

Crystal Period Vectors under External Stress in Statistical Physics (Version 4)

Gang Liu*

ORCID:0000-0003-1575-9290

<http://www.linkedin.com/in/liuganglinkedin>

(Dated: February 20, 2020)

In crystal periodic structure prediction, a basic and general equation is needed to determine their period vectors (cell edge vectors), especially under arbitrary external stress. It was derived in Newtonian dynamics years ago, which can be combined with quantum physics by further modeling. Here a new and concise approach based on the principles of statistical physics was employed to derive it into a new form, then applicable to both classical physics and quantum physics by its own. The new form also turned out to be the specific explicit equilibrium condition and the equation of state for crystals under external stress and temperature. Contrary to a general belief, the new form also concluded that harmonic oscillators can cause crystal thermal expansion.

I. INTRODUCTION

For predicting crystal structures, especially before being synthesized, the equations are needed to determine their discrete particle positions and their period vectors (cell edge vectors $\mathbf{h} = \mathbf{a}$, or \mathbf{b} , or \mathbf{c} , forming a right-handed system). Since the particles (atoms, ions, electrons) inside crystals always obey Newton's second law or the Schrodinger equation, the only unknown is the equation for the period vectors, especially when crystals are under general external stress. It has been derived in the framework of Newtonian dynamics in recent years[1, 2], which can be combined with quantum physics by further modeling. Here we will employ a new and concise approach based on the principles of statistical physics to derive it into a new form, then applicable to both classical physics and quantum physics by itself.

II. EXISTING THEORY FOR EXTERNAL PRESSURE

As a matter of fact, in statistical physics, the theory for the same purpose but for crystals under external pressure P , a special case of stress, has been established firmly for long time[3]. Now let us recall it briefly.

A. The theory

From microscopic point of view, crystals are made of unlimited periodic arrangements of the same cells in the three-dimensional space. They can be studied by focusing on a "center" cell interacting with the rest cells. Then the external pressure, actually acting only on the surfaces of the macroscopic crystal bulk, can be equivalently described as the action on the surfaces of the crystal cell

being focused on. The work done by the pressure on the cell is normally written as

$$dW = -PdV, \quad (1)$$

where the cell volume $V = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$. Actually this specific work expression can be better explained based on the idea that the cell is equivalently regarded as being filled with continuous medium. As the cell volume V is the conjugate variable of the pressure P , as shown in Eq.(1), based on the principles of statistical physics[6], the pressure can be derived as in equation (2.96) of the statistical reference book[3]:

$$P = \frac{1}{\beta} \frac{\partial \ln Z}{\partial V}, \quad (2)$$

where $\beta = 1/(kT)$, and Z , k , and T are the partition function, Boltzmann constant, and temperature respectively. This is essentially the equation of state of crystals under external pressure in equilibrium. In other words, the crystal cell volume can be calculated based on this equation for the given external pressure and temperature. However, it is not for the period vectors explicitly.

B. Expansion with respect to the period vectors

Now let us change these equations slightly. As $dV = \sigma_a \cdot d\mathbf{a} + \sigma_b \cdot d\mathbf{b} + \sigma_c \cdot d\mathbf{c}$, where $\sigma_h = \partial V / \partial \mathbf{h}$ is the surface area vector of the cell with respect to \mathbf{h} , e.g. $\sigma_a = \mathbf{b} \times \mathbf{c}$, the above work can also be written as

$$dW = -(P\sigma_a) \cdot d\mathbf{a} - (P\sigma_b) \cdot d\mathbf{b} - (P\sigma_c) \cdot d\mathbf{c}, \quad (3)$$

where $d\mathbf{h}$ ($= d\mathbf{a}$, or $d\mathbf{b}$, or $d\mathbf{c}$) is now the conjugate variable of the force $-P\sigma_h$ acting on the cell surface σ_h . Then based on the principles of statistical physics, we have

$$P\sigma_h = \frac{1}{\beta} \frac{\partial \ln Z}{\partial \mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}), \quad (4)$$

*Electronic address: g1.cell@outlook.com

which is in the form of determining the period vectors specifically. Combining Eq.(2) and Eq.(4) leads to

$$PV = \frac{V}{\beta} \frac{\partial \ln Z}{\partial V} = \frac{\mathbf{a}}{\beta} \cdot \frac{\partial \ln Z}{\partial \mathbf{a}} = \frac{\mathbf{b}}{\beta} \cdot \frac{\partial \ln Z}{\partial \mathbf{b}} = \frac{\mathbf{c}}{\beta} \cdot \frac{\partial \ln Z}{\partial \mathbf{c}}.$$

This means that the cell shape must be assumed to keep certain symmetries for external pressure in actual calculation. Under such circumstances, Eq.(4) for any specific period vector, e.g. $\mathbf{h} = \mathbf{a}$, should be equivalent to Eq.(2) and about one-third calculation work of Eq.(2).

III. EQUATION DERIVATION FOR EXTERNAL STRESS

Now let us consider crystals under arbitrary external stress Υ , a second-rank tensor (3×3 matrix), to which neither Eq.(2) nor Eq.(4) can apply. As said above, considering the focused crystal cell can be equivalently regarded as being made of continuous medium, the cell is now an actual object with matter in it everywhere, not simply a region of three-dimensional space. Then the force, described by the external stress, acting on the surface σ_h of the cell, is a real force and expressed as $\Upsilon \cdot \sigma_h$. Further considering that the displacement of the cell surface is $d\mathbf{h}$, the work done by the external stress on the crystal cell is

$$dW = (\Upsilon \cdot \sigma_a) \cdot d\mathbf{a} + (\Upsilon \cdot \sigma_b) \cdot d\mathbf{b} + (\Upsilon \cdot \sigma_c) \cdot d\mathbf{c}. \quad (5)$$

This equation becomes Eq.(1) when the stress reduces to the pressure $\Upsilon = -P\mathbf{I}$ with \mathbf{I} being an identity tensor. Since, as shown in Eq.(5), $d\mathbf{h}$ is the conjugate variable of the force $\Upsilon \cdot \sigma_h$ acting on the cell surface σ_h , based on the principles of statistical physics again, we arrived at

$$\Upsilon \cdot \sigma_h = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial \mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (6)$$

It has the same form on the right side as that in Eq.(4). However, it is for crystals under external stress.

Supposing all particle interactions inside the crystal and the external stress and temperature are known, then the only unknown period vectors can be calculated by solving Eq.(6). During such procedure, different from the above external pressure case, as the period vectors are independent variables with each other, there should be no additional restrictions on the cell shape symmetry. Then Eq.(6) is the equation of state for crystals under external stress and temperature, in the form of the period vectors. For the special (pressure) case $\Upsilon = -P\mathbf{I}$, Eq.(6) reduces to Eq.(4), then reduces to Eq.(2), as it should.

IV. DISCUSSION

A. Equation of state and thermal expansion by harmonic oscillation

As the equation of state of crystals, Eq.(6) is actually the equation about the period vectors, all the particle position vectors in the cell, the external stress, and the temperature variables. As actually expressed by the period vectors, all kinds of crystal expansions caused by the change of the external stress or the temperature or both of them can be calculated, at least by solving Eq.(6) numerically for all related external conditions.

One example is that for fixed temperature, supposing the external stress is changed, one can do partial derivatives of Eq.(6) on both sides with respect to the changed components of the external stress respectively, then gets the isothermal expansion by the external stress.

Another example is that for fixed external stress, supposing the temperature is changed, one can do derivative of Eq.(6) with respect to the temperature, then gets the “isobaric” thermal expansion.

Phonons are often considered for crystal heating processes, where the harmonic oscillating frequency ω (maybe many with different values), a function of the period vectors and all particle position vectors in the cell, is employed. Then the partition function Z is a function of the frequency ω and temperature. If we take the partial derivative of Eq.(6) with respect to the temperature, we have

$$\frac{\partial}{\partial T} (\Upsilon \cdot \sigma_h) = -\frac{\partial}{\partial T} \left(kT \frac{\partial \ln Z(\omega, T)}{\partial \mathbf{h}} \right) \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (7)$$

As there is no reason to expect that the right side of Eq.(7), a regular mathematical expression, is zero, let us assume it is not zero. Then the left side of Eq.(7) should be $\Upsilon \cdot (\partial \sigma_h / \partial T) \neq 0$, as Υ being fixed. Further assuming that some components of the external stress Υ are non-zero, and considering that every σ_h is the cross product of two corresponding period vectors in order, not all components of the derivatives of the period vectors with respect to the temperature is zero:

$$\left| \frac{\partial \mathbf{a}}{\partial T} \right|^2 + \left| \frac{\partial \mathbf{b}}{\partial T} \right|^2 + \left| \frac{\partial \mathbf{c}}{\partial T} \right|^2 > 0. \quad (8)$$

This means that contrary to a general belief (see below), harmonic oscillators can cause crystal thermal expansion.

As a matter of fact, it is widely believed that harmonic interaction can not cause crystal thermal expansion, due to its simplicity. However, pure thermal expansion can be observed in any crystals, where the actual interactions among particles are usually rather complicated. On the other hand, ideal gases, with no interactions among particles, also firmly demonstrate pure thermal expansion. This is stated in the Charles's law or Gay-Lussac's Law or Charles and Gay-Lussac's Law (named inconsistently in literature): “the volume of a given amount of (ideal)

gas held at constant pressure is directly proportional to the Kelvin temperature.” Since for both systems of non-interaction and complicated interactions among member particles, pure thermal expansion is true, there is no reason for systems of harmonic interactions to be an exception.

B. Internal stress and mechanical equilibrium condition

In 2010, Tuckerman expressed the crystal internal stress, also a second-rank tensor, as in Equation (5.6.9) of his statistical molecular simulation book[4]. This expression was applied in a solid silicon system as an actual calculation example with a success later[5]. In fact, it can also be written in the following way

$$\mathbf{P}^{(\text{int})} = \frac{1}{\beta V} \sum_{\mathbf{h}=\mathbf{a},\mathbf{b},\mathbf{c}} \frac{\partial \ln Z}{\partial \mathbf{h}} \otimes \mathbf{h}. \quad (9)$$

Let us do three right dot products on Eq. (9) with the cell surface area vectors ($\sigma_a, \sigma_b, \sigma_c$) separately and apply the relationship $\mathbf{h} \cdot \sigma_x = V\delta_{h,x}$, then

$$\mathbf{P}^{(\text{int})} \cdot \sigma_h = \frac{1}{\beta} \frac{\partial \ln Z}{\partial \mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (10)$$

Bringing Eq. (10) into Eq. (6), then

$$\Upsilon \cdot \sigma_h = -\mathbf{P}^{(\text{int})} \cdot \sigma_h \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}), \quad (11)$$

which is equivalent to

$$\Upsilon + \mathbf{P}^{(\text{int})} = 0, \quad (12)$$

as the three cell surface area vectors ($\sigma_a, \sigma_b, \sigma_c$) are not in the same plane.

Since Eq.(12) means the internal and the external stresses balance each other, Eq.(6) is actually the “mechanical” equilibrium condition of the crystal under external stress and temperature, with the aid of the internal stress expressed by Eq.(9). The temperature appears in the partition function. Actually, it also means that Eq.(6) and the internal stress expression verified each other.

C. Comparison with elasticity theory

Since elasticity theory is also about the action of external stress on crystals, it is better to compare it with this work.

First of all, elasticity theory studies crystals as continuous media essentially, then is not interested in crystal period vectors in principle. This work equivalently uses continuous media but only when formulates the work done by the external stress on the crystal cell, and tries to derive the equation for determining the period vectors

as the sole purpose. Whatever, let us suppose elasticity theory also studies microscopic structures of crystals in the following.

