Preprint
Article

Convergence in Quantum Field Theory without Use of Renormalization

Altmetrics

Downloads

428

Views

349

Comments

0

This version is not peer-reviewed

Submitted:

25 March 2019

Posted:

26 March 2019

You are already at the latest version

Alerts
Abstract
In quantum field theory (QFT), it is well known that when Feynman diagrams containing loops are evaluated to account for self interactions, probability amplitude comes out to be infinite which is physically not admissible. So, to make the QFT convergent, various renormalization methods are conventionally followed in which an additional (infinite) counter term is postulated which neutralizes the original infinity generated by diagram. The resulting finite values of amplitudes have agreed with experiments with surprising accuracy. However, proponents of renormalization methods acknowledged that this ad-hoc procedure of subtraction of infinity from infinity to reach at a finite value is not at all satisfactory and there is no physical basis for bringing in the counter term. So, it is desirable to establish a method in QFT which does not generate any infinite term (thus not requiring renormalization), but which predicts same results as conventional methods do. In this paper, we describe such a technique taking self interaction quantum electrodynamics diagram representing electron or photon self energy. In our method, no problem of infinity arises and hence renormalization is not necessary. Still, the dependence of calculated probability amplitude on physical variables in our technique comes out to be same as conventional methods. Using similar procedure, we hope, the problem of non-renormalizability of quantum gravity may be solved in future.
Keywords: 
Subject: Physical Sciences  -   Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated