Preprint
Article

Streamline's Shape Theory

This version is not peer-reviewed.

Submitted:

10 May 2019

Posted:

14 May 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
This article attempts to formulate a mathematical model for a potential explanation regarding the unavoidable impact of a rigid body's peculiar shape on the seamless flow over it. The solid body completely immersed in a Newtonian fluid and respectively has a relative open circuit flow on it will typically experience various observable phenomena like flow separation, flow transition, down-wash, stalling at the higher angle of attack, stalling velocity and how cambered airfoil can typically generate lift at a zero incidence angle. This article respectively represents an understanding of the laminar flow over a rigid body's external surface with due respect to its distinctive shape and size. This working paper formulates a more realistic and simplified mathematical model for open circuit laminar flow over a body, based on the historical data of aerodynamics and theoretical mechanics. This is intended to properly estimate forces on the continuous surface of the body in a laminar flow, to properly explain, understand and predict mentioned phenomena. Most of all the mechanism of streamline formation and its deformation with due regards to flow, shape and size of the body in an open-circuit laminar are formulated mathematically to enhance better design theory which can reduce experimentation while designing a streamlined body.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

2235

Views

1285

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated