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For crystal periodic structure prediction, a new and concise approach based on the principles of
statistical physics was employed to derive a new form of the equation to determine their period
vectors (cell edge vectors), under general external stress. Then the new form is applicable to both
classical physics and quantum physics. It also turned out to be the equation of state and the specific
explicit equilibrium condition for crystals under external stress and temperature. It should be helpful
in piezoelectric and piezomagnetic studies, as the period vectors were changed by the external stress.
For linear elastic crystals, it is actually also the microscopic but temperature-dependent form of the
generalized Hooke’s law, then can be used to calculate the corresponding elastic constants of the
law, for given temperatures.

I. INTRODUCTION

For predicting crystal structures, especially before be-
ing synthesized, the equations are needed to determine
their discrete particle positions and their period vectors
(cell edge vectors h = a, b, or c, forming a right-handed
system). Since the particles (atoms, ions, electrons) in-
side crystals always obey Newton’s second law or the
Schrodinger equation, the only unknown is the equation
for the period vectors, especially when crystals are under
general external stress. It has been derived in the frame-
work of Newtonian dynamics in recent years[1], which
can be combined with quantum physics by further mod-
eling. Here we will employ a new and concise approach
based on the principles of statistical physics to derive it
into a new form, then applicable to both classical physics
and quantum physics by itself. It also turned out to be
the equation of state and the specific explicit equilibrium
condition for crystals under external stress and tempera-
ture. At the end, the new form and the previously derived
one will be shown to verify each other.

II. EXISTING THEORY FOR EXTERNAL
PRESSURE

As a matter of fact, in statistical physics, the theory
for the same purpose but for crystals under external pres-
sure, a special case of stress, has been established firmly
for long time[2]. Now let us recall it briefly.

A. The theory

From microscopic point of view, crystals are made of
unlimited periodic arrangements of the same cells in the
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three-dimensional space. They can be studied by focus-
ing on a “center” cell interacting with the rest cells. Then
the external pressure, actually acting only on the surfaces
of the macroscopic crystal bulk, can be equivalently de-
scribed as the action on the surfaces of the “center” cell.
The work done by the pressure P on the cell is normally
written as

dW = −PdV, (1)

where the cell volume V = (a×b) ·c. As the cell volume
V is the conjugate variable of the pressure P , as shown
in Eq.(1), based on the principle of statistical physics[5],
the pressure can be derived as in equation (2.96) of the
statistical reference book[2]:

P =
1

β

∂ lnZ

∂V
, (2)

where β = 1/(kT ), and Z, k, and T are the partition
function, Boltzmann constant, and temperature respec-
tively. This is essentially the equation of state of crystals
under external pressure in equilibrium. In other words,
the crystal cell volume can be calculated based on this
equation for the given external pressure and temperature.
However, it is not for the period vectors explicitly.

B. Expansion with respect to the period vectors

Now let us change these equations slightly. As dV =
σa ·da+σb ·db+σc ·dc, where σh = ∂V/∂h is the surface
area vector of the cell with respect to h, e.g. σa = b× c,
the above work can also be written as

dW = −(Pσa) · da− (Pσb) · db− (Pσc) · dc, (3)

where dh (=da, db, dc) is now the conjugate variable of
the force −Pσh acting on the cell surface σh. Then based
on the principle of statistical physics, we have

Pσh =
1

β

∂ lnZ

∂h
(h = a,b, c), (4)
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which is in the form of determining the period vectors
specifically. Combining Eq.(2) and Eq.(4) leads to

PV =
V

β

∂ lnZ

∂V
=

a

β
· ∂ lnZ

∂a

=
b

β
· ∂ lnZ

∂b
=

c

β
· ∂ lnZ

∂c
.

This means that the cell shape must be assumed and
kept certain symmetries for external pressure in actual
calculation. Under such circumstances, Eq.(4) for any
specific period vector, e.g. h = a, should be equivalent
to Eq.(2).

III. EQUATION DERIVATION FOR EXTERNAL
STRESS

Now let us consider crystals under arbitrary external
stress Υ, a second-rank tensor (3 × 3 matrix), to which
neither Eq.(2) nor Eq.(4) applies.

FIG. 1: While the positions of the particles inside a crystal
are fixed, all the cells as a whole can be translated anywhere
together, then placed in the new position, though only one
layer of cells shown here. The red frame is an example of
the new cell placement, and the green frame is another. As
a result, as shown in the lower part of this figure, the yellow
diamond particle in the top-left corner of the old cell on the
left, is in the right-bottom corner of the new red-framed cell
on the right now, viewed through the front surfaces.

As shown in FIG. 1, while the positions of the par-
ticles inside a crystal are fixed, all the cells as a whole
can be translated anywhere together, then be placed in
the new position. The red-framed and the green-framed
ones in the figure are two examples, since the movement
of all the cells together can be in any direction and with
any distance. All the movements should be equivalent to
each other in physics, and also equivalent to the average
of them. This can also be described as that while the
cells are kept fixed, the particles can be translated as a
whole anywhere together. As a result, while the relative
positions between the particles are fixed, any individual

particle can appear anywhere in the cell. The above-
mentioned average of all the cell movements corresponds
to the situation where the fixed “center” cell is made
of continuous medium. Then the cell is now an actual
object with matter in it everywhere, instead of, as nor-
mally described, a vacuum region of three-dimensional
space containing some discrete particles. Since the total
mass of each cell is never changed, the cell surfaces be-
come physical ones of fixed infinitesimal fraction of the
cell mass in an extremely thin layer, from pure geometry
planes. Then the force, described by the external stress,
acting on the physical surface σh of the cell, is a real
force and expressed as Υ · σh. Further considering that
the displacement of the physical cell surface is dh, the
work done by the external stress on the crystal cell is

dW = (Υ · σa) · da + (Υ · σb) · db + (Υ · σc) · dc. (5)

Then as seen, this equation was written rigorously based
on the original definition of the work, where the subject
of the displacement and the object being acted on by the
corresponding force should be exactly the same actual
object. Eq.(5) becomes Eq.(1) when the stress reduces
to the pressure Υ = −P I with I being an identity tensor.

Since, as shown in Eq.(5), the displacement dh is the
conjugate variable of the force Υ ·σh acting on the phys-
ical cell surface σh, based on the principle of statistical
physics again, we arrived at

Υ · σh = − 1

β

∂ lnZ

∂h
(h = a,b, c). (6)

It has the same form on the right side as that in Eq.(4),
except the plus/minus sign. However, it is for crystals
under external stress.

Supposing the period vectors are the only unknown
variables for given external stress and temperature, then
can be calculated by solving Eq.(6). During such proce-
dure, different from the above external pressure case, as
the period vectors are independent variables with each
other, there should be no additional restrictions on the
cell shape symmetry. For the special (pressure) case
Υ = −P I, Eq.(6) reduces to Eq.(4), then reduces to
Eq.(2), as it should.

However, as a reminder, whatever the cell movement
in FIG. 1 or their average being employed, the relative
positions between particles should always be kept fixed,
thus the interactions between them, the cell energy, the
partition function and all other physical quantities are
independent of the cell movements. One incorrect idea
is that “if the average of all the cell movements is used,
since any two particles can appear anywhere, their rela-
tive distance can be any value in the cell.”

IV. INTERNAL STRESS AND MECHANICAL
EQUILIBRIUM CONDITION

In 2010, Tuckerman expressed the crystal internal
stress, also a second-rank tensor, as in Equation (5.6.9)
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of his statistical molecular simulation book[3], then ap-
plied it in a solid silicon system as an actual calculation
example with a success[4]. In fact, this expression can
also be written in the following way

P(int) =
1

βV

∑
h=a,b,c

∂ lnZ

∂h
⊗ h. (7)

Let us do three right dot products on Eq.(7) with the cell
surface area vectors (σa, σb, σc) separately and apply the
relationship h · σx = V δh,x, then

P(int) · σh =
1

β

∂ lnZ

∂h
(h = a,b, c). (8)

Bringing Eq.(8) into Eq.(6), then

Υ · σh = −P(int) · σh (h = a,b, c), (9)

which is equivalent to

Υ + P(int) = 0, (10)

as the three cell surface area vectors (σa, σb, σc) are not
in the same plane.

Since Eq.(10) means the internal and the external
stresses balance each other, Eq.(6) is actually the “me-
chanical” equilibrium condition of the crystal under ex-
ternal stress and temperature, with the aid of the inter-
nal stress expressed by Eq.(7). The temperature appears
in the partition function. Actually, it also means that
Eq.(6) and the internal stress expression verified each
other.

V. EQUATION OF STATE AND SYSTEM
EXPANSION

In fact, Eq.(6) is an equation about the period vec-
tors, all the particle position vectors in the “center” cell,
the external stress, and the temperature variables. In
order to solve the whole crystal system, Eq.(6) must be
combined with Newton’s second law or the Schrodinger
equation for motions of all particles in the cell. Since all
particle motions can be solved by Newton’s second law
and/or the Schrodinger equation, for given period vec-
tors as parameters, Eq.(6) can be used to solve the period
vectors for given external stress and temperature and the
solved particle motions. This process should be repeated
till all variables converge. Since Newton’s second law and
the Schrodinger equation are fundamental principles of
physics, which are always available and applicable, the
whole procedure can be equivalently regarded as solv-
ing the period vectors by Eq.(6) for external conditions.
Then Eq.(6) is the equation of state for crystals under ex-
ternal stress and temperature, in the form of the period
vectors, instead of the cell volume.

As actually expressed by the period vectors, all kinds
of crystal expansions caused by the change of the ex-
ternal stress or the temperature or both of them can be

calculated by solving Eq.(6) under all external conditions
concerned. Alternatively, as an example, supposing the
temperature is fixed but the external stress is changed,
one can do partial derivatives of Eq.(6) on both sides
with respect to the changed components of the external
stress respectively, then gets the isothermal expansion by
the external stress.

As another example, let us consider the “isobaric”
thermal expansion, in which the external stress is fixed
but the temperature is changed. Actually, the particles’
motion inside crystals is usually separated into the par-
ticles’ equilibrium position motion and the harmonic os-
cillation around it. The harmonic oscillation can be rep-
resented by its frequency ω (or frequencies), which is a
function of the period vectors and all particle equilib-
rium position vectors in the cell. For simplicity, let us
suppose that there is only one particle in each cell, then
its equilibrium position vector can always be set as zero,
never changed. Then the partition function Z can be
considered as a function of the frequency ω and temper-
ature. When the temperature is changed, the right side
of Eq.(6), −kT∂ lnZ(ω, T )/∂h, should change. Then the
left side of Eq.(6), Υ · σh, should also change. Since the
external stress Υ is fixed, σh should change, then so do
the period vectors. This means that the harmonic oscil-
lation causes crystal thermal expansion.

For the special case of external pressure, as said above,
the cell shape should keep certain symmetry, then the
inside particle (equilibrium) positions should also be as-
sumed accordingly. Then if no structural phase tran-
sition happens, the crystal can only expand or contract
uniformly. This means that the particle (equilibrium) po-
sition vectors and the period vectors should change pro-
portionally, then all the particle (equilibrium) position
vectors relative to the period vectors would not change.
Then Eq.(6) is only about the period vectors, the ex-
ternal pressure, and the temperature variables, a pure
traditional form of the equation of state.

VI. DISCUSSION

A. Piezoelectricity and piezomagnetism

The fascinating piezoelectric and piezomagnetic phe-
nomena are induced when the external pressure on crys-
tals in one direction is changed while those in the other
two directions not. Since the external stress is changed,
according to Eq.(6), the equation of state, the period
vectors should also be changed, then to employ Eq.(6) to
calculate the changed crystal structure accurately would
be very helpful in these studies.

B. Elasticity and plasticity

According to the equation of state, Eq.(6), a crys-
tal, for given external condition A of certain external
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stress and temperature, should show fixed period vectors,
then crystal structure, representable by its “center” cell
structure, denoted with CellA. Later the external con-
dition is changed to B, the crystal structure is changed
to CellB accordingly. Then when the external condition
changes back from B to A, in principle, the crystal struc-
ture should also restore from CellB to CellA, in order
to satisfy Eq.(6). This is the general elasticity of crys-
tals. However, there are possibly more than one stable
structures in various structural phases satisfying Eq.(6),
denoted with CellA1, CellA2, · · · , CellA100, · · · , even
for condition A. When the external condition runs from
A to B back to A, the structure may go from CellA25

to CellA8. This is an example of microscopic plasticity.
Supposing for A to B back to A, the structure goes from
CellA25 to CellB , then back to CellA25, no microscopic
plasticity happens. However, further supposing in be-
ginning condition A, the macroscopic crystal bulk has
1000× 1000× 8000 cells in the three directions in space,
it may becomes 2000×2000×2000 in B condition. Later
when B goes back to ending A, 2000× 2000× 2000 may
be kept, then macroscopic plasticity happens.

Although Eq.(6) is always satisfied, plasticity may oc-
cur in either microscopic or macroscopic or both folds
at the same time. Since there is always some potential
barrier to be overcome, the less the external condition
changes, the less chance for plasticity.

C. Comparison with elasticity theory and the
generalized Hooke’s law

Since elasticity theory is also about the action of ex-
ternal stress on crystals, it is better to compare it with
this work.

First of all, elasticity theory studies macroscopic
shapes and properties of crystals mainly, thus regards
crystals as continuous medium, then is not interested in
crystal period vectors in principle. This work considers
continuous medium for cells but only when formulates the
work done by the external stress on the crystal cell, and
derives the equation for determining the period vectors
as the sole purpose. Whatever, let us suppose elasticity
theory also studies microscopic structures of crystals in
the following.

Second, elasticity theory normally employs a reference
state not being acted by any external stress, in which the
period vectors h0 = a0,b0, c0, and all the particle posi-
tion vectors ri,0(i = 1, · · · , N) in the center cell should
be supposed known, where N is the total number of par-
ticles in the cell. This work only tries to do something
in the current state under any external stress, forgetting
all other states completely. In other words, this work
regards every state completely independently, with no
information from any other state needed.

Third, elasticity theory introduces and widely uses the
concept strain u, also a second-rank tensor, to describe
crystal deformation caused by the external stress. By

definition, strain means that for any point vector x of
the matter in the current state, one has x = x0 + u · x0,
where x0 is the corresponding point in the reference state,
at least within a local macroscopic region of the crystal.
Then all the period vectors and particle position vectors
in the same local region of the current state under certain
external stress are linearly related to the corresponding
ones of the reference state in the same form:

h = h0 + u · h0 (h = a,b, c), (11)

ri = ri,0 + u · ri,0 (i = 1, · · · , N), (12)

as well. Since Eqs.(11 and 12) restrict the crystal struc-
ture to change only linearly, then can not describe crystal
structural phase transitions caused by the change of the
external stress and temperature.

However this work neither use the strain concept nor
make the assumption of Eqs.(11 and 12), but regards and
uses all the period vectors (h = a,b, c) and the particle
position vectors ri(i = 1, · · · , N) as independent vari-
ables with each other, then can describe any new crys-
tal structure being created by the change of the exter-
nal stress and/or temperature. Typically, external stress
may cause structural phase transitions in crystals. Again
since it is well-known about how to determine the parti-
cle position vectors by applying either Newton’s second
law or the Schrodinger equation, this work only focuses
on how to determine the period vectors.

Furthermore, elasticity theory employs the general-
ized Hooke’s law as a principle, in which the stress and
strain are assumed linearly related by introducing the
elastic constants, which are usually determined by exper-
iments. This work does not assume any analytical rela-
tionship between the crystal period vectors and the exter-
nal stress. Actually, Eq.(6) is the temperature-dependent
relationship between them, but with no additional con-
stants or coefficients introduced, supposing everything
in Eq.(6) can be at least calculated numerically. Then
Eq.(6) is the microscopic form of the generalized Hooke’s
law, for the situation where the period vectors and the
external stress approximately change proportionally in
reality. The elastic constants in the generalized Hooke’s
law can be calculated by solving Eq.(6) under a series of
values of the external stress, for a given temperature.

D. Classical physics, “algorithm”, and combination

In classical statistics, as in equations (3.45-3.47) in the
reference book[2], the partition function can be factorized
as

Z = ZkZu, (13)

where Zk and Zu are the contributions of the particles’
kinetic energy Ek and the cell potential energy Ep re-
spectively as

Zk =
V N

N !

∫ ∫
· · ·
∫

1

h3N
e−βEk(p)dp, (14)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 April 2020                   doi:10.20944/preprints201904.0076.v8

https://doi.org/10.20944/preprints201904.0076.v8


5

where h is Planck constant, and the integration is over
all particle’ momentum spaces, and

Zu =
1

V N

∫
V

∫
V

· · ·
∫
V

e−βEp(a,b,c,R)dR, (15)

where the integration is over all particles position vectors:
R = {r1, r2, · · · , rN}, limited in the cell.

Since the integration in Eq.(14) has nothing to do with
the period vectors, the derivative

∂ lnZk
∂h

=
N

V

∂V

∂h
=
N

V
σh (h = a,b, c). (16)

But a little more patience is needed for Eq.(15), as the
the cell potential energy Ep is a function of all the period
vectors and all the particle position vectors R. For every
particle in the “center” cell, the position vector can be
expanded with respect to the period vectors:

ri = ri,aa + ri,bb + ri,cc (i = 1, · · · , N), (17)

where ri,h, in the range of [0, 1), can be calculated as

ri,h =
1

V
ri · σh (i = 1, · · · , N ; h = a,b, c). (18)

Let us perform a similar derivation as in the second half
of page 135 of the reference book[2], then the integration
regarding ri in the cell but per unit volume

1

V

∫
V

· · · dri =

∫
V

· · · dri
V

=

∫ 1

0

∫ 1

0

∫ 1

0

· · · dri,adri,bdri,c

(i = 1, · · · , N). (19)

Then the derivatives of Zu with respect to the period
vectors become only the derivatives of the cell potential
Ep inside the integration:

∂Zu
∂h

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

∫ 1

0

∫ 1

0

×

∂

∂h
e−βEp(a,b,c,R)dr1,adr1,bdr1,c ×

dr2,adr2,bdr2,c · · · drN,adrN,bdrN,c
(h = a,b, c). (20)

Since that the dependency of R on the period vectors
must be considered now, as shown in Eq.(17), the follow-
ing derivatives should be separated as

∂Ep
∂h

=
∂Ep(a,b, c,R)

∂h

∣∣∣
R

+
∂Ep(a,b, c,R)

∂h

∣∣∣
a,b,c

(h = a,b, c), (21)

where

∂Ep(a,b, c,R)

∂h

∣∣∣
a,b,c

=

N∑
i=1

∂Ep(a,b, c,R)

∂ri

∂ri
∂h

=

N∑
i=1

−Firi,h

=

N∑
i=1

−Fi
ri · σh
V

= − 1

V

N∑
i=1

(Fi ⊗ ri) · σh

(h = a,b, c), (22)

where Fi is the net of all the forces acting on particle
i, by any other particles in any cell, including its image
particles. Employing Eqs.(20, 21, and 22), it follows

−∂ lnZu
β∂h

= − 1

βZu

∂Zu
∂h

=
−kT
ZuV N

∫
V

∫
V

· · ·
∫
V

∂

∂h
e−βEp(a,b,c,R)dR

=
1

ZuV N

∫
V

∫
V

· · ·
∫
V

e−βEp(a,b,c,R) ×(
∂Ep(a,b, c,R)

∂h

∣∣∣
R
− 1

V

N∑
i=1

Fi ⊗ ri · σh

)
dR

(h = a,b, c), (23)

Bringing Eqs.(16 and 23) into Eq.(6), we get

Υ · σh = − 1

V
NkTσh −

1

β

∂ lnZu
∂h

(h = a,b, c). (24)

For “crystals” only containing ideal gases under external
pressure, Eq.(24) becomes the ideal gas equation: PV =
NkT .

Now let us consider equilibrium states where

ḧ = 0 (h = a,b, c), (25)

r̈i = 0 (i = 1, · · · , N). (26)

Then the previously derived dynamical equation for the
period vectors based on the Newtonian dynamics: Equa-
tion (27) in the paper[1], becomes

Υ · σh = − 1

3V

N∑
i=1

mi |ṙi|2 σh +

+
∂Ep
∂h

∣∣∣
R
− 1

V

N∑
i=1

(Fi ⊗ ri) · σh

(h = a,b, c), (27)

where Equations (9, 17, 19, 25, and 26) in the paper[1]
were employed, with mi being the mass of particle i in the
cell. The last term −kT∂ lnZu/∂h in Eq.(24) as shown
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in Eq.(23) is the averaged form of the last two terms

(∂Ep/∂h) |R and −
∑N
i=1 Fi ⊗ ri · σh/V of Eq.(27), then

essentially they are the same in physics.
Then, in classical physics, as the corresponding kinetic

energy terms in the two equations are normally also re-
garded the same as each other, Eq.(24) achieved in sta-
tistical physics here and Eq.(27) previously derived based
on the Newtonian dynamics[1] verified each other.

The previously derived Equation (27) in the paper[1]
for the period vectors based on the Newtonian dynamics
is a dynamical equation, then can be used as an “algo-
rithm” for solving the equilibrium states. Let us replace
its internal stress with Tuckerman’s expression, Eq.(7),
then get

αh,hḧ =
(
Υ + P(int)

)
· σh (h = a,b, c), (28)

where αh,h is an equivalent mass, then can be chosen
with any positive real number. Eq.(28) can be used as
an “algorithm” for solving Eq.(6) in both classical physics
and quantum physics.

In the Born-Oppenheimer approximation, ions and
electrons in crystals are usually solved by Newtonian dy-
namics and quantum mechanics separately. Then the
partition function of the whole crystal should be factor-
ized accordingly, then Eq.(6) is for the combination of
classical physics and quantum physics.

VII. SUMMARY

Eq.(6) was derived here for determining crystal period
vectors, then predicting crystal structures, by rigorously
formulating the work done by the external stress on the
crystal and applying the statistical principles. While
the previously derived one in the frame work of Newto-
nian dynamics can be combined with quantum mechan-
ics by further modeling, Eq.(6) applies to both classical
physics and quantum physics and their combination by
itself. Since the period vectors are only meaningful in
equilibrium states, where the external and the internal
temperatures should be the same, Eq.(6) is not only the
equilibrium condition, but also the equation of state for
crystals under external stress and external temperature,
expressed on the basis of the period vectors.

Eq.(6) further turned out to be the microscopic but
temperature-dependent form of the generalized Hooke’s
law, for linear elastic crystals, then can be used to cal-
culate the corresponding elastic constants of the law, for
given temperatures. It should also play an essential role
in piezoelectric and piezomagnetic studies, caused by an
increase of the external pressure on crystals but only in
one direction. Eq.(6) also concluded that harmonic os-
cillators can cause crystal thermal expansion at constant
external stress.
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