Second, elasticity theory normally employs a reference state under no external stress, in which the period vectors $\mathbf{h}_0 = \mathbf{a}_0, \mathbf{b}_0, \mathbf{c}_0$, and all the particle position vectors $\mathbf{r}_{i,0} (i = 1, \dots, N)$ in the center cell are supposed known, where N is the total number of particles in the cell. This work only tries to do something in the current state under any external stress, completely forgetting all other states. In other words, this work treats every state completely independently, with no information from any other state needed.

Third, elasticity theory, almost everywhere, uses the concept strain \mathbf{u} , also a second-rank tensor, to describe crystal deformation caused by the external stress. By definition, strain should mean an assumption that all the period vectors and particle position vectors of the current state under certain external stress are linearly related to the corresponding ones of the reference state in the same form:

$$\mathbf{h} = \mathbf{h}_0 + \mathbf{u} \cdot \mathbf{h}_0 \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}), \quad (13)$$

$$\mathbf{r}_i = \mathbf{r}_{i,0} + \mathbf{u} \cdot \mathbf{r}_{i,0} \quad (i = 1, \dots, N), \quad (14)$$

as this rule applies to any point, at least, within a local macroscopic region of the crystal. Since Eqs.(13 and 14) restrict the crystal structure to change only linearly, then can not describe crystal structural phase transitions caused by the change of the external stress and temperature.

However this work does not make such an assumption, but regards and uses all the period vectors ($\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}$) and the particle position vectors $\mathbf{r}_i (i = 1, \dots, N)$ as independent variables with each other, then can describe any new crystal structure being created by the change of the external stress and/or temperature. Typically, external stress may cause structural phase transitions in crystals. Again since it is also well-known about how to determine the particle position vectors by applying either Newton’s second law or the Schrodinger equation, this work only focuses on how to determine the period vectors.

Furthermore, elasticity theory employs extended Hooke’s law as a principle, in which some new coefficients were introduced and are usually determined by experiments. This work does not assume any analytical relationship between the crystal period vectors and the external stress. Actually, Eq.(6) is the relationship between them, but with no additional coefficients introduced, as the partial derivatives of the partition function with respect to the period vectors can be at least calculated numerically. In fact, Eq.(6) can be used to calculate the coefficients in Hooke’s law, when the law applies.

D. Classical physics

In classical statistics, as in equations (3.45-3.47) in the reference book[3], the partition function can be factorized

as

$$Z = Z_k Z_u, \quad (15)$$

where Z_k and Z_u are the contributions of the kinetic energy E_k and potential energy E_p respectively as

$$Z_k = \frac{V^N}{N!} \int \frac{1}{h^{3N}} e^{-\beta E_k(\mathbf{p})} d\mathbf{p}, \quad (16)$$

where h is Planck constant, and the integration is over all particles' momentum spaces, and

$$Z_u = \frac{1}{V^N} \int e^{-\beta E_p(\mathbf{q})} d\mathbf{q}, \quad (17)$$

where the integration is over all particles' coordinate spaces. Bringing Eqs.(15, 16, and 17) into Eq.(6), we get

$$\boldsymbol{\Upsilon} \cdot \boldsymbol{\sigma}_h = -\frac{1}{V} NkT\sigma_h - \frac{1}{\beta} \frac{\partial \ln Z_u}{\partial \mathbf{h}} \quad (\mathbf{h} = \mathbf{a}, \mathbf{b}, \mathbf{c}). \quad (18)$$

The last term $-\partial \ln Z_u / (\beta \partial \mathbf{h})$ in this equation is essentially the same as the middle term $\partial E / \partial \mathbf{h}$ of equation (16) in our previous work [2], if the same way of derivation as in the second half of page 135 of the reference book[3] is taken.

As a result, in classical physics, although the kinetic energy term may be interpreted differently in details, all the rest are verified between the equation achieved in statistical physics here and that previously derived based on the Newtonian dynamics[1, 2]. For "crystals" only containing ideal gas under external pressure, Eq.(18) becomes the ideal gas equation: $PV = NkT$.

V. SUMMARY

Eq.(6) was derived here for determining crystal period vectors, then predicting crystal structures, by formulating the work done by the external stress on the crystal explicitly and applying the statistical principles. While the previously derived one in the frame work of Newtonian dynamics can be combined with quantum mechanics by further modeling, Eq.(6) applies to both classical physics

and quantum physics by itself. Since the period vectors are only meaningful in equilibrium states, where the external and the internal temperatures should be the same, Eq.(6) is not only the equilibrium condition, but also the equation of state for crystals under external stress and external temperature, expressed on the basis of the period vectors. Eq.(6) also concluded that harmonic oscillators can cause crystal thermal expansion.

Acknowledgments

The author wishes to thank Prof./Dr. Jonas Nyman, School of Pharmacy, University of Wisconsin-Madison, Dennis M. Elking, Openeye Sci Software, Santa Fe, Jian-Dong Xu, Johnson & Johnson Vision, Milpitas, Yan-Bin Ji, Keck School of Medicine, University of Southern California, Los Angeles, USA, ShanQi Liu, Sun Yat Sen Univ, Sch Eah Sci & Engn, Guangzhou, YongBing Li, Univ Chinese Acad Sci, Key Lab Computat Geodynam, Beijing, DianHong Shen, XiuFeng Han, Institute of Physics, Beijing, CAS, ZhaoYan Wu, YuJie Yao, YaoYin Zhu, GuoMo Zeng, JianZhong Zhang, School of Physics, Jilin University, Changchun, DanShu Yao, Department of Chemistry, College of Science, Northeastern University, Shenyang, Jin Huang, Shenyang No. 242 Hospital, Yan Xiao, College of Physics and Electronics Engineering, Shanxi University, Taiyuan, YongChao Xing, Shenyang Machine Tool (Group) Co. LTD, XiaoDong Li, Institute of Metal Research, Shenyang, CAS, XueXi, Yi, Center for Quantum Sciences, Northeast Normal University, Changchun, China, Raza Tahir-Kheli, Department of Physics, Temple University, Philadelphia, USA, Gregory Falkovich, Pollak Professorial Chair in Physics, Weizmann Institute of Science, Israel, Yuri Kozitsky, Institute of Mathematics, Maria Curie-Sklodowska University in Lublin, Poland, Josef Honerkamp, Faculty of Mathematics and Physics, University of Freiburg, Germany, Sowmya Narayanan, Department of Physics, QingGuo Li, Department of Mechanical and Materials Engineering, Queen's University, Kingston, and ShiWei Huang, Engineering Technologies Department, John Abbott College, Montreal, Canada, for their helpful discussions, encouragements, and criticisms.

[1] G. Liu, *Can. J. Phys.* **93**, 974 (2015), <https://doi.org/10.1139/cjp-2014-0518> .

[2] G. Liu, Preprints 2019, 2019010038, <https://doi.org/10.20944/preprints201901.0038.v4> .

[3] M.L. Bellac, F. Mortessagne, G.G. Batrouni, *Equilibrium and Non-equilibrium Statistical Thermodynamics*. Cambridge University Press, Cambridge, 2004.

[4] M. E. Tuckerman, *Statistical Mechanics: Theory and*

Molecular Simulation. Oxford University Press, Oxford, 2010.

[5] Z. Ma, M. Tuckerman, *J. Chem. Phys.* **133**, 184110 (2010). <https://doi.org/10.1063/1.3499812> .

[6] If the work done on a system can be written as in the form of $dW = A_1 dB_1 + A_2 dB_2 + \dots + A_i dB_i + \dots$, for any pair of A_i and B_i variables, one has $A_i = -kT \partial \ln Z / \partial B_i$.