND DISCUSSION

A. Discussion of the Obtained Simulated Results

In this section, CNN has been applied on the MNIST
dataset in order to observe the variation of accuracies for
handwritten digits. The accuracies are obtained using
Tensorflow in python. Training and validation accuracy for
15 different epochs were observed exchanging the hidden
layers for various combinations of convolution and hidden
layers by taking the batch size 100 for all the cases. Figure 4,
5, 6, 7, 8, and 9 shows the performance of CNN for different
combinations of convolution and hidden layers.

Table 1 shows the minimum and maximum training and
validation accuracies of CNN found after the simulation for
the six different cases by varying number of hidden layers for
the recognition of handwritten digits.
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TABLE I. PERFORMANCE OF CNN FOR THE SIX DIFFERENT CASES FOR VARIOUS HIDDEN LAYERS AND EPOCHS
Case | Number of Batch Size Minimum Minimum Maximum Maximum Overall
Hidden Training Validation Training Validation Performance
Layers Accuracy Accuracy Accuracy Accuracy Validation
Epoch | Accuracy | Epoch | Accuracy | Epoch | Accuracy | Epoch | Accuracy | Accuracy
(%) (%) (%) (%) (%)
1 3 100 1 91.94 1 97.73 13 98.99 14 99.16 99.11
2 4 100 1 90.11 1 97.74 14 98.94 14 99.24 99.21
3 3 100 1 94.35 3 98.33 15 100 15 99.06 99.06
4 4 100 1 92.94 1 97.79 15 99.92 13 99.92 99.20
5 3 100 1 91.80 1 98.16 13 99.09 12 99.12 99.09
6 4 100 1 90.50 1 97.13 15 99.24 13 99.26 99.07

In the first case shown in figure 4, the first hidden layer
is the convolutional layer 1 which is used for the feature
extraction. It consists of 32 filters with the kernel size of 3x3
pixels and the rectified linear units (ReLU) is used as an
activation function to enhance the performance. The next
hidden layer is the convolutional layer 2 consists of 64 filters
with a kernel size of 3x3 pixels and ReLU. Next, a pooling
layer 1 is defined where max pooling is used with a pool size
of 2x2 pixels to minimize the spatial size of the output of a
convolution layer. A regularization layer dropout is used
next to the pooling layer 1 where it randomly eliminates
25% of the neurons in the layer to reduce overfitting. A
flatten layer is used after the dropout which converts the 2D
filter matrix into 1D feature vector before entering into the
fully connected layers. The next hidden layer used after the
flatten layer is the fully connected layer 1 consists of 128
neurons and ReLU. A dropout with a probability of 50% is
used after the fully connected layer 1. Finally, the output
layer which is used here as fully connected layer 2 contains
10 neurons for 10 classes and determines the digits
numbered from 0 to 9.

A softmax activation function is incorporated with the
output layer to output digit from 0 through 9. The CNN is fit
over 15 epochs with a batch size of 100. The overall
validation accuracy in the performance is found at 99.11%.
At epoch 1 the minimum training accuracy of 91.94% is
found and 97.73% of validation accuracy is found. At epoch
13, the maximum training accuracy is found 98.99% and at
epoch 14, the maximum validation accuracy is found
99.16%. The total test loss for this case is found
approximately 0.037045.
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Fig. 4. Observed accuracy for case 1

Figure 5 is defined for case 2, where convolution 1,
pooling 1 and convolution 2, pooling 2 is used one after
another. A dropout is used followed by the flatten layer and
fully connected layer 1. Before the fully connected layer 2
another dropout is used. The dimensions and parameters
used here and for the next cases are same which are used
earlier for case 1. The overall validation accuracy in the
performance is found 99.21%. At epoch 1 the minimum
training and validation accuracy are found. The minimum
training accuracy is 90.11% and the minimum validation
accuracy is 97.74%. The maximum training and validation
accuracy are found at epoch 14. The maximum training and
validation accuracies are 98.94% and 99.24%. The total test
loss is found approximately 0.026303.

For case 3, shown in figure 6, where two convolutions
are taken one after another followed by a pooling layer.
After the pooling layer, a flatten layer is used followed by
the two fully connected layers without any dropout. The
overall validation accuracy in the performance is found
99.06%. The minimum training accuracy is found 94.35% at
epoch 1 and epoch 3, the minimum validation accuracy is
found 98.33%. The maximum training and validation
accuracies are 1% and 99.06% found at epoch 15. The total
test loss is found approximately 0.049449.

Similarly, in case 4 shown in figure 7, convolution 1,
pooling 1 and convolution 2, pooling 2 are used alternately
followed by a flatten layer and two fully connected layers
without any dropout. The overall validation accuracy in the
performance is found 99.20%. At epoch 1 the minimum
training and validation accuracy are found.
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Fig. 5. Observed accuracy for case 2
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The minimum training accuracy is 92.94% and the minimum
validation accuracy is 97.79%. The maximum training
accuracy is found 99.92% at epoch 15 and epoch 13, the
maximum validation accuracy also found 99.92%. The total
test loss is found approximately 0.032287.
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Fig. 6. Observed accuracy for case 3
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Again, for case 5 shown in figure 8, two convolutions
are used one after another followed by a pooling layer,
flatten layer and fully connected layer 1. A dropout is used
before the fully connected layer 2. The overall validation
accuracy in the performance is found 99.09%. The minimum
training and validation accuracy are found at epoch 1. The
minimum training accuracy is 91.80% and the minimum
validation accuracy is 98.16%. At epoch 13, the maximum
training accuracy is found 99.09% and the maximum
validation accuracy is found 99.12% at epoch 12. The total
test loss is found approximately 0.034337.
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Fig. 8. Observed accuracy for case 5

Finally, for case 6 shown in figure 9, convolution 1,
pooling 1 and convolution 2, pooling 2 are used alternately
followed by a flatten layer and fully connected layer 1. A
dropout is used before the fully connected layer 2. The
overall validation accuracy in the performance is found
99.07%. At epoch 1 the minimum training and validation

accuracy are found. The minimum training accuracy is
90.5% and the minimum validation accuracy is 97.13%. The
maximum training accuracy is found 99.24% at epoch 15
and the maximum validation accuracy is found 99.26% at
epoch 13. The total test loss is found approximately
0.028596.
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Fig. 9. Observed accuracy for case 6

B. Comparison with Existing Research Work

There are several methods of digit recognition. The
handwritten digit recognition can be improved using some
widely held methods of the neural network like Deep Neural
Network (DNN), Deep Belief Network (DBF) and
Convolutional Neural Network (CNN), etc.

Tavanaei et al. proposed multi-layered unsupervised
learning in a spiking CNN model where they used MNIST
dataset to clear the blur images and found the overall
accuracy of 98% and the range of performance loss was
0.1% to 8.5% [20]. Rezoana et al. [28] proposed a seven-
layered Convolutional Neural Network for the purpose of
handwritten digit recognition where they used MNIST
dataset to evaluate the impact of the pattern of the hidden
layers of CNN over the performance of the overall network.
They have plotted the loss curves against the number of
epochs and found that the performance loss was below 0.1
for most of the cases and sometimes, in some cases, the loss
was less than 0.05. In another paper, Siddique et al. [29]
proposed an L-layered feed-forward neural network for the
handwritten digit recognition where they have applied neural
network with different layers on the MNIST dataset to
observe the variation of accuracies of ANN for different
combinations of hidden layers and epochs. Their maximum
accuracy in the performance was found 97.32% for 4 hidden
layers at 50 epochs.

Comparing with their above performances based on
MNIST dataset for the purpose of digit recognition we have
achieved better performance for the CNN. In our
experiment, we have found the maximum training accuracy
100% and maximum validation accuracy 99.92% both at
epoch 15. The overall performance of the network is found
99.21%. Moreover, the overall loss ranged from 0.026303 to
0.049449. Hence, this proposed method of CNN is more
efficient than the other existing method for digit recognition.

VI. CONCLUSION

In this paper, the variations of accuracies for handwritten
digit were observed for 15 epochs by varying the hidden
layers. The accuracy curves were generated for the six cases
for the different parameter using CNN MNIST digit dataset.
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The six cases perform differently because of the various
combinations of hidden layers. The layers were taken
randomly in a periodic sequence so that each case behaves
differently during the experiment. The maximum and
minimum accuracies were observed for different hidden
layers variation with a batch size of 100. Among all the
observation, the maximum accuracy in the performance was
found 99.21% for 15 epochs in case 2 (Convl, pooll, Conv2,
pool2 with 2 dropouts). In digit recognition, this type of
higher accuracy will cooperate to speed up the performance
of the machine more adequately. However, the minimum
accuracy among all observation in the performance was
found 97.07% in case 6 (Convl, pooll, Conv2, pool2 with 1
dropout). Moreover, among all the cases, the total highest test
loss is approximately 0.049449 found in case 3 without
dropout and the total lowest test loss is approximately
0.026303 found in case 2 with dropout. This low loss will
provide CNN better performance to attain better image
resolution and noise processing. In the future, we plan to
observe the variation in the overall classification accuracy by
varying the number of hidden layers and batch size.
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