Preprint
Article

Comparative Analysis of Land Cover Classification Using ML and SVM Classifier for LISS-iv Data

Altmetrics

Downloads

964

Views

521

Comments

0

This version is not peer-reviewed

Submitted:

08 March 2019

Posted:

11 March 2019

You are already at the latest version

Alerts
Abstract
This paper focuses on the crucial role that remote sensing plays in divining land features. Data that is collected distantly provides information in spectral, spatial, temporal and radiometric domains, with each domain having the specific resolution to information collected. Diverse sectors such as hydrology, geology, agriculture, land cover mapping, forestry, urban development and planning, oceanography and others are known to use and rely on information that is gathered remotely from different sensors. In the present study, IRS LISS IV Multi-spectral data is used for land cover mapping. It is known, however, that the task of classifying high-resolution imagery of land cover through manual digitizing consumes time and is way too costly. Therefore, this paper proposes accomplishing classifications by way of enforcing algorithms in computers. These classifications fall in three classes: supervised, unsupervised, and object-based classification. In the case of supervised classification, two approaches are relied upon for land cover classification of high-resolution LISS-IV multispectral image. These approaches are Maximum Likelihood and Support Vector Machine (SVM). Finally, the paper proposes a step-by-step procedure for optical image classification methodology. This paper concludes that in optical data classification, SVM classification gives a better result than the ML classification technique.
Keywords: 
Subject: Environmental and Earth Sciences  -   Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated