During the exploration of the surrounding environment, the brain links together external inputs, giving rise to perception of a persisting object. During imaginative processes, the same object can be recalled in mind even if it is out of sight. Here, topological theory of shape provides a mathematical foundation for the notion of persistence perception. In particular, we focus on ecological theories of perception, that account for our knowledge of world objects by borrowing a concept of invariance in topology. We show how a series of transformations can be gradually applied to a pattern, in particular to the shape of an object, without affecting its invariant properties, such as boundedness of parts of a visual scene. High-level representations of objects in our environment are mapped to simplified views (our interpretations) of the objects, in order to construct a symbolic representation of the environment. The representations can be projected continuously to an environmental object that we have seen and continue to see, thanks to the mapping from shapes in our memory to shapes in Euclidean space.
Keywords:
Subject: Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.