Preprint
Article

Machine Learning Approaches for Designing Meso-scale Structure of Li-ion battery Electrode

Altmetrics

Downloads

519

Views

685

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

31 March 2019

Posted:

01 April 2019

You are already at the latest version

Alerts
Abstract
We have proposed a data-driven approach for designing mesoscale porous structures of Li-ion battery electrode with three-dimensional virtual structures and machine learning techniques. Over 2,000 artificial 3D structures assuming positive electrode composed of random packed spheres as active material particles are generated, and charge/discharge resistance has been evaluated using simplified Physico-chemical model. In this model, resistance from Li diffusion in active material particles (diffusion resistance), transfer resistance of Li+ in electrolyte (electrolyte resistance) and reaction resistance on the interface between active material and electrolyte are simulated based on mass balance of Li, Ohm’s law in and linearized Butler-Volmer equation, respectively. Using these simulation results, regression models via Artificial Neural Network (ANN) have been created in order to predict charge/discharge resistance from porous structure features. In this study, porosity, active material particle size and volume fraction, pressure in the compaction process, electrolyte conductivity, and binder volume fraction are adopted as features, associated with controllable process parameters for manufacturing battery electrode. As results, the predicted electrode resistance by ANN regression model is good agreement with the simulated values. Furthermore, sensitivity analysis and optimization of the process parameters have been carried out. The proposed data-driven approach could be a solution as a guiding principle for manufacturing battery electrode.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated