Preprint
Article

Improved Reliability and Mechanical Performance of Sn58Bi Solder Alloys

Altmetrics

Downloads

684

Views

305

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

09 April 2019

Posted:

11 April 2019

You are already at the latest version

Alerts
Abstract
Abstract: Microstructural and mechanical properties of the eutectic Sn58Bi and micro-alloyed Sn57.6Bi0.4Ag solder alloys were compared. With the addition of Ag micro-alloy, the tensile strength was improved and this is attributed to a combination of microstructure refinement and an Ag3Sn precipitation hardening mechanism. However, ductility is slightly deteriorated due to the brittle nature of the Ag3Sn intermetallic compounds (IMCs). Additionally, a board level reliability study of Ag micro-alloyed Sn58Bi solder joints produced utilising a surface-mount technology (SMT) process, were assessed under accelerated temperature cycling (ATC) conditions. Results reveal that micro-alloyed Sn57.6Bi0.4Ag has a higher characteristic lifetime with a narrower failure distribution. This enhanced reliability corresponds with improved bulk mechanical properties. It is postulated that Ag3Sn IMCs are located at the Sn-Bi phase boundaries and suppress the solder microstructure from coarsening during the temperature cycling, hereby extending the time to failure.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated