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Abstract: Appropriate estimation of soil settlement is of significant importance since it directly
influences the performance of building and infrastructures that are built on soil. In particular, the
settlement of fine-grained soils is critical because of low permeability and continuous settlement
with time. Coefficient of consolidation (C:) is a key parameter to estimate settlement of fine-grained
soil layers. However, estimation of this parameter is time consuming, needs skilled technicians, and
specific equipment. In this study, C. was estimated using several soil parameters such as liquid limit
(LL), plastic limit (PL), and initial void ratio (eo). Estimating such parameters in laboratory is straight
forward and needs substantially less time and cost compared to conventional tests to estimate Cc
such as Oedometer test. This study presents a novel prediction model for C. of fine-grained soils
using gene-expression programming (GEP). GEP is a biologically inspired technique capable of
offering closed-form solution for the optimal solution. A database consisted of 108 different data
points was used to develop the model. A closed-form equation solution was derived to estimate C.
based on LL, PL, and eo. The performance of developed GEP-based model was evaluated through
coefficient of determination (R?), root mean squared error (RMSE), and mean average error (MAE).
High R? and low error values indicated the descent performance of the model. Furthermore, the
model was evaluated using the additional performance measures and met all the suggested criteria.
Furthermore, the model had a better performance in terms of R?, RMSE, and MAE compared to most
of existing models. It is expected that the developed model will decrease the time and cost associate
with determining C: of fine-grained soils.

Keywords: evolutionary model, gene-expression programming (GEP), prediction, soil
compression index, estimation, soil engineering, soil informatics, civil engineering, machine
learning, data science, big data, soft computing, deep learning, forecasting, subject classification
codes, construction informatics, computational intelligence (ClI), artificial intelligence (Al),
estimation

1. Introduction

Soil compressibility is considered as a volume reduction under load of pore water drainage.
Precise estimation of this property is critical for calculating settlement of soil layers [1]. This problem
has become more critical for fine-grained soils due to their low permeability, resulting in compression

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:amir.mosavi@kvk.uni-obuda.hu
mailto:amir.mosavi@kvk.uni-obuda.hu
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2019

index (Cc) to be the most accepted parameter to date to represent soil compressibility [2]. This
parameter is often utilized for measuring the individual soil layer settlement. Different empirical
equations have been particularly developed to predict Cc [3-9]. These equations were mainly
developed based on traditional statistical analyses. Nevertheless, they include a number of
drawbacks such as low correlation of input and output parameters [10]. Thus, it is essential to develop
a comprehensive model to analyze the complex behaviour of C.. This model should significantly
eliminate the shortcomings of the previous models like practicality and low correlation between
input and output parameters.

Soft computing techniques such as artificial neural networks (ANN) are widely accepted and
popular along the conventional statistical methods (e.g., regression) [11-21] . These techniques were
successfully applied to different geotechnical problems such as Cc prediction [7, 22-27]. However, a
major limitation of common soft computing techniques is that no closed-form prediction equation is
provided by them. With the introduction of artificial intelligence (AI) techniques and particularly
genetic program (GP), researchers in the field of soft computing attempted to solve this issue (i.e.,
obtaining closed-form solution). Al includes various techniques of ANN, neuro-fuzzy and support
vector machines (SVM) with a great record of successful applications in wide range of problems [28,
29]. Considering Al, a learning mechanism is often embedded the techniques to construct the
intelligent structure of the estimation model (i.e., solution of the problem). In this between, ANN is a
robust artificial tool which is widely used to predict Ce [7, 22-26]. Though ANN, FIS, and other Al
techniques have a good statistical performance in terms of correlation, these techniques are often
known as black-box models in soft computing terms, mainly due to lack of the capability to offer
close-form estimation formulas. This, however, is reported to be a drawback for Al techniques that
limits their practicality [10, 28]. It worth mentioning that the runtime for most of soft computing
techniques could be efficiently decreased by using parallel processing methods [30].

Genetic programming (GP) is based on individual computational programming and it is
classified as a major family of soft computing techniques. GP can empower and enable the complex
and highly nonlinear estimation modelling tasks [31]. While classical GP nominates only a single
program, the gene expression programming (GEP) includes several genes of programming for
reaching the optimal solutions [32]. Application of GEP is growing significantly compared to GP in
the engineering domain mainly due to the accuracy of its predictions [28, 29]. The current study
investigates the use of GEP to develop a prediction equation for C. of fine-grained soils existing in
northeast Iran. The objective of this study was developing a GEP-based prediction equation for C: of
fine-grained soil with simple tests such as Atterberg LL and PL. Since conventional consolidation tests
of fine-grained soil (e.g., oedometer test) are time consuming and costly, the application of such a
prediction equation will lead to substantial savings for C. estimation in terms of cost and time.

2. Gene Expression Programming (GEP)

There are several variants of GP based on optimization technique used by them. Gene expression
programming (GEP) is the latest variant of GP which is a powerful tool to approximate optimized
solution of a problem in a closed-form format. The conventional GP generates computer models
through mimicking the biological evolution of living organisms providing a tree-like form of
solution, which leads to closed-form solution for the optimization problem of interest [28, 29, 31-33].
The main objective of GP is obtaining programs that connect inputs to output for each data point
creating a population of programs. The population of programs like shape of branches of tree created
by GP include functions and terminals which are randomly generated. The final solution of the
problem is determined based on the tree-like programs.

Fundamentals of GEP was first developed by Ferreira in 2002 consisting a number of
components i.e. terminal set, function set, control parameters, fitness function, and termination
function [34]. GEP employs a fixed length of character strings to model the problem, unlike the
conventional GP. These characters will further turn into parse trees in various sizes and shapes
known as expression trees (ETs). The benefit of GEP over conventional GP is that genetic diversity is
represented as genetic operators of chromosome. GEP, in fact, evolves a number of genes (sub-
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programs)[34] which are individual tree-like programs [10, 34]. Furthermore, GEP has a flexible multi
genetic nature suitable for the construction and evolution of complex networks of genes. In the GEP
framework, the genes in a chromosome may consist of two types of information stored in either tail
or head of genes i.e. information to generate the overall GEP model, and the information of terminals
for producing subsequent GEP models. Specific details about GEP can be found elsewhere [10, 31, 32,
34, 35].

Fig 1 presents a sample program illustration of evolving GEP. di, d2, and ds are the model inputs.
furthermore the process evolution functions are +, -, x, /, exponential function (exp()), natural
logarithm function (In()), and Inv. The presented model is linear with coefficients of co, c1, and c2 while
utilizing the nonlinear terms [31, 32]. For obtaining co, c1, and c2, a simple least square was applied to
the training data. A partial least squares method could also employ for this objective (18, 22). The
important GEP parameters that need to select carefully are the tree depth and the quantity of genes.
However minimizing the tree depth generally results in shorter closed-form equations with fewer
number of terms [29, 34].

(X2 )
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Fig 1. Sample GEP Model.
3. Modeling of C. for Fine-Grained Soils

3.1. Data Collection

A set of 108 individual consolidation test results obtained from laboratory tests were used to
develop the GEP-based prediction equation. As mentioned earlier, the objective of this study was to
predict C. using conventional parameters of fine-grained soils, namely PL, LL, and eo. 101 out of 108
data points were corresponding to test results conducted on soil samples collected from different
locations in Mashhad, Iran. Soil samples were classified as silty-clayey sand (SC-SM), gravelly lean
clay with sand (CL) and silty clay with sand (CL-ML) based on unified soil classification system.
These samples were cored from a depth of 0.5 m to 1.0 m. LL, PL, and e» were measured for these
samples in laboratory based on ASTM D4318-17 and ASTM D854-14 [36, 37]. Furthermore, Cc was
measured using oedometer test based on ASTM D2435-11 [38]. In addition, seven consolidation test
results conducted by Malih was integrated into the laboratory database to make it more robust [39].
The descriptive statistics of influential input parameters (i.e., LL, PL, and eo) and the output parameter
(Cc) based on the database utilized for our study is presented in Table 1. Furthermore, Figs 2-5
illustrates the distribution of these parameters using histograms.
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Table 1. Descriptive statistics for input and output parameters used in the GEP-based developed

model.
Parameter LL (%) PL (%) eo Ce
Mean 36.16 2261 0.75 0.17
Standard Deviation 12.79 564 0.12 0.05
Minimum 19.40 14.80 0.51 0.08
Maximum 72.00 44.00 1.03 0.025
Range 52.60 29.20 0.52 0.18
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Fig 5. Distribution of coefficient of consolidation (Cc).

3.2. Model Structure and Performance

Prediction equations for Cc developed by previous studies clearly indicated that LL, PL, and
e0 are three main parameters that influence Cc [3-9]. Thus, these parameters were considered in the
current study to develop a simplified prediction equation for Cc. The main motivation of developing
such equation was that determination of LL, PL and eo is straight forward compared to performing
any consolidation tests that directly determines Cc. Therefore, the developed model is anticipated to
result in considerable savings in terms of testing time, technician cost, and laboratory equipment. It
should be noted that LL, PL, and e0 are influenced by natural water content of partially saturated
soils, thus making the developed equation applicable to any saturated find-grained soils [28, 40, 41].
Mathematically, the developed equation had the following structure.

C.=f(LL,PL,g,) "

showing that Cc was considered to be a function of LL, PL, and e0. In order to develop the GEP-based
prediction equation for Cc, a database containing 108 data points was developed. Each data point
corresponded to LL, PL, and eo, as well as Cc for a particular fine-grained soil sample. The
GeneXproTools 5.0 was used to develop the GEP-based prediction equation in MATLAB [42]. The
performance of developed GEP models was evaluated using coefficient of determination (R2), root
mean squared error (RMSE), and mean average error (MAE) (21-23), applying the following

equations:
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In these equations, hi and ti are measured and predicted output (Cc) values, respectively, for the

i-th data point. Furthermore, h and b are average of the measured and predicted values,
respectively, and n is number of samples [28, 29]

3.3. Model Development

The database was divided into two subsets in order to avoid the over fitting issue: training
subset and validation subset. The GEP-based model was trained using the training subset while
validation subset was used for validating purposes and avoiding over fitting [34]. The final model
(prediction equation) was selected based on model simplicity and performance of training and
validation subsets. Performance criteria was based on highest R2 and lowest RMSE and MAE, for
training and validation subsets. After training, the candidate models were applied on un-seen
validation subset to ensure their good performance. The proportion of training and validation
subset size with respect to the whole data is commonly selected as 60%-75% and 25%-40%,
respectively. In the current study, 75% (81 data points) and 25% (27 data points) of total data points
were assigned to training subset and validation subset, respectively.

GEP algorithm was executed several times with a variety combination of influential
parameters in order to identify the best model. This process was based on values suggested by
previous works [31, 32, 34]. Table 2 includes the parameters of various runs. Reasonably large
numbers were considered for size of population and generations to guarantee that optimal models
are achieved. In the developed GEP-based model, individuals were identified and transferred into
further generation based on the fitness evaluation carried out with roulette wheel sampling
considering elitism. Such evaluation can guarantee successful cloning of best individual.
Furthermore, the variation in the population was carried out through genetic operators on the chosen
chromosomes including crossover, mutation, and rotation [10].

In every GEP-based model, values of setting parameters have significant impact on the model
performance. These parameters include the quantity of genes and chromosomes, in addition to gene’s
head size, and rate of genetic operators. Since minor information was available about GEP parameters

in the literature, appropriate settings were selected based on a trial and error scheme (see Table 2).

Table 2. Parameters used for implementation of GEP-based model.

Parameter Setting

Number of Chromosomes 50 to 1000

Number of Genes 3
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Head Size 8

Tail Size 17

Dc Size 17

Gene Size 42

Gene Recombination Rate 0.277

Gene Transportation Rate 0.277
Function Set +,-,%, [, exp, In, and Inv

Furthermore, to facilitate developing GEP-based model, the following closed-form equation

has been developed and utilized:

c

{e0+2LL
| Sttt

C.=¢+ x[—0.35+ LL2]+[Iog(2e0+2LL—2PL+O.15)]2
e, —6.87

®)

Figs 6-8 presents the measured values of Cc obtained from laboratory experiments versus
predicted values. Figs 6, 7, and 8 present measured values versus predicted values for training subset,
validation subset, and entire set, respectively. Furthermore, Table 3 summarizes GEP-based model
performance in terms of R2, RMSE, and MAE for these sets. Smith states that for a coefficient of
determination of R[> 0.8, a strong correlation exist between measured and predicted values [43].
Based on Table 3, the developed GEP-based model has a high R2 for training subset, validation
subset, and entire data set. In addition, the model exhibited a relatively low RMSE and MAE for all

these sets.
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Fig 6. Predicted versus measured Cc for training subset.
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Fig 8. Predicted versus measured Cc for entire data set (training + validation).

Table 3. Model performance.

Number of
Set R2 RMSE MAE
Data Points
Training Subset 81 0.8231 0.0269 0.0213
Validation Subset 27 0.8603 0.0237 0.0189

Entire Data Set 108 0.8320 0.0262 0.0207
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3.4. Additional evaluation of model performance

In this section, performance of the developed GEP-based model is evaluated based on various
statistical parameters found in the literature. These statistical parameters along with their acceptance
criteria is presented in Table 4. Parameters used in this table are all as previously defined.
Furthermore, the developed model was evaluated based on these statistical parameters and results
are presented in this tale. As can be seen in Table 4, the developed model met all the criteria for
additional statistical parameters revealing the descent performance of the developed model.

Table 4. Evaluating the developed GEP-Based model using additional statistical parameters.

Evaluation
.. L. for
Statistical Parameter Source Criteria GEP-based
Model
n
= 2 (hxt) Golbraikh 085 <k< oo
- h2 and Tropsha [44] 1.15 '
1
n
Ko Zi:l(hi Xti) Roy and Roy 0.85 < k' < 0,989
a t2 [45] 1.15 '

R d R
R =R?x @— JR? —Ro? ) oy and =oy 0.5 < R 0.503

[45]

- Roy and Roy Should be
6 -t) [45] close to 1.0. 1.000
n o ¥
RoZ=1 zi=1(ti -t ) Roy and Roy Should be
O =l-=-"7"—= 0.998
(h- —h ) [45] close to 1.0.
j=t \ 1 1

Table 5 presents the comparison of the developed GEP-based model with previous models found in
the literature. The previous model consisted of either regression-based equations or robust Al
methods such as multi-expression programming (MEP), artificial neural network (ANN), and multi-
gene genetic programming (MGGP). It worth mentioning that these AI methods do not provide any
closed-form solution. Al methods had relatively high R? mainly due to their black-box nature of
connecting inputs and outputs. Nevertheless, the developed GEP-based model had a higher R?
compared to existing Al methods. However, MEP, ANN, and MGGP had a lower error in terms of
RMSE and MAE.

Based on Table 5, the developed GEP-based model outperforms regression models since regression
models considers only a small quantity of base functions. Therefore, such models cannot be used to
complex interactions of soil parameters (i.e., LL, PL, and eo) and C.. However, the developed GEP-
based model considers a variety of base functions and their combination in order to achieve a closed-
form equation with high performance. The developed GEP-based model directly considers the
experimental data with no prior assumptions. In other words, contrary to traditional regression
models, GEP does not assume any pre-defined shape for the solution equation. High values of R2
presented in Table 5 indicates that the developed GEP-based model was very successful in fitting the
measured C. to the input parameters of LL, PL, and eo.
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Table 5. Performance comparison of current developed GEP-based model with existing models.

Performance Measure

Source Model Description

R? RMSE MAE
Skempton [8] Regression Equation 0.367 0.072 0.056
Nishida [6] Regression Equation 0.752 0.301 0.285
Cozzolino [4] Regression Equation 0.752 0.105 0.103
Terzaghi and Peck [9] Regression Equation 0.367 0.110 0.077
Azzouz et al. [3] Regression Equation 0.752 0.036 0.032
Mayhe [5] Regression Equation 0.367 0.102 0.073
Park and Lee [7] ANN 0.752 0.089 0.085
Mohammadzade et al. [28] MEP 0.811 0.019 0.016
Mohammadzade et al. [29] ANN 0.859 0.017 0.014
Current Study GEP 0.832 0.026 0.021

5. Conclusions

Coefficient of consolidation (C.) is a significant parameter for determining settlement of fine-
grained soil layers subjected to loads such as that of buildings, vehicles, and infrastructures. If Ccis
not estimated accurately, soil settlement is under- or over-estimated, which both cases are not
desirable from technical prospective. Thus, determining C:. is of significance importance in settlement
calculations. However, measuring Cc using the traditional oedometer test method is time-consuming,
needs skilled technicians, and requires special laboratory equipment. Therefore, estimation of C.
using other parameters of fine-grained soils such as LL, PL, and eo would eliminate the time and
costliness associated with oedometer test. In this study, gene-expression programming (GEP) was
employed to develop a model for estimating Cc using LL, PL, and eo. 108 data points containing C,
LL, PL, and eo were used to train and validate the model. The model was developed based on tuned
calibration parameters using trial and error. A closed-form solution was derived from the developed
GEP-based model which is anticipated to aid geotechnical researchers in determining C. with
considerable saving in associated time and costs. This closed-form equation for predicting C. was
employed to develop surface charts to predict Cc based on LL and PL for a certain eo.

The performance of developed GEP-based model was evaluated using coefficient of
determination (R?) and two error measures, namely root mean square error (RMSE) and mean
average error (MAE). R? values were 0.8231, 0.8603, and 0.8320 for training subset, validation subset,
and entire data set, respectively. In addition, RMSE was 0.0269, 0.0237, and 0.0262 for training subset,
validation subset, and entire data set, respectively. High R? and low error indicates the highly
acceptable performance of the GEP-based model. Additional performance measures found in the
literature were employed to further evaluate the performance of developed GEP-based model. This
evaluation revealed that the model has a descent performance based on additional performance
measures.

Contrary to the classical models for estimating C. such as regression models, the developed GEP-
based model reveals a highly nonlinear behavior and includes complex combination of influential
input parameters (i.e., LL, PL, and e,). In general, C. was positively correlated with eo. Furthermore,
LL and eo had a higher influence on estimation of Cc compared to PL. Comparison of the developed
model with previous models in the literature revealed its good performance, which guarantees the
use of GEP-based model in practical applications.
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