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In crystal periodic structure prediction, a basic and general equation is needed to determine
their period vectors (cell edge vectors), especially under arbitrary external stress. It was derived in
Newtonian dynamics years ago, which can be combined with quantum physics by further modeling.
Here a new and concise approach based on the principles of statistical physics was employed to
derive it into a new form, then applicable to both classical physics and quantum physics by its own.
The new form also turned out to be the specific explicit equilibrium condition and the equation of
state for crystals under external stress and temperature. Contrary to a general belief, the new form
also concluded that harmonic oscillators can cause crystal thermal expansion.

I. INTRODUCTION

For predicting crystal structures, especially before be-
ing synthesized, the equations are needed to determine
their discrete particle positions and their period vectors
(cell edge vectors h = a, or b, or c, forming a right-
handed system). Since the particles (atoms, ions, elec-
trons) inside crystals always obey Newton’s second law or
the Schrodinger equation, the only unknown is the equa-
tion for the period vectors, especially when crystals are
under general external stress. It has been derived in the
framework of Newtonian dynamics in recent years[1, 2],
which can be combined with quantum physics by further
modeling. Here we will employ a new and concise ap-
proach based on the principles of statistical physics to
derive it into a new form, then applicable to both classi-
cal physics and quantum physics by itself.

II. EXISTING THEORY FOR EXTERNAL
PRESSURE

As a matter of fact, in statistical physics, the theory for
the same purpose but for crystals under external pressure
P , a special case of stress, has been established firmly for
long time[3]. Now let us recall it briefly.

A. The theory

From microscopic point of view, crystals are made of
unlimited periodic arrangements of the same cells in the
three-dimensional space. They can be studied by focus-
ing on a “center” cell interacting with the rest cells. Then
the external pressure, actually acting only on the surfaces
of the macroscopic crystal bulk, can be equivalently de-
scribed as the action on the surfaces of the crystal cell
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being focused on. The work done by the pressure on the
cell is normally written as

dW = −PdV, (1)

where the cell volume V = (a × b) · c. Actually this
specific work expression can be better explained based
on the idea that the cell is equivalently regarded as being
filled with continuous medium. As the cell volume V
is the conjugate variable of the pressure P , as shown in
Eq.(1), based on the principles of statistical physics[6],
the pressure can be derived as in equation (2.96) of the
statistical reference book[3]:

P =
1

β

∂ lnZ

∂V
, (2)

where β = 1/(kT ), and Z, k, and T are the partition
function, Boltzmann constant, and temperature respec-
tively. This is essentially the equation of state of crystals
under external pressure in equilibrium. In other words,
the crystal cell volume can be calculated based on this
equation for the given external pressure and temperature.
However, it is not for the period vectors explicitly.

B. Expansion with respect to the period vectors

Now let us change these equations slightly. As dV =
σa ·da+σb ·db+σc ·dc, where σh = ∂V/∂h is the surface
area vector of the cell with respect to h, e.g. σa = b× c,
the above work can also be written as

dW = −(Pσa) · da− (Pσb) · db− (Pσc) · dc, (3)

where dh (=da, or db, or dc) is now the conjugate vari-
able of the force−Pσh acting on the cell surface σh. Then
based on the principles of statistical physics, we have

Pσh =
1

β

∂ lnZ

∂h
(h = a,b, c), (4)
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which is in the form of determining the period vectors
specifically. Combining Eq.(2) and Eq.(4) leads to

PV =
V

β

∂ lnZ

∂V
=

a

β
· ∂ lnZ

∂a
=

b

β
· ∂ lnZ

∂b
=

c

β
· ∂ lnZ

∂c
.

This means that the cell shape must be assumed to keep
certain symmetries for external pressure in actual calcu-
lation. Under such circumstances, Eq.(4) for any specific
period vector, e.g. h = a, should be equivalent to Eq.(2)
and about one-third calculation work of Eq.(2).

III. EQUATION DERIVATION FOR EXTERNAL
STRESS

Now let us consider crystals under arbitrary external
stress Υ, a second-rank tensor (3 × 3 matrix), to which
neither Eq.(2) nor Eq.(4) can apply. As said above, con-
sidering the focused crystal cell can be equivalently re-
garded as being made of continuous medium, the cell is
now an actual object with matter in it everywhere, not
simply a region of three-dimensional space. Then the
force, described by the external stress, acting on the sur-
face σh of the cell, is a real force and expressed as Υ ·σh.
Further considering that the displacement of the cell sur-
face is dh, the work done by the external stress on the
crystal cell is

dW = (Υ · σa) · da + (Υ · σb) · db + (Υ · σc) · dc. (5)

This equation becomes Eq.(1) when the stress reduces to
the pressure Υ = −P I with I being an identity tensor.
Since, as shown in Eq.(5), dh is the conjugate variable of
the force Υ · σh acting on the cell surface σh, based on
the principles of statistical physics again, we arrived at

Υ · σh = − 1

β

∂ lnZ

∂h
(h = a,b, c). (6)

It has the same form on the right side as that in Eq.(4).
However, it is for crystals under external stress.

Supposing all particle interactions inside the crystal
and the external stress and temperature are known, then
the only unknown period vectors can be calculated by
solving Eq.(6). During such procedure, different from
the above external pressure case, as the period vectors
are independent variables with each other, there should
be no additional restrictions on the cell shape symmetry.
Then Eq.(6) is the equation of state for crystals under
external stress and temperature, in the form of the period
vectors. For the special (pressure) case Υ = −P I, Eq.(6)
reduces to Eq.(4), then reduces to Eq.(2), as it should.

IV. DISCUSSION

A. Equation of state and thermal expansion by
harmonic oscillation

As the equation of state of crystals, Eq.(6) is actually
the equation about the period vectors, all the particle
position vectors in the cell, the external stress, and the
temperature variables. As actually expressed by the pe-
riod vectors, all kinds of crystal expansions caused by
the change of the external stress or the temperature or
both of them can be calculated, at least by solving Eq.(6)
numerically for all related external conditions.

One example is that for fixed temperature, supposing
the external stress is changed, one can do partial deriva-
tives of Eq.(6) on both sides with respect to the changed
components of the external stress respectively, then gets
the isothermal expansion by the external stress.

Another example is that for fixed external stress, sup-
posing the temperature is changed, one can do derivative
of Eq.(6) with respect to the temperature, then gets the
“isobaric” thermal expansion.

Phonons are often considered for crystal heating
processes, where the harmonic oscillating frequency ω
(maybe many with different values), a function of the pe-
riod vectors and all particle position vectors in the cell, is
employed. Then the partition function Z is a function of
the frequency ω and temperature. If we take the partial
derivative of Eq.(6) with respect to the temperature, we
have

∂

∂T
(Υ · σh) = − ∂

∂T

(
kT

∂ lnZ(ω, T )

∂h

)
(h = a,b, c).

(7)
As there is no reason to expect that the right side of
Eq.(7), a regular mathematical expression, is zero, let
us assume it is not zero. Then the left side of Eq.(7)
should be Υ · (∂σh/∂T ) 6= 0, as Υ being fixed. Further
assuming that some components of the external stress Υ
are non-zero, and considering that every σh is the cross
product of two corresponding period vectors in order, not
all components of the derivatives of the period vectors
with respect to the temperature is zero:∣∣∣∣ ∂a

∂T

∣∣∣∣2 +

∣∣∣∣ ∂b

∂T

∣∣∣∣2 +

∣∣∣∣ ∂c

∂T

∣∣∣∣2 > 0. (8)

This means that contrary to a general belief (see below),
harmonic oscillators can cause crystal thermal expansion.

As a matter of fact, it is widely believed that harmonic
interaction can not cause crystal thermal expansion, due
to its simplicity. However, pure thermal expansion can
be observed in any crystals, where the actual interactions
among particles are usually rather complicated. On the
other hand, ideal gases, with no interactions among par-
ticles, also firmly demonstrate pure thermal expansion.
This is stated in the Charles’s law or Gay-Lussac’s Law
or Charles and Gay-Lussac’s Law (named inconsistently
in literature): “the volume of a given amount of (ideal)
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gas held at constant pressure is directly proportional to
the Kelvin temperature.” Since for both systems of non-
interaction and complicated interactions among member
particles, pure thermal expansion is true, there is no rea-
son for systems of harmonic interactions to be an excep-
tion.

B. Internal stress and mechanical equilibrium
condition

In 2010, Tuckerman expressed the crystal internal
stress, also a second-rank tensor, as in Equation (5.6.9)
of his statistical molecular simulation book[4]. This ex-
pression was applied in a solid silicon system as an actual
calculation example with a success later[5]. In fact, it can
also be written in the following way

P(int) =
1

βV

∑
h=a,b,c

∂ lnZ

∂h
⊗ h. (9)

Let us do three right dot products on Eq. (9) with the
cell surface area vectors (σa, σb, σc) separately and apply
the relationship h · σx = V δh,x, then

P(int) · σh =
1

β

∂ lnZ

∂h
(h = a,b, c). (10)

Bringing Eq. (10) into Eq. (6), then

Υ · σh = −P(int) · σh (h = a,b, c), (11)

which is equivalent to

Υ + P(int) = 0, (12)

as the three cell surface area vectors (σa, σb, σc) are not
in the same plane.

Since Eq.(12) means the internal and the external
stresses balance each other, Eq.(6) is actually the “me-
chanical” equilibrium condition of the crystal under ex-
ternal stress and temperature, with the aid of the inter-
nal stress expressed by Eq.(9). The temperature appears
in the partition function. Actually, it also means that
Eq.(6) and the internal stress expression verified each
other.

C. Comparison with elasticity theory

Since elasticity theory is also about the action of ex-
ternal stress on crystals, it is better to compare it with
this work.

First of all, elasticity theory studies crystals as con-
tinuous media essentially, then is not interested in crys-
tal period vectors in principle. This work equivalently
uses continuous media but only when formulates the work
done by the external stress on the crystal cell, and tries
to derive the equation for determining the period vectors

as the sole purpose. Whatever, let us suppose elasticity
theory also studies microscopic structures of crystals in
the following.

Second, elasticity theory normally employs a reference
state under no external stress, in which the period vec-
tors h0 = a0,b0, c0, and all the particle position vectors
ri,0(i = 1, · · · , N) in the center cell are supposed known,
where N is the total number of particles in the cell. This
work only tries to do something in the current state under
any external stress, completely forgetting all other states.
In other words, this work treats every state completely
independently, with no information from any other state
needed.

Third, elasticity theory, almost everywhere, uses the
concept strain u, also a second-rank tensor, to describe
crystal deformation caused by the external stress. By
definition, strain should mean an assumption that all the
period vectors and particle position vectors of the current
state under certain external stress are linearly related to
the corresponding ones of the reference state in the same
form:

h = h0 + u · h0 (h = a,b, c), (13)

ri = ri,0 + u · ri,0 (i = 1, · · · , N), (14)

as this rule applies to any point, at least, within a lo-
cal macroscopic region of the crystal. Since Eqs.(13 and
14) restrict the crystal structure to change only linearly,
then can not describe crystal structural phase transitions
caused by the change of the external stress and temper-
ature.

However this work does not make such an assumption,
but regards and uses all the period vectors (h = a,b, c)
and the particle position vectors ri(i = 1, · · · , N) as inde-
pendent variables with each other, then can describe any
new crystal structure being created by the change of the
external stress and/or temperature. Typically, external
stress may cause structural phase transitions in crystals.
Again since it is also well-known about how to determine
the particle position vectors by applying either Newton’s
second law or the Schrodinger equation, this work only
focuses on how to determine the period vectors.

Furthermore, elasticity theory employs extended
Hooke’s law as a principle, in which some new coeffi-
cients were introduced and are usually determined by
experiments. This work does not assume any analyti-
cal relationship between the crystal period vectors and
the external stress. Actually, Eq.(6) is the relationship
between them, but with no additional coefficients intro-
duced, as the partial derivatives of the partition function
with respect to the period vectors can be at least calcu-
lated numerically. In fact, Eq.(6) can be used to calculate
the coefficients in Hooke’s law, when the law applies.

D. Classical physics

In classical statistics, as in equations (3.45-3.47) in the
reference book[3], the partition function can be factorized
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as

Z = ZkZu, (15)

where Zk and Zu are the contributions of the kinetic
energy Ek and potential energy Ep respectively as

Zk =
V N

N !

∫
1

h3N
e−βEk(p)dp, (16)

where h is Planck constant, and the integration is over
all particles’ momentum spaces, and

Zu =
1

V N

∫
e−βEp(q)dq, (17)

where the integration is over all particles’ coordinate
spaces. Bringing Eqs.(15, 16, and 17) into Eq.(6), we
get

Υ · σh = − 1

V
NkTσh −

1

β

∂ lnZu
∂h

(h = a,b, c). (18)

The last term −∂ lnZu/(β∂h) in this equation is essen-
tially the same as the middle term ∂E/∂h of equation
(16) in our previous work [2], if the same way of deriva-
tion as in the second half of page 135 of the reference
book[3] is taken.

As a result, in classical physics, although the kinetic
energy term may be interpreted differently in details, all
the rest are verified between the equation achieved in sta-
tistical physics here and that previously derived based
on the Newtonian dynamics[1, 2]. For “crystals” only
containing ideal gas under external pressure, Eq.(18) be-
comes the ideal gas equation: PV = NkT .

V. SUMMARY

Eq.(6) was derived here for determining crystal period
vectors, then predicting crystal structures, by formulat-
ing the work done by the external stress on the crystal ex-
plicitly and applying the statistical principles. While the
previously derived one in the frame work of Newtonian
dynamics can be combined with quantum mechanics by
further modeling, Eq.(6) applies to both classical physics

and quantum physics by itself. Since the period vectors
are only meaningful in equilibrium states, where the ex-
ternal and the internal temperatures should be the same,
Eq.(6) is not only the equilibrium condition, but also the
equation of state for crystals under external stress and ex-
ternal temperature, expressed on the basis of the period
vectors. Eq.(6) also concluded that harmonic oscillators
can cause crystal thermal expansion.
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