Preprint
Article

A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards

Altmetrics

Downloads

293

Views

461

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 March 2019

Posted:

14 March 2019

You are already at the latest version

Alerts
Abstract
Stretching along the border of North Dakota and Minnesota, The Red River Valley (RRV) of the North has the highest frequency of reported blizzards within the contiguous United States. Despite the numerous impacts these events have, few systematic studies exist discussing the meteorological properties of blizzards. As a result, forecasting these events and lesser blowing snow events is an ongoing forecast challenge. This study presents a climatology of atmospheric patterns associated with RRV blizzards for the winter seasons of 1979-1980 to 2017-2018. Patterns were identified using subjective and objective techniques using meteorological fields from the North American Regional Reanalysis (NARR). The RRV experiences on average, 2.6 events per year. Blizzard frequency is bimodal with peaks occurring in December and March. The events can largely be typed into four meteorological categories dependent on the forcing that drives the blizzard: Alberta Clippers, Arctic Fronts, Colorado Lows, and Hybrids. Objective classification of these blizzards using a competitive neural network known as the Self-Organizing Map (SOM) demonstrates that gross segregation of the events can be achieved with a small (8-class) map. This implies that objective analysis techniques can be used to identify these events in weather and climate model output that may aid future forecasting and risk assessment projects.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated