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Abstract

The Rosetta software suite for macromolecular modeling, docking, and design is widely used in
pharmaceutical, industrial, academic, non-profit, and government laboratories. Considering its broad
modeling capabilities, Rosetta consistently ranks highly when compared to other leading methods created
for highly specialized protein modeling and design tasks. Developed for over two decades by a global
community of scientists at more than 60 institutions, Rosetta has undergone multiple refactorings, and
now comprises over three million lines of code. Here we discuss the methods developed in the last five
years, involving the latest protocols for structure prediction, protein—protein and protein—small molecule
docking, protein structure and interface design, loop modeling, the incorporation of various types of
experimental data, and modeling of peptides, antibodies and other proteins in the immune system,
nucleic acids, non-standard amino acids, carbohydrates, and membrane proteins. We briefly discuss
improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at
www.rosettacommons.org.
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Introduction

Development of Rosetta started in the mid-1990s for protein structure prediction and to gain insights into
the protein folding problem, which remains a grand challenge of structural biology. Over time, the number
of applications grew to address a wider array of modeling tasks, ranging from protein—protein or —small
molecule docking to incorporating NMR data, loop modeling, protein design, and interaction with peptides
and nucleic acids (Figure 1). Over the 20 plus years since those early beginnings, the community of
developers and scientists, the RosettaCommons, grew from a single academic laboratory to laboratories
at over 60 institutions around the globe'. Rosetta has undergone several transitions, including in
programming language and implementation, with the latest protocols based on Rosetta3, which was first
released in 20082. Rosetta’s energy function has been continuously improved over its lifetime, detailed
descriptions of which can be found in references ® and 4. As the Rosetta community grew, efforts to
improve usability, interfaces to the code, and documentation have drastically improved usability and
modular application to new problems. As part of our sustained focus on reproducibility and usability, we
developed several interfaces, (PyRosetta®, RosettaScripts®, Foldit’) and emphasized publishing protocol
captures® that accompany manuscripts to improve accessibility, user friendliness and scientific
reproducibility. As the software’s interfaces have grown more versatile, development has accelerated and
branched in many directions. However, this makes it difficult to keep up with all the developments that are
happening within the software and the scientific community. To address this growth in functionality, here
we have compiled the latest method developments in the Rosetta software suite from the past five years,
divided into several modeling categories as outlined below. This report is intended to serve as a guide for
Rosetta users and developers — whether new, returning, or seasoned — who want to be updated on
newest developments. The supplement contains a tour of the protocols with extensive links to
documentation and resources on the web.

Figure 1: Capabilities of the Rosetta macromolecular modeling suite
Popular tasks that can be addressed in Rosetta (blue) and major systems that can be modeled (red).
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1. Major applications

The general outline of a typical Rosetta protocol is depicted in Figure 2: the conformation of a
biomolecule (the Pose) is altered, either deterministically or stochastically, via a Mover and the resulting
conformation is evaluated by a ScoreFunction. The move is accepted based on the Metropolis criterion



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 May 2019

and the energy difference between the original and the new conformation. Many trajectories are
generated, and the final models are evaluated based on the scientific objective.

Figure 2: Main elements of a Rosetta protocol

Three main elements are required in a Rosetta protocol. The Pose is the biomolecule, such as a protein,
RNA, DNA, small molecule, or glycan, in a specific conformation. Residues in the Pose can be selected
via ResidueSelectors and the behavior for side-chain optimization or mutation can be defined by
TaskOperations. Specific Movers then control how the conformation of the Pose is changed, and the new
conformation is subsequently evaluated by a ScoreFunction. The Metropolis criterion decides whether the
new conformation is accepted in the sampling trajectory. Many independent sampling trajectories are
generated, and the final models are evaluated based on the purpose of the protocol.
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Predicting protein structures

Rosetta was originally developed for de novo protein structure prediction, which is accomplished by
assembling fragments from known protein structures via a Monte Carlo procedure and scoring the models
with an advanced scorefunction that balances physical and statistical potentials. Since optimizing the
fragments for structure prediction can improve model quality, the original fragment picker application was
re-implemented as an object-oriented framework that is vastly more flexible and allows incorporation of
various types of restraints from secondary structure prediction or experimental data, for instance from
NMR chemical shifts®. Improvements in homology modeling were achieved by multi-template modeling in
RosettaCM, which combines the most homologous portions from multiple templates into a single model
(called hybridizing) while modeling missing residues de novo'®. If a template is absent, protein structures
can be predicted de novo, which remains one of the most challenging tasks in structural biology, even
though the incorporation of evolutionary coupling constraints (for instance from GREMLIN'") has led to
enormous improvements in model quality. To thoroughly search the conformational space, an iterative
hybridize approach was implemented. It uses a genetic algorithm that recombines models from an input
pool to create models that have features from their parents but are also distinctly different. Creating
several child models in each iteration, updating the input pool, and performing 30-50 iterations lead to
improved model accuracy because features that are scored favorably by the scorefunction are repeatedly
used in the recombination, such that the models in the pool converge over time. This approach has been
used to improve model quality of de novo predicted models'? as well as homology models'®. Model
refinement or generating ensembles of structures (useful in particular for design) can be accomplished by
several algorithms in Rosetta: FastRelax", Backrub'®, or using vicinity sampling in the KIC/Next-
Generation-KIC loop modeling algorithms'®'” (see loop modeling section).
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Experimental protein structure determination is challenging for proteins on solid surfaces such as
biominerals, self-assembled monolayers, inorganic catalysts, and nanomaterials. RosettaSurface'®
samples protein conformations ab initio in both the solution and adsorbed states (Figure 3D) in order to
account for adsorption-induced conformational changes. Experimental data can be incorporated into the
simulation' to improve scoring, which remains difficult because the Rosetta scorefunction has been
optimized for soluble proteins in aqueous solvent.

Modeling protein—protein complexes

Another early Rosetta method was RosettaDock, which predicts the structure of protein-protein
complexes from input monomers. The most recent iteration, RosettaDock4.0?° incorporates protein
flexibility from pre-generated protein ensembles, mimicking conformer selection. The new protocol has
improved sampling efficiency by automatically adjusting the sampling rate based on the diversity of the
input ensembles. Scoring has also been improved by using a novel, six-dimensional coarse-grained
scoring scheme called motif_dock_score, which employs score grids generated from known complexes in
the Protein Data Bank (PDB). In local docking benchmarks and backbone deviations of up to 2.2 A,
RosettaDock4.0 was able to successfully dock ~50% of complexes. For symmetric homomers, Rosetta
SymDock2?' can be used, which uses the same six-dimensional scoring scheme as in RosettaDock.
Symmetry information can be extracted from a homologous complex, or a global docking search can be
performed for a given point symmetry using Rosetta’s symmetry framework??. An induced-fit based all-
atom refinement relieves clashes in tightly-packed complexes to give physically realistic models. On a
benchmark set of 43 complexes with different cyclic and dihedral symmetries, global docking on
homology models had accuracies of 61% and 42% for cyclic and dihedral symmetries, respectively.
These accuracies are substantially higher than for other symmetric docking tools and can be dramatically
improved when adding restraints.

Figure 3: Rosetta can successfully address diverse biological questions

(A) Overlay of the designed homo-dimeric curved p-sheet (dcs-E_4_dim_cav3) in rainbow and the crystal
structure in gray (PDBID 5u35). The protein is completely designed de novo and features a curved (-
sheet, a large pocket, and a homodimer interface?®. (B) Overlay of the de novo designed macrocycle 3H1
in blue and the NMR structure in gray (PDBID 5v2g). This is an example of a “CovCore” (covalent core)
miniprotein that is held together covalently by a hydrophobic cross-linker at its core (in red for the design
and gray for the NMR structure)?*. (C) The interactome of M1 protein (the most important virulence factor
of Group A streptococcus) and 15 human plasma proteins on the surface of bacteria (peptidoglycan layer
(dark green), and the membrane (brown)). This 1.8MDa structure is measured directly in a complex
mixture of intact bacteria and human plasma by PyTXMS. All structural models are provided by Rosetta
where it consists of M1 protein (gray), IgG (red), four fibrinogens (dark to light blue), six albumins (dark to
light pink), coagulation factor Xl A [F13A] (purple), C4bPa (cyan), haptoglobin [HP] (brown), and alpha-
1-antitrypsin [SerpinA1] (plum). This complex is supported by more than 200 chemical cross-links?®. (D)
Model of an LK-a peptide (LKKLLKLLKKLLKL with a periodicity of 3.5 assuming a helical conformation)
on a hydrophilic self-assembled monolayer surface. In solution, the peptide is unstructured, whereas
when on the surface, experiments show that it assumes helical structure'®. (E) Flexible docking of a
carbohydrate antigen to an antibody. The crystal structure is in gray (PDBID 1mfa) and the Rosetta model
in blue, with the carbohydrate in green. The coordinates for the antibody were taken from the PDB and
the glycan coordinates started from a randomize backbone conformation and rigid-body orientation. (F)
High-resolution model of a peptide-protein complex generated using PIPER-FlexPepDock (model: blue;
solved structure in gray, PDBID 1mfg). The predicted model was generated starting from a peptide
sequence (LDVPV, derived from the C-terminal tail of ErbB2R) and the unbound structure of the receptor
(Erbin PDZ domain, PDBID 2h3l, colored in red)?”.
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Elucidating interfaces between proteins and small molecule ligands

Structure-based drug design has become a common approach for drug optimization due to increasing
numbers of deposited structures in the PDB. Rosettaligand® has demonstrated success in predicting
small molecule-protein interactions. Recent improvements to the algorithm rely on a low-resolution
sampling step via the TransformMover, which combines translational and rotational perturbations in a
single step, and using scoring grids for energy evaluation®®. Further, the algorithm allows backbone
flexibility, mimicking the induced fit hypothesis®®. On a benchmark of 43 complexes, this new algorithm
demonstrated an enhanced docking success by 10-15% with an effective 30-fold speedup over the
original RosettalLigand performance, enabling virtual high-throughput screening (vHTS) of medium-sized
ligand libraries. Later in the drug development process, when medicinal chemists optimize ligands based
on structure-activity relationships (SAR), they synthesize ligands that typically share a core chemical
scaffold and are assumed to bind to their target in a similar fashion®'. RosettaLigandEnsemble3? improves
sampling during ligand docking by taking advantage of ligand similarities and docking a congeneric series
of ligands at the same time, allowing for a placement that works for all considered ligands while
optimizing the binding interface for each ligand independently. Experimental SARs can be included by
promoting certain binding modes.

Another approach for therapeutic intervention is to use small molecule ligands as competitive inhibitors of
protein-protein interactions. A common challenge, however, is that the protein’s inhibitor-bound
conformation often differs from the unbound or protein-protein bound conformation. The pocket
optimization approach in Rosetta identifies protein surface pockets and uses their volume as an additional
scoring term: this allows the user to start from an unbound protein structure and carry out biased
sampling of a protein such that low-energy pocket-containing states are preferentially explored®*3*, The
specific conformations sampled through this approach match “druggable” alternate conformations
observed in ligand-bound structures3334, implying that these states are excellent starting points for virtual
screening. The pockets sampled on the protein surface can then be matched to complementary ligands
directly, by using the pocket itself as the starting point for pharmacophore-based screening®.
Alternatively, these pockets can also be used for Rosetta’s Docking Approach using Ray Casting
(DARC?®) method. DARC uses ray-casting to rapidly position a ligand in the protein surface pocket®®; by
iterating over many candidates, DARC provides a means for very rapid virtual screening. DARC has also
been adapted for GPUs¥, and the newer implementation® includes features that provide improved
performance in virtual screening benchmarks.
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Designing new proteins and functions

The inverse problem of protein structure prediction is protein design, where the objective is identification
of a sequence that best represents a given structure. In particular, de novo design and design of novel
protein functions towards therapeutic intervention remains one of the grand challenges in structural
biology. This problem is addressed by various methods in Rosetta. The SEWING protocol creates de
novo designs by recombining parts of protein structures from randomly-selected helical building blocks®°.
SEWING’s requirement-driven approach allows users to specify features or properties that should be
incorporated into their designs during backbone generation without necessarily requiring a certain size or
three-dimensional fold. New features include incorporation of functional motifs such as protein-binding
peptides for protein interface design and partial or complete ligand binding sites for ligand-binding protein
design*®. A somewhat similar algorithm has been implemented for antibody design (AbDesign, see
“modeling antibodies” below), which was generalized for enzyme design*'. A more general approach is
RosettaRemodel, which performs protein design by rebuilding parts or all of the structure*? from
fragments of known proteins structures. It relies on a blueprint file in which the user defines secondary
and supersecondary structure of the fold to be built. Remodel interfaces with a number of Rosetta
protocols and can be used for various applications such as de novo modeling, fixed-backbone sequence
design, refinement, loop insertion, deletion, and remodeling, as well as disulfide engineering, domain
assembly, and motif grafting.

For designing multifunctional proteins such as biosensors, bioswitches and tunable affinity clamps,
Blacklock et al. developed the domain insertion protocol LooDo (Loop-directed domain insertion). With
LooDo, proteins are designed by inserting a domain into another by two flanking linker regions*. The
linker regions are sampled via fragment insertion to determine relative positioning of the domains,
followed by generalized kinematic loop closure** (GenKIC, see below) and enzyme design to optimize the
interface.

In protein design, a common task is not only design towards a certain goal (positive design), but
additionally, design away from undesired features (negative design). Such a Multi-State Design*® (MSD)
approach evaluates strengths and weaknesses of a single sequence on multiple backbones to account
for positive and negative design, for instance binding to one but not another protein partner. REstrained
CONvergence*® (RECON) takes this idea one step further by allowing each state to sample multiple
sequences during the design process, which is iteratively applied by increasing the restraint weight to
encourage sequence convergence. RECON is effective for large multi-state design problems, such as
antibody affinity maturation or prediction of evolutionary sequence profiles of flexible backbones*”42,

De novo protein design is somewhat easier for structures that are primarily highly regular helices and
sheets, as the principles dictating their conformations are well known. However, designing curved and
twisted B-sheets requires a deeper understanding of the structural irregularities that enable them. These
principles were implemented in the curved B-sheet design method to design a variety of protein folds with
curved sheets (Figure 3A), creating pockets suitable for tailoring ligand-binding and enzymatic active
sites?.

During computational de novo protein design*®, a stringent test for the consistency of the designed
sequence is whether ab initio structure prediction will yield the same structure that was used as a starting
point for the design. However, computationally testing a large number of designs is prohibited by the vast
conformational search space for ab initio structure prediction. To drastically limit that search space and
test many more designs, the biased forward folding method?® uses three (instead of the typical 200)
fragments per residue position. Fragments are chosen based on the RMSD to the native structure in
design. The designs achieving near-native sampling are more likely to have funnel-shaped energy
landscapes and therefore worth assessing with ab initio structure prediction.

Design of protein function has been accomplished by grafting a known motif from a template protein onto
a new protein (motif grafting). This approach has been used for antibodies and for vaccine design®® using
the fold_from_loops application, where the functional motif is used as a starting point of an extended
structure that is folded following the constraints of a target topology. Iterative refinement is carried out via
sequence design and structural relaxation before filtering and human-guided optimization. This
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application has been extended into the Functional Folding and Design (FunFolDes) protocol, which
includes multi-segment motif grafting, different residue length motif insertion, incorporation of restraints,
and folding in the presence of a binding target®'. Fragments selected according to the structure of the
target topology improve the performance of the folding stage via the StructFragmentMover.

Designing interfaces between proteins and interaction partners

Problems related to protein design include designing interfaces of proteins with their interaction partners
such as proteins or small molecule ligands, and predicting AAGs of mutation (e.g. alanine scanning).
Predicting AAGs of mutations for protein stability or protein-protein interactions is a difficult problem with
low correlation coefficients (0.5-0.7)%2, because the effect of the mutation is small compared to the total
energy in the system, and because protein flexibility adds noise to the energies that can mask the effect
of mutations. In the simplest case of alanine scanning (mutating into Ala), methods that use a “soft-
repulsive” energy function without modeling backbone flexibility5®%4 have typically outperformed methods
that allow protein flexibility and use hard-repulsive energy functions®. FlexDDG® was created to improve
protein-protein interface AAG predictions and generalize them to residues other than Ala. The protocol
creates conformational ensembles using Rosetta backrub sampling®, then repacks sidechains, minimizes
torsions and computes change in protein-protein interaction AAG by averaging across the ensembles. On
1240 interface mutants, FlexDDG outperforms Rosetta’s ddg _monomer application, which was originally
created and validated to predict changes in stability upon mutation, not interfaces.

Designing ligand-binding interfaces in proteins is challenging due to inaccuracies in the energy function
(and implicit solvation), the flexibility of ligands, and the sensitivity of protein-ligand interactions to even
subtle conformational changes®. Flexible backbone design methods that use pre-generated ensembles
as a starting point for design%%° perform poorly in benchmarks, likely because the ensemble does not
accurately describe the unbound-to-bound conformational changes. The CoupledMoves protocol couples
backbone flexibility with changes in sidechain rotamers or ligand orientation or conformers, and leads to
substantial improvements in various benchmarks®'.

Symmetric protein assemblies can now be modeled using parametric design. Nature created super-
helical coiled-coils that are well-described by geometric equations using Crick parameters®, which
include variables for the radius of the bundle, major helical twist, minor helix rotation about the primary
axis, etc. Several Movers such as MakeBundle, PerturbBundle, and BundleGridSampler allow designing
helical bundles?*%® and B-barrels based on pre-defined or sampled parameters. Since parametric
methods do not rely on fragments libraries, these modules can be applied to non-canonical coiled-cail
heteropolymers.

Modeling peptides and peptidomimetics

The inherent flexibility of peptides imparts a large conformational search space to them, which leads to
challenging modeling problems; when peptide modeling is combined with another simulation, e.g.
docking, the increase in conformational space makes the modeling task virtually impossible using
traditional approaches. FlexPepDock addresses this problem by allowing targeted sampling of the peptide
flexibility during its docking into a given binding site, either by refining an approximate peptide
conformation (FlexPepDock refinement®), or by full ab initio sampling of the peptide conformation
(FlexPepDock ab initio®®). Peptide docking is especially challenging when the binding site on the receptor
is unknown. However, it can be simplified based on the observation that (for peptides built from canonical
amino acids) the bound peptide conformation is often included in the fragments generated by the
FragmentPicker. The PIPER-FlexPepDock?” protocol rigid-body docks these fragments using PIPER
FFT-based docking®, and refines the complex using FlexPepDock®. PIPER-FlexPepDock can generate
highly accurate peptide-protein complexes from a peptide sequence and a free receptor structure (Figure
3F).

Many protein-protein interactions (PPl) are mediated by often disordered peptide segments that are
responsible for most of the binding energy®-7°. PeptiDerive’" detects such segments in a PPl complex
through a sliding window approach. PeptiDerive was extended to cyclized peptides and is available on
the ROSIE" server.
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Conformations of cyclic peptides can be sampled with simple _cycpep_predict, which restricts the
conformational search space through cyclization®*4473 via the Generalized Kinematic Closure (GenKIC)
algorithm (see “loop modeling” below). Simple _cycpep_predict does not rely on protein fragments and
can model non-canonical chemistries (Figure 3B), being a generalization of earlier protocols.

Multi-specificity is common at protein-peptide interfaces, meaning that the protein can interact with
multiple substrates at the same interaction site. This can be exploited for identifying and designing novel
substrates. Multi-specificity can be modeled with MFPred”, which is a rapid, flexible-backbone self-
consistent mean field theory-based technique. MFPred can predict experimentally determined peptide
specificity profiles for a range of receptors, at equivalent or better prediction accuracy and a 10- to 1000-
fold lower computational cost when compared to other methods.

Loop modeling for structure prediction and design

Loop modeling was implemented early in Rosetta’>"® to generate structures for loops or gaps in models,
with initial approaches relying on fragments to sample conformations and the iterative Cyclic Coordinate
Descent (CCD) algorithm’” for chain closure. Subsequent developments introduced inverse kinematic
closure methods (termed “KIC”) into Rosetta, that rely on polynomial resultants to analytically solve for
closed conformations and which produced more native-like loop conformations’. KIC was used for
modeling protein surface and interface loops, and to design and refine active site loops or regions binding
small molecules™. Next-Generation KIC (NGK)'” made improvements to sampling loop conformations by
employing diversification (i.e. sampling a wider range of possible conformations) and intensification (i.e. to
focus sampling on previously generated conformations) to identify lowest-energy conformations. NGK
substantially increases the fraction of near-native models' and allows modeling longer loops.
GeneralizedKIC* (GenKIC) samples or perturbs loop geometries between fixed endpoints for any
continuous peptide chain including those with non-standard peptide chemistries, for instance for non-
canonical backbones. GenKIC can sample backbone conformations containing L- and D-a-amino acids,
B-amino acids, peptoids, oligoureas, or more exotic chemical building-blocks for which template
structures do not exist in structural databases. Additionally, GenKIC can sample conformations involving
side-chain connections (e.g. disulfide bonds, side-chain isopeptide bonds, efc.), covalently-attached
ligands or crosslinkers, or chemistries that conventional loop-modelling algorithms do not typically handle.

Most Rosetta loop modeling algorithms were primarily developed for structure prediction. However,
design constitutes the opposite problem, finding low-energy sequence—structure combinations that satisfy
certain design goals. LoopHashKIC?® addresses this problem and uses the Rosetta LoopHash algorithm?®'
to efficiently query a database of loop conformations based on rigid-body transforms between the first and
last loop residues. LoopHashKIC uses LoopHash to identify a suitable peptide fragment, and then uses
KIC to find an exact solution to close the backbone. To improve the local sequence-structure compatibility
in de novo designed loops, the ConsensusLoopDesign task operation accessed through Rosetta Scripts
allows a user to restrict the amino acid identities of loops based on sequence profiles of naturally
occurring loops with the same region of backbone dihedral angle space (Ramachandran bins)?2,

Modeling antibodies and other proteins in the immune system

Due to the therapeutic significance of antibodies, several protocols have been developed in our
community for structure prediction, docking and design that involve antibodies and other proteins in the
immune system, such as T-cell receptors (TCR), displayed antigens of the Major Histocompatibility
Complex (MHC) and other soluble antigens and immunogens. An overview of the various applications
can be found in Table 1.

protocol target task comments

RosettaAntibo | antibodies homology | Identifies templates, assembles them into a structure, and
dy?®3-86 modeling | models loops de novo while refining VH-VL orientation®’;
Gray lab / docking | allows multiple templates; uses a key constraint®2° for

CDR H3 modeling; good for modeling camelid antibodies®
and antibodies on the scale of the human repertoire®"

AbPredict® antibodies structure | Does not rely on templates, samples backbone fragments
Fleishman lab prediction | and rigid-body orientations from known structures, without
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considering sequence homology, hence being able to
model antibodies accurately with sequence identity as low
as 10%; AbPredict2 available as webserver®
RosettaMHC® | antigen / MHC-I | modeling | Predicts peptide antigens that bind to all known MHC-|
Sgourakis lab | / (chaperone or | / docking | alleles models peptide/MHC-I structures®; code

T-cell receptor) implementation in PyRosetta
RosettaTCR® | T-cell receptors | structure | Models TCRs from sequence, via template identification,
Pierce lab prediction | grafting of loop templates onto framework regions,

minimization and loop refinement; to gain structural insights
into TCRs, e.g. those targeting cancer neoepitopes®, or to
identify features of sets of TCRs from high throughput
sequencing; can be combined with docking to generate
models of TCR-peptide-MHC complexes® or TCRs in
complex with non-peptide antigens bound to MHC-like

proteins'®.
SnugDock " antibody- docking Input is starting conformation and optionally an ensemble
Gray lab antigen of antibodies/antigens, then runs local docking to refine

both the antibody—antigen interface and the heavy—light
chain interface (within the antibody) and re-models the
CDR H2/H3 loops at the interface; also includes a CDR H3
structural constraint®8° and docking of camelid
antibodies®

RosettaAntibo | antibody- design Based on RosettaAntibody®®; design of specific CDRs of
dyDesign'%? antigen different clusters and lengths, sequence design using

(RAbD) cluster-based CDR profiles or conservative mutations, or
Dunbrack lab de novo design of whole antibodies; based on the North-

Dunbrack CDR clustering'®, reducing deleterious
sequence mutations; benchmarked on a diverse set of 60
interfaces from both lambda and kappa antibodies;
experimental benchmarking of two complexes showed
affinity improvements between 10 and 50-fold

Epitope MHC epitopes design Includes experimental immunogenic epitope data, MHC
removal'%10 epitope prediction tools, and host genomic data to enable
Baker lab protein design with reduced immunogenicity while retaining

function and stability'®; uses a machine learning-based
epitope prediction for 28 different alleles, restricts design to
select 15mer epitope regions, and uses a greedy stepwise
protein design'® to eliminate the most immunogenic
epitopes with as few mutations as possible, avoiding
disruptive core mutations likely to destabilize the protein

AbDesign'%%'% | antibodies design Cuts experimentally determined antibody structures along
7 conserved positions to create interchangeable segments,
Fleishman lab recombines them to produce novel antibody models'%®'%7;

models are docked to a target of interest, either locally to a
specific epitope, or globally, followed by optimization
comprised of backbone sampling and sequence design for
improving stability and binding affinity

Using experimental data to direct modeling

The use of experimental data in modeling can vastly restrict the conformational search space, therefore
allowing the modeling of larger, more complex biomolecules to greater accuracy. Electron density maps
from cryo-electron microscopy (cryoEM) or X-ray crystallography have become more readily available in
the past decade and methods to incorporate these types of data have been successfully used for high-
resolution structure determination. Since cryoEM density maps are often of low resolution, de novo
structure determination methods require a combinatorial search procedure to unambiguously assign all
densities to residues in the protein. A de novo method described by Wang et al. applies a model building
approach'® for density maps between 3-5A that fits fragments into densities and scores their match
based on secondary structure, fit with density, loop closure, clashes and consistency between
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overlapping fragments to assign sequence into densities. While this method requires >70% of the map to
be assigned initially, an updated version of this method, the RosettaES'® enumerative sampling
approach, forgoes this requirement. RosettaES gradually extends the model one residue at a time until all
residues have been assigned. At each iteration, short fragments are used to sample the nearby
conformational space of the growing model, while undergoing a series of clustering and filtering steps
based on the Rosetta energy and fit to the density.

If assignment is complete but the data are low-resolution, refinement into density maps is necessary.
Several methods have been developed for density maps in the 3.0-4.5A resolution range. One method'"°
iterates between refinement with Phenix in reciprocal space to physically plausible conformations, and
Rosetta in real space, because Rosetta’s all-atom scorefunction compensates for the lack of high-
resolution data, while the density map restrains backbone and side-chain sampling in real space.
Refinement can also be seeded from homology models, followed by density-guided rebuilding and
refinement of coordinates and B-factors'''. More recently, an automated fragment-guided refinement
pipeline''? splits the density map into independent training and validation maps. It finds regions with poor
density fit, iteratively rebuilds them with fragments using the training map, filters the models based on
their fit to the validation map, model geometry from MolProbity and fit to the full map, and then optimizes
against the full map. The frameworks for electron density maps and carbohydrate modeling®® in Rosetta
(below) were connected''® for refinement of carbohydrates into low-resolution electron density maps from
cryoEM or crystallography.

NMR data were incorporated into de novo structure prediction early in Rosetta development, creating
RosettaNMR. Chemical shifts were used for fragment picking using CS-Rosetta''*, which could be used
in conjunction with NOE, RDC''S, PCS''6-""® and PRE data. Improvements, for instance through
RASREC resampling’'® allowed the use of sparse' or unassigned data'?', easier-to-obtain data
(backbone-only'??), modeling larger and more complex proteins'?®, membrane proteins'**, symmetric
systems'?5, and combination with data from SAXS'?, cryoEM'?’, distance restraints from homologous
proteins'?® and evolutionary couplings'?®. CS-Rosetta also has the AutoNOE'3%"3" module for automatic
assignment of NOESY data for use in structure calculations. RosettaNMR was recently overhauled and
reconciled with CS-Rosetta and PCS-Rosetta to allow seamless integration of several types of NMR
restraints (CS, RDC, PCS, PRE, NOE) in one consistent framework'3? that could be applied to structure
prediction, protein-protein docking, protein-ligand docking, and symmetric assemblies.

Covalent labeling mass spectrometry data provides information on relative solvent exposure of residues,
therefore yielding information on protein tertiary structure. A low-resolution score term from hydroxyl
radical foot-printing has been implemented in Rosetta that can improve model quality in structure
prediction33134, Finally, data from chemical cross-linking mass spectrometry has been incorporated into
an automated workflow to identify protein-protein interactions. The PyTXMS?® method combines the
sensitivity of mass spectrometry to analyze complex samples with the power of Rosetta structural
modeling and protein-protein docking to efficiently sample the vast conformational space and identify
interactions (Figure 3C). A machine learning algorithm based on high resolution MS1 data guide the
potential binding interface selection which is then validated and adjusted by a repository of structural
models and MS2 (DDA) samples.

Modeling nucleic acids and their interactions with proteins

Several advances have been made in the representation of nucleic acids in Rosetta. The StepWise
Monte Carlo protocol (SWM) has achieved RNA structure predictions reaching atomic accuracy'®®; the
approach provides an acceleration over the original enumerative StepWise Assembly (SWA)
method'3¢37, A version of SWA that rebuilds one nucleotide at a time enables fine-grained correction of
errors in RNA coordinates fit into crystallographic or cryo-EM maps by Enumerative Real-space
Refinement ASsisted by Electron density under Rosetta'®13° (ERRASER).

The Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) structure prediction protocol 40141
also permits working with chemically modified nucleotides, picking fragments for the most chemically
similar base available'®®. Homologous fragments can automatically be eliminated from fragment sets to
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give pseudo-blind prediction results'®. As another connection of Rosetta’s RNA tools to experimental
structural biology, '"H NMR data can be used for RNA modeling via the CS-Rosetta-RNA protocol'#2.

The most recent advances in Rosetta RNA tools expand the fragment assembly protocol to support
modeling RNA-protein complexes through simultaneous folding and docking'#®. RNA-protein interactions
are handled via additional knowledge-based score terms that supplement the low-resolution RNA
scorefunction. Free energy perturbations from RNA or protein mutations can be modeled with the
Rosetta-Vienna AAG protocol'#4. Structure coordinates can further be built into cryo-EM density maps for
large RNA-protein complexes with DRRAFTER (De novo Ribonucleoprotein modeling in Real space
through Assembly of Fragments Together with Experimental density in Rosetta)'°.

Redesign and prediction of protein-DNA interfaces is also possible in Rosetta’®'¥” and has been
accomplished with flexible protein backbones'#, genetic algorithms'46.148.149 gnd motif-biased rotamer
sampling’®®15". However, the biggest limitation of these approaches is that they rely on fixed DNA
backbone conformations, which in nature can be highly flexible. Key to successful protein-DNA design is
an energy function that is optimized'®":'%? for these highly polar and solvated interfaces. Rosetta further
supports prediction of specificity and affinity’®® and the prediction of DNA binding preferences of
homologous proteins. Multi-template modeling in RosettaCM'* was successfully applied to this
challenge'®. To accomplish this, protein homology modeling was followed by docking of multiple
competing DNA sequences threaded onto the original crystal structure backbone and comparing the
energies of the resulting protein-DNA complexes.

Modeling membrane proteins

Membrane proteins constitute about 30% of all proteins and are targets for over 60% of pharmaceuticals
on the market'®®. However, experimental difficulties have limited our understanding of their structures'’.
Previously, Yarov-Yarovoy'%®'% and Barth'® implemented tools for low- and high-resolution structure
prediction of membrane proteins, termed RosettaMembrane. These tools were recently re-engineered for
compatibility with Rosetta3? into a platform called RosettaMP'®'. RosettaMP implements core modules for

representing, sampling, and scoring proteins in the context of an implicit membrane. RosettaMP is

compatible with key modeling protocols including docking, design, AAG prediction®?, PyMOL

visualization'®?, and assembly of symmetric proteins. In addition, a set of basic modeling tools'® is
implemented, for instance for scoring, transforming a membrane protein into the membrane coordinate
frame, de novo modeling for single transmembrane span helices, introducing mutations, and visualization
in the membrane. RosettaMP has further enabled rapid development of new modeling tools including
structure-based detection of lipid exposed residues in the membrane'® environment and domain
assembly of full-length protein models from structures of transmembrane and soluble domains'®®. The
RosettaCM protocol for multi-template homology modeling has also been adopted for membrane
proteins®.

Adding carbohydrates to the modeling process

Carbohydrates are fundamental to life'®1%7 but because of challenges in experimental characterization
and computational sampling and scoring, their structures have been historically under-studied. The
RosettaCarbohydrate framework?® allows modeling of carbohydrate structures and complexes. The
framework is integrated into Rosetta such that it is possible to model glycosylated proteins or protein—
sugar complexes (Figure 3F) with the same algorithms one would use for proteins. RosettaCarbohydrate
is not limited to commonly studied sugars but can handle the full gamut of carbohydrate structures,
including linear, cyclic, and branched structures, sugar modifications, and conjugations. Methods exist for
sampling ring conformations, packing substituents, refining glycosidic linkages, sampling from linkage
“fragments”, and extending glycan chains. Scoring of saccharide-containing sugars includes a quantum-
mechanically derived intrinsic backbone term'®®. Because saccharide residues are stored as distinct data
structures, we can integrate bioinformatic and statistical data into our algorithms, which opens the doors
for glycoengineering and design applications. RosettaCarbohydrate has been integrated with various
other frameworks in Rosetta, such as loop modeling (GenKIC and Stepwise Assembly), refinement
(GlycanTreeModeler), symmetry, and RosettaScripts-accessible classes such as MoveMaps and
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ResidueSelectors. Linkages are automatically determined during PDB read-in. Carbohydrates work with
Cartesian minimization, and they can be refined into electron density maps™'3.

2. The brain of Rosetta: its scorefunction

Rosetta’s energy function has been continuously improved over many years'®® and a full review of the
modern all-atom energy function was published recently®. Briefly, the newest energy function REF2015*
(REF stands for Rosetta Energy Function) features two main advancements. First, reproducibility of
thermodynamic observables (such as liquid-phase properties'® and liquid-to-vapor transfer free
energies'’") was added to the optimization objectives, in addition to structure'”?-based tests. Second, a
new, derivative-free optimization technique was developed, which is suitable for robust optimization of
>100 parameters. Further, a new energy term was added that takes into consideration non-ideality of
bond lengths and angles in cartesian space'”®. The cartesian term'”? is also the basis for a cartesian_ddG
method that has been used to calculate AAGs of mutation to probe changes in protein stability. Only the
backbones and side chains of residues nearby the mutation site are allowed to move'”*. Due to the local
optimization, this protocol is much faster than ddg_monomer'’®, while retaining the same level of
accuracy. The default Rosetta energy function is now also compatible with an expanded palette of
chemical building-blocks: canonical and non-canonical L-a-amino acids and their D-amino acid
counterparts, exotic achiral amino acids like 2-aminoisobutyric acid (AIB), peptoids, and oligoureas. The
ability to model metalloproteins has also been added to Rosetta'”®'”. As noted above, scorefunctions
that enable simultaneous modeling of protein and RNA are being explored'4. The scorefunction is now
thread-safe and fully mirror symmetric, i.e. enantiomers in mirror conformations score identically.
Guidance energy terms for design have been added to encourage certain features, such as specific
amino acid compositions**73, hydrogen bonding networks, or global or local net charges, and discourage
others, such as repeat sequences that hinder NMR assignments, buried unsatisfied hydrogen bond
donors and acceptors, or voids within the protein'’®. Further, a consensus scoring method, which utilizes
the semi-orthogonal nature of the Rosetta and Amber energy functions, was developed for model ranking
to identify most near-native models'® from the pool of generated decoys. This approach led to the
development of a Python-based tool (AMBRose) for interconversion between Rosetta and Amber models
to facilitate consensus scoring.

Hydrogen bond networks are important for biomolecular structure and catalysis but have been
challenging to design because of pairwise interactions that have multi-body, cooperative properties. The
HBNet protocol'® has been used to design de novo coiled coils with interaction specificity mediated by
designed hydrogen bond networks, including homo-oligomers'®, membrane proteins®®, and large sets of
orthogonal heterodimers'®'. An improvement to HBNet uses a Monte Carlo search procedure to sample
hydrogen bond networks with drastically improved performance'®. We further developed a statistical
potential to place highly-coordinated water molecules on the surface of biomolecules. On a data set of
153 high-resolution protein-protein interfaces, the method predicts 17% of native interface waters with
20% precision within 0.5 A of the crystallographic water positions'®3. The potential is accessible through
the WaterBoxMover in RosettaScripts.

3. User interfaces and usability

Advances in Rosetta have also focused on improving usability of the software through developing several
user interfaces to suit different use cases and styles (Figure 4). The command line interface was the first
and is still the most-often used interface to Rosetta methods. Structure input and output was enhanced by
the ability to read and write mmCIF files (via an external library) using the same mechanisms as PDB
files, which permits representation of large complexes that are ill-suited for the PDB format (e.g. the
ribosome). This comes with the ability to read the Protein Databank's Chemical Component Dictionary,
the description of the chemical composition of residues in the officially released PDB structures.
Multithreading support has been added to Rosetta, which required a major refactor of its core architecture
for thread-safety, allowing shared-memory parallelism. Multithreading is currently available for specific
protocols (simple_cycpep_predict) with planned expansion to other applications (including the
JobDistributor jd3).
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Figure 4: User interfaces to Rosetta

(A) Rosetta can be run from a terminal and offers three different interfaces to the codebase. The top
panel outlines the task to be accomplished: making two mutations in a protein and then refining the
structure. The panels underneath show how this task can be accomplished in the different interfaces. The
command line panel shows the executable, input files and options to run two specific Rosetta
applications. RosettaScripts is an XML-based scripting language that offers more flexibility by combining
Movers and ScoreFunctions into a custom Protocol. PyRosetta offers direct access to the underlying
Rosetta code objects but requires knowledge of the Rosetta codebase. (B) Point-and-click interfaces to
Rosetta. InteractiveRosetta is a graphical user-interface (GUI) to PyRosetta. It offers controls to the most
popular protocols, file formats and options. Foldit is a videogame primarily used to crowd-source real-
world scientific puzzles but can also be used on custom proteins of interest. It allows access to some
popular applications via a game interface. ROSIE is a super-server hosting a multitude of servers each
executing a particular Rosetta protocol. It currently includes servers for 21 Rosetta methods. [The
InteractiveRosetta panel was reproduced with permission from Bioinformatics.]
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In addition to the command line interface, Rosetta features two major scripting interfaces: RosettaScripts
and PyRosetta. RosettaScripts® is a popular scripting interface that uses Extensible Markup Language
(XML) to build fairly complex protocols using core Rosetta machinery?. Comprehensive knowledge of the
codebase is unnecessary since most of the underlying modules® have been thoroughly documented —
documentation is now also generated using XML schema, which validates the RosettaScripts XML files at
runtime. RosettaScripts was further extended and generalized to enhance consistency: ResidueSelectors
enable selection of residues based on specific properties such as chain, amino acid, secondary structure,
index, solvent accessible surface area, and others, and can be used in conjunction with
MoveMapFactories, which control a structure’s flexibility during energy minimization. ResidueSelectors
are also accepted by TaskOperations which control side-chain identity and optimization. A more general
analysis tool, SimpleMetrics, allows custom analyses of models through RosettaScripts and writes the
output into the scorefile. The SimpleMetrics system is more integrated and robust than previous tools,
such as the InterfaceAnalyzer or the FeaturesReporter.
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PyRosetta®>'® is a collection of Python bindings to the source code, exposing ~7,400 classes and 88,000
functions. PyRosetta allows custom protocol development that is flexible and fast, but it requires
familiarity with the underlying structure of the codebase. Not all of options available in RosettaScripts
have corresponding API-level configuration, so in order to take full advantage of those protocols,
PyRosetta can now configure objects using RosettaScripts XML. This brings the added advantage of
harmonizing the documentation across multiple interfaces.

InteractiveROSETTA'® is a graphical interface for PyRosetta that presents easy-to-use controls for
several of the most widely-used Rosetta protocols alongside a selection system that uses PyMOL as a
visualizer. InteractiveROSETTA is capable of interacting with remote servers running a standalone
Rosetta install, rendering it easy to incorporate more sophisticated protocols that are not accessible in
PyRosetta and/or require significant computational resources.

Foldit Standalone'®®'®” is a graphical interface to Rosetta based on the Foldit video game”'®. Foldit
Standalone provides several interactive structure manipulations, including pulling directly on the structure,
rigid body docking, and residue mutation, insertion and deletion. Users can apply hard and soft
constraints that guide automated moves such as packing and minimization, and provides real-time
scoring updates as the structure changes. Additional features include multiple sequence alignments for
template-based modeling, along with electron density-, Ramachandran-, and contact-map visualizations.
Further, scientists and educators can now run their own custom Foldit puzzles for a group of their
choosing, a new feature called “Custom Contests”'8°,

The Rosetta community has further devoted an enormous effort to enhance the user friendliness of
Rosetta by rewriting and adding documentation (Figure 5). We now use a public-facing Gollum wiki
(https://www.rosettacommons.org/docs/latest/Home) for various levels of documentation, such as
application documentation, tutorials for beginning users, and static protocol captures that accompany
manuscripts for scientific reproducibility (see supplement for links). The Gollum wiki is easily editable by
members of the RosettaCommons. Command line executables accept a —-info option, which prints
relevant options for the current application in RosettaScripts, and debugging command lines is facilitated
by improved error messages. Default, system-wide options (e.g. database paths) can now be specified in
a rosetta.rc file. Lastly, code development in C++ is now easier with the help of available code templates
that create much of the boilerplate code required to extend Rosetta.
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Figure 5: Main external documentation page for Rosetta

In 2015, our community performed a complete overhaul of the documentation for Rosetta. Documentation
is now hosted on a Gollum wiki, which is version controlled and easily editable for members of our
community. Accessibility and ability to edit the documentation has drastically improved the user-
experience of Rosetta.

Ho me Q  Home  Feedback

Getting Started What is Rosetta?

Build Documentation

Rosetta is a comprehensive software suite for modeling macromolecular structures.
Rosetta Tutorials As a flexible, multi-purpose application, it includes tools for structure prediction,
Rosetia Basics design, and remodeling of proteins and nucleic acids. Since 1998, Rosetta web
servers have run billions of structure prediction and protein design simulations, and

Rosetta Applications billions or trillions more have been run on supercomputer clusters.

Rosetta Script
ECREEESY Researchers use Rosetta to better understand treatments of infectious diseases,

Interfaces
cancers, and autoimmune disorders. Further applications involve the development of
Development vaccines, new materials, targeted protein binders, and enzyme design

Documentation
Rosetta began as a structure prediction tool, and has consistently been a strong

FAQ performer in the Critical Assessment of Structure Prediction (CASP) community-wide
blind prediction exercises. It has grown to offer a wide variety of effective sampling
algorithms to explore backbone, side-chain and sequence space, and its excellence
Encyclopedia has generalized to more community-wide exercises including RNA-puzzles and

Glossary

Critical Assessment of PRotein Interactions (CAPRI). Rosetta boasts broadly tested
scoring (energy) functions and contains an unparalleled breadth of applications from
Release Notee folding to docking to design.

Options List

Rosetta is freely available to academic and government laboratories, with over
10,000 free licenses already in use. An active support forum allows users to easily
collaborate within the broad research community of Rosetta users. To download
Rosetta, please request a license.

If you think you're ready to give Rosetta a try, we suggest starting here and trying out

these tutorials.

Note to Rosetta developers: make edits at this ink, and they will show up for all users here at the

same time that weekly builds are released.

A limitation of Rosetta is the need for a local installation and compilation in a Unix-like environment.
Webservers provide a user-friendly alternative and a number of independent servers have emerged in the
Rosetta community. However, implementing and maintaining such servers comes at a substantial cost.
To make it easier to provide Rosetta protocols as a webserver, ROSIE (Rosetta Online Server that
Includes Everyone)’>'% (http://rosie.rosettacommons.org/) provides a simple framework for
“serverification” of protocols. ROSIE currently contains 21 webservers, with additional protocols
continually being added.

Conclusion

The Rosetta software is developed by a large, global community that aims to solve complex problems
through collaborative solutions and code implementations. In the last five years, great strides have been
made in Rosetta. More protocols are available now that enable modeling a broader range of biologically-
and chemically-realistic systems, larger macromolecular complexes and in general more sophisticated
systems. Prediction accuracies have improved through advances in the scorefunction, which is a
combination of physics-based and knowledge-based potentials that were also fit against thermodynamic
observables. Incorporating experimental data into the modeling process has also been facilitated and
improved. Further, our community saw the need to develop more general, reusable, user-friendly, and
scientifically reproducible protocols. This was motivated by the growth of the software and the developer
community, the various user interfaces, the diversity of the community!, and the complexities of the
protocols in this complex piece of software. The improvements to documentation allow users to quickly
start using or developing custom protocols, while facilitating user support for the various Rosetta
interfaces (command line, RosettaScripts, PyRosetta, etc.). Over the years, these applications have
moved away from simply tackling basic science questions to more application-based scientific
developments. The myriad of advances described above have made integration of Rosetta into existing
experimental and computational scientific workflows increasingly useful and standard. Rosetta’s
predictive powers can be used not only to analyze and verify existing data but to inform experiments to
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galvanize engineering tomorrow's industrial enzymes, enable the creation of novel biomaterials, and
accelerate the discovery of new potent, life-saving therapeutics that will change the world as we know it.
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