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Abstract 
The Rosetta software suite for macromolecular modeling, docking, and design is widely used in 
pharmaceutical, industrial, academic, non-profit, and government laboratories. Considering its broad 
modeling capabilities, Rosetta consistently ranks highly when compared to other leading methods created 
for highly specialized protein modeling and design tasks. Developed for over two decades by a global 
community of scientists at more than 60 institutions, Rosetta has undergone multiple refactorings, and 
now comprises over three million lines of code. Here we discuss the methods developed in the last five 
years, involving the latest protocols for structure prediction, protein–protein and protein–small molecule 
docking, protein structure and interface design, loop modeling, the incorporation of various types of 
experimental data, and modeling of peptides, antibodies and other proteins in the immune system, 
nucleic acids, non-standard amino acids, carbohydrates, and membrane proteins. We briefly discuss 
improvements to the energy function, user interfaces, and usability of the software. Rosetta is available at 
www.rosettacommons.org.  
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Introduction 
Development of Rosetta started in the mid-1990s for protein structure prediction and to gain insights into 
the protein folding problem, which remains a grand challenge of structural biology. Over time, the number 
of applications grew to address a wider array of modeling tasks, ranging from protein–protein or –small 
molecule docking to incorporating NMR data, loop modeling, protein design, and interaction with peptides 
and nucleic acids (Figure 1). Over the 20 plus years since those early beginnings, the community of 
developers and scientists, the RosettaCommons, grew from a single academic laboratory to laboratories 
at over 60 institutions around the globe1. Rosetta has undergone several transitions, including in 
programming language and implementation, with the latest protocols based on Rosetta3, which was first 
released in 20082. Rosetta’s energy function has been continuously improved over its lifetime, detailed 
descriptions of which can be found in references 3 and 4. As the Rosetta community grew, efforts to 
improve usability, interfaces to the code, and documentation have drastically improved usability and 
modular application to new problems. As part of our sustained focus on reproducibility and usability, we 
developed several interfaces, (PyRosetta5, RosettaScripts6, Foldit7) and emphasized publishing protocol 
captures8 that accompany manuscripts to improve accessibility, user friendliness and scientific 
reproducibility. As the software’s interfaces have grown more versatile, development has accelerated and 
branched in many directions. However, this makes it difficult to keep up with all the developments that are 
happening within the software and the scientific community. To address this growth in functionality, here 
we have compiled the latest method developments in the Rosetta software suite from the past five years, 
divided into several modeling categories as outlined below. This report is intended to serve as a guide for 
Rosetta users and developers — whether new, returning, or seasoned — who want to be updated on 
newest developments. The supplement contains a tour of the protocols with extensive links to 
documentation and resources on the web.  
 
Figure 1: Capabilities of the Rosetta macromolecular modeling suite 
Popular tasks that can be addressed in Rosetta (blue) and major systems that can be modeled (red). 
 

 
 
1. Major applications 
The general outline of a typical Rosetta protocol is depicted in Figure 2: the conformation of a 
biomolecule (the Pose) is altered, either deterministically or stochastically, via a Mover and the resulting 
conformation is evaluated by a ScoreFunction. The move is accepted based on the Metropolis criterion 
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and the energy difference between the original and the new conformation. Many trajectories are 
generated, and the final models are evaluated based on the scientific objective.  
 
Figure 2: Main elements of a Rosetta protocol 
Three main elements are required in a Rosetta protocol. The Pose is the biomolecule, such as a protein, 
RNA, DNA, small molecule, or glycan, in a specific conformation. Residues in the Pose can be selected 
via ResidueSelectors and the behavior for side-chain optimization or mutation can be defined by 
TaskOperations. Specific Movers then control how the conformation of the Pose is changed, and the new 
conformation is subsequently evaluated by a ScoreFunction. The Metropolis criterion decides whether the 
new conformation is accepted in the sampling trajectory. Many independent sampling trajectories are 
generated, and the final models are evaluated based on the purpose of the protocol.  
 

 
 
Predicting protein structures 
Rosetta was originally developed for de novo protein structure prediction, which is accomplished by 
assembling fragments from known protein structures via a Monte Carlo procedure and scoring the models 
with an advanced scorefunction that balances physical and statistical potentials. Since optimizing the 
fragments for structure prediction can improve model quality, the original fragment picker application was 
re-implemented as an object-oriented framework that is vastly more flexible and allows incorporation of 
various types of restraints from secondary structure prediction or experimental data, for instance from 
NMR chemical shifts9. Improvements in homology modeling were achieved by multi-template modeling in 
RosettaCM, which combines the most homologous portions from multiple templates into a single model 
(called hybridizing) while modeling missing residues de novo10. If a template is absent, protein structures 
can be predicted de novo, which remains one of the most challenging tasks in structural biology, even 
though the incorporation of evolutionary coupling constraints (for instance from GREMLIN11) has led to 
enormous improvements in model quality. To thoroughly search the conformational space, an iterative 
hybridize approach was implemented. It uses a genetic algorithm that recombines models from an input 
pool to create models that have features from their parents but are also distinctly different. Creating 
several child models in each iteration, updating the input pool, and performing 30-50 iterations lead to 
improved model accuracy because features that are scored favorably by the scorefunction are repeatedly 
used in the recombination, such that the models in the pool converge over time. This approach has been 
used to improve model quality of de novo predicted models12 as well as homology models13. Model 
refinement or generating ensembles of structures (useful in particular for design) can be accomplished by 
several algorithms in Rosetta: FastRelax14, Backrub15, or using vicinity sampling in the KIC/Next-
Generation-KIC loop modeling algorithms16,17 (see loop modeling section).  
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Experimental protein structure determination is challenging for proteins on solid surfaces such as 
biominerals, self-assembled monolayers, inorganic catalysts, and nanomaterials. RosettaSurface18 
samples protein conformations ab initio in both the solution and adsorbed states (Figure 3D) in order to 
account for adsorption-induced conformational changes. Experimental data can be incorporated into the 
simulation19 to improve scoring, which remains difficult because the Rosetta scorefunction has been 
optimized for soluble proteins in aqueous solvent.  
 
Modeling protein–protein complexes 
Another early Rosetta method was RosettaDock, which predicts the structure of protein-protein 
complexes from input monomers. The most recent iteration, RosettaDock4.020 incorporates protein 
flexibility from pre-generated protein ensembles, mimicking conformer selection. The new protocol has 
improved sampling efficiency by automatically adjusting the sampling rate based on the diversity of the 
input ensembles. Scoring has also been improved by using a novel, six-dimensional coarse-grained 
scoring scheme called motif_dock_score, which employs score grids generated from known complexes in 
the Protein Data Bank (PDB). In local docking benchmarks and backbone deviations of up to 2.2 Å, 
RosettaDock4.0 was able to successfully dock ~50% of complexes. For symmetric homomers, Rosetta 
SymDock221 can be used, which uses the same six-dimensional scoring scheme as in RosettaDock. 
Symmetry information can be extracted from a homologous complex, or a global docking search can be 
performed for a given point symmetry using Rosetta’s symmetry framework22. An induced-fit based all-
atom refinement relieves clashes in tightly-packed complexes to give physically realistic models. On a 
benchmark set of 43 complexes with different cyclic and dihedral symmetries, global docking on 
homology models had accuracies of 61% and 42% for cyclic and dihedral symmetries, respectively. 
These accuracies are substantially higher than for other symmetric docking tools and can be dramatically 
improved when adding restraints.  
 
Figure 3: Rosetta can successfully address diverse biological questions 
(A) Overlay of the designed homo-dimeric curved b-sheet (dcs-E_4_dim_cav3) in rainbow and the crystal 
structure in gray (PDBID 5u35). The protein is completely designed de novo and features a curved b-
sheet, a large pocket, and a homodimer interface23. (B) Overlay of the de novo designed macrocycle 3H1 
in blue and the NMR structure in gray (PDBID 5v2g). This is an example of a “CovCore” (covalent core) 
miniprotein that is held together covalently by a hydrophobic cross-linker at its core (in red for the design 
and gray for the NMR structure)24. (C) The interactome of M1 protein (the most important virulence factor 
of Group A streptococcus) and 15 human plasma proteins on the surface of bacteria (peptidoglycan layer 
(dark green), and the membrane (brown)). This 1.8MDa structure is measured directly in a complex 
mixture of intact bacteria and human plasma by PyTXMS. All structural models are provided by Rosetta 
where it consists of M1 protein (gray), IgG (red), four fibrinogens (dark to light blue), six albumins (dark to 
light pink), coagulation factor XIII A [F13A] (purple), C4bPa (cyan), haptoglobin [HP] (brown), and alpha-
1-antitrypsin [SerpinA1] (plum). This complex is supported by more than 200 chemical cross-links25. (D) 
Model of an LK-α peptide (LKKLLKLLKKLLKL with a periodicity of 3.5 assuming a helical conformation) 
on a hydrophilic self-assembled monolayer surface. In solution, the peptide is unstructured, whereas 
when on the surface, experiments show that it assumes helical structure19. (E) Flexible docking of a 
carbohydrate antigen to an antibody. The crystal structure is in gray (PDBID 1mfa) and the Rosetta model 
in blue, with the carbohydrate in green. The coordinates for the antibody were taken from the PDB and 
the glycan coordinates started from a randomize backbone conformation and rigid-body orientation26. (F) 
High-resolution model of a peptide-protein complex generated using PIPER-FlexPepDock (model: blue; 
solved structure in gray, PDBID 1mfg). The predicted model was generated starting from a peptide 
sequence (LDVPV, derived from the C-terminal tail of ErbB2R) and the unbound structure of the receptor 
(Erbin PDZ domain, PDBID 2h3l, colored in red)27. 
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Elucidating interfaces between proteins and small molecule ligands  
Structure-based drug design has become a common approach for drug optimization due to increasing 
numbers of deposited structures in the PDB. RosettaLigand28 has demonstrated success in predicting 
small molecule-protein interactions. Recent improvements to the algorithm rely on a low-resolution 
sampling step via the TransformMover, which combines translational and rotational perturbations in a 
single step, and using scoring grids for energy evaluation29. Further, the algorithm allows backbone 
flexibility, mimicking the induced fit hypothesis30. On a benchmark of 43 complexes, this new algorithm 
demonstrated an enhanced docking success by 10-15% with an effective 30-fold speedup over the 
original RosettaLigand performance, enabling virtual high-throughput screening (vHTS) of medium-sized 
ligand libraries. Later in the drug development process, when medicinal chemists optimize ligands based 
on structure-activity relationships (SAR), they synthesize ligands that typically share a core chemical 
scaffold and are assumed to bind to their target in a similar fashion31. RosettaLigandEnsemble32 improves 
sampling during ligand docking by taking advantage of ligand similarities and docking a congeneric series 
of ligands at the same time, allowing for a placement that works for all considered ligands while 
optimizing the binding interface for each ligand independently. Experimental SARs can be included by 
promoting certain binding modes.  
 
Another approach for therapeutic intervention is to use small molecule ligands as competitive inhibitors of 
protein-protein interactions. A common challenge, however, is that the protein’s inhibitor-bound 
conformation often differs from the unbound or protein-protein bound conformation. The pocket 
optimization approach in Rosetta identifies protein surface pockets and uses their volume as an additional 
scoring term: this allows the user to start from an unbound protein structure and carry out biased 
sampling of a protein such that low-energy pocket-containing states are preferentially explored33,34. The 
specific conformations sampled through this approach match “druggable” alternate conformations 
observed in ligand-bound structures33,34, implying that these states are excellent starting points for virtual 
screening. The pockets sampled on the protein surface can then be matched to complementary ligands 
directly, by using the pocket itself as the starting point for pharmacophore-based screening35. 
Alternatively, these pockets can also be used for Rosetta’s Docking Approach using Ray Casting 
(DARC36) method. DARC uses ray-casting to rapidly position a ligand in the protein surface pocket36; by 
iterating over many candidates, DARC provides a means for very rapid virtual screening. DARC has also 
been adapted for GPUs37, and the newer implementation38 includes features that provide improved 
performance in virtual screening benchmarks.  
 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2019                   



8 
 

 
 

Designing new proteins and functions 
The inverse problem of protein structure prediction is protein design, where the objective is identification 
of a sequence that best represents a given structure. In particular, de novo design and design of novel 
protein functions towards therapeutic intervention remains one of the grand challenges in structural 
biology. This problem is addressed by various methods in Rosetta. The SEWING protocol creates de 
novo designs by recombining parts of protein structures from randomly-selected helical building blocks39. 
SEWING’s requirement-driven approach allows users to specify features or properties that should be 
incorporated into their designs during backbone generation without necessarily requiring a certain size or 
three-dimensional fold. New features include incorporation of functional motifs such as protein-binding 
peptides for protein interface design and partial or complete ligand binding sites for ligand-binding protein 
design40. A somewhat similar algorithm has been implemented for antibody design (AbDesign, see 
“modeling antibodies” below), which was generalized for enzyme design41. A more general approach is 
RosettaRemodel, which performs protein design by rebuilding parts or all of the structure42 from 
fragments of known proteins structures. It relies on a blueprint file in which the user defines secondary 
and supersecondary structure of the fold to be built. Remodel interfaces with a number of Rosetta 
protocols and can be used for various applications such as de novo modeling, fixed-backbone sequence 
design, refinement, loop insertion, deletion, and remodeling, as well as disulfide engineering, domain 
assembly, and motif grafting.  
 
For designing multifunctional proteins such as biosensors, bioswitches and tunable affinity clamps, 
Blacklock et al. developed the domain insertion protocol LooDo (Loop-directed domain insertion). With 
LooDo, proteins are designed by inserting a domain into another by two flanking linker regions43. The 
linker regions are sampled via fragment insertion to determine relative positioning of the domains, 
followed by generalized kinematic loop closure44 (GenKIC, see below) and enzyme design to optimize the 
interface.  
 
In protein design, a common task is not only design towards a certain goal (positive design), but 
additionally, design away from undesired features (negative design). Such a Multi-State Design45 (MSD) 
approach evaluates strengths and weaknesses of a single sequence on multiple backbones to account 
for positive and negative design, for instance binding to one but not another protein partner. REstrained 
CONvergence46 (RECON) takes this idea one step further by allowing each state to sample multiple 
sequences during the design process, which is iteratively applied by increasing the restraint weight to 
encourage sequence convergence. RECON is effective for large multi-state design problems, such as 
antibody affinity maturation or prediction of evolutionary sequence profiles of flexible backbones47,48. 
 
De novo protein design is somewhat easier for structures that are primarily highly regular helices and 
sheets, as the principles dictating their conformations are well known. However, designing curved and 
twisted b-sheets requires a deeper understanding of the structural irregularities that enable them. These 
principles were implemented in the curved b-sheet design method to design a variety of protein folds with 
curved sheets (Figure 3A), creating pockets suitable for tailoring ligand-binding and enzymatic active 
sites23. 
 
During computational de novo protein design49, a stringent test for the consistency of the designed 
sequence is whether ab initio structure prediction will yield the same structure that was used as a starting 
point for the design. However, computationally testing a large number of designs is prohibited by the vast 
conformational search space for ab initio structure prediction. To drastically limit that search space and 
test many more designs, the biased forward folding method23 uses three (instead of the typical 200) 
fragments per residue position. Fragments are chosen based on the RMSD to the native structure in 
design. The designs achieving near-native sampling are more likely to have funnel-shaped energy 
landscapes and therefore worth assessing with ab initio structure prediction. 
 
Design of protein function has been accomplished by grafting a known motif from a template protein onto 
a new protein (motif grafting). This approach has been used for antibodies and for vaccine design50 using 
the fold_from_loops application, where the functional motif is used as a starting point of an extended 
structure that is folded following the constraints of a target topology. Iterative refinement is carried out via 
sequence design and structural relaxation before filtering and human-guided optimization. This 
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application has been extended into the Functional Folding and Design (FunFolDes) protocol, which 
includes multi-segment motif grafting, different residue length motif insertion, incorporation of restraints, 
and folding in the presence of a binding target51. Fragments selected according to the structure of the 
target topology improve the performance of the folding stage via the StructFragmentMover. 
 
Designing interfaces between proteins and interaction partners 
Problems related to protein design include designing interfaces of proteins with their interaction partners 
such as proteins or small molecule ligands, and predicting ΔΔGs of mutation (e.g. alanine scanning). 
Predicting ΔΔGs of mutations for protein stability or protein-protein interactions is a difficult problem with 
low correlation coefficients (0.5-0.7)52, because the effect of the mutation is small compared to the total 
energy in the system, and because protein flexibility adds noise to the energies that can mask the effect 
of mutations. In the simplest case of alanine scanning (mutating into Ala), methods that use a “soft-
repulsive” energy function without modeling backbone flexibility53,54 have typically outperformed methods 
that allow protein flexibility and use hard-repulsive energy functions55. FlexDDG56 was created to improve 
protein-protein interface ΔΔG predictions and generalize them to residues other than Ala. The protocol 
creates conformational ensembles using Rosetta backrub sampling57, then repacks sidechains, minimizes 
torsions and computes change in protein-protein interaction ΔΔG by averaging across the ensembles. On 
1240 interface mutants, FlexDDG outperforms Rosetta’s ddg_monomer application, which was originally 
created and validated to predict changes in stability upon mutation, not interfaces.  
 
Designing ligand-binding interfaces in proteins is challenging due to inaccuracies in the energy function 
(and implicit solvation), the flexibility of ligands, and the sensitivity of protein-ligand interactions to even 
subtle conformational changes58. Flexible backbone design methods that use pre-generated ensembles 
as a starting point for design59,60 perform poorly in benchmarks, likely because the ensemble does not 
accurately describe the unbound-to-bound conformational changes. The CoupledMoves protocol couples 
backbone flexibility with changes in sidechain rotamers or ligand orientation or conformers, and leads to 
substantial improvements in various benchmarks61. 
 
Symmetric protein assemblies can now be modeled using parametric design. Nature created super-
helical coiled-coils that are well-described by geometric equations using Crick parameters62, which 
include variables for the radius of the bundle, major helical twist, minor helix rotation about the primary 
axis, etc. Several Movers such as MakeBundle, PerturbBundle, and BundleGridSampler allow designing 
helical bundles24,63 and b-barrels based on pre-defined or sampled parameters. Since parametric 
methods do not rely on fragments libraries, these modules can be applied to non-canonical coiled-coil 
heteropolymers. 
 
Modeling peptides and peptidomimetics 
The inherent flexibility of peptides imparts a large conformational search space to them, which leads to 
challenging modeling problems; when peptide modeling is combined with another simulation, e.g. 
docking, the increase in conformational space makes the modeling task virtually impossible using 
traditional approaches. FlexPepDock addresses this problem by allowing targeted sampling of the peptide 
flexibility during its docking into a given binding site, either by refining an approximate peptide 
conformation (FlexPepDock refinement64), or by full ab initio sampling of the peptide conformation 
(FlexPepDock ab initio65). Peptide docking is especially challenging when the binding site on the receptor 
is unknown. However, it can be simplified based on the observation that (for peptides built from canonical 
amino acids) the bound peptide conformation is often included in the fragments generated by the 
FragmentPicker. The PIPER-FlexPepDock27 protocol rigid-body docks these fragments using PIPER 
FFT-based docking66, and refines the complex using FlexPepDock64. PIPER-FlexPepDock can generate 
highly accurate peptide-protein complexes from a peptide sequence and a free receptor structure (Figure 
3F). 
 
Many protein-protein interactions (PPI) are mediated by often disordered peptide segments that are 
responsible for most of the binding energy67–70. PeptiDerive71 detects such segments in a PPI complex 
through a sliding window approach. PeptiDerive was extended to cyclized peptides and is available on 
the ROSIE72 server. 
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Conformations of cyclic peptides can be sampled with simple_cycpep_predict, which restricts the 
conformational search space through cyclization24,44,73 via the Generalized Kinematic Closure (GenKIC) 
algorithm (see “loop modeling” below). Simple_cycpep_predict does not rely on protein fragments and 
can model non-canonical chemistries (Figure 3B), being a generalization of earlier protocols. 
 
Multi-specificity is common at protein-peptide interfaces, meaning that the protein can interact with 
multiple substrates at the same interaction site. This can be exploited for identifying and designing novel 
substrates. Multi-specificity can be modeled with MFPred74, which is a rapid, flexible-backbone self-
consistent mean field theory-based technique. MFPred can predict experimentally determined peptide 
specificity profiles for a range of receptors, at equivalent or better prediction accuracy and a 10- to 1000-
fold lower computational cost when compared to other methods.  
 
Loop modeling for structure prediction and design 
Loop modeling was implemented early in Rosetta75,76 to generate structures for loops or gaps in models, 
with initial approaches relying on fragments to sample conformations and the iterative Cyclic Coordinate 
Descent (CCD) algorithm77 for chain closure. Subsequent developments introduced inverse kinematic 
closure methods (termed “KIC”) into Rosetta, that rely on polynomial resultants to analytically solve for 
closed conformations and which produced more native-like loop conformations78. KIC was used for 
modeling protein surface and interface loops, and to design and refine active site loops or regions binding 
small molecules79. Next-Generation KIC (NGK)17 made improvements to sampling loop conformations by 
employing diversification (i.e. sampling a wider range of possible conformations) and intensification (i.e. to 
focus sampling on previously generated conformations) to identify lowest-energy conformations. NGK 
substantially increases the fraction of near-native models17 and allows modeling longer loops. 
GeneralizedKIC44 (GenKIC) samples or perturbs loop geometries between fixed endpoints for any 
continuous peptide chain including those with non-standard peptide chemistries, for instance for non-
canonical backbones. GenKIC can sample backbone conformations containing L- and D-α-amino acids, 
β-amino acids, peptoids, oligoureas, or more exotic chemical building-blocks for which template 
structures do not exist in structural databases. Additionally, GenKIC can sample conformations involving 
side-chain connections (e.g. disulfide bonds, side-chain isopeptide bonds, etc.), covalently-attached 
ligands or crosslinkers, or chemistries that conventional loop-modelling algorithms do not typically handle.  
 
Most Rosetta loop modeling algorithms were primarily developed for structure prediction. However, 
design constitutes the opposite problem, finding low-energy sequence–structure combinations that satisfy 
certain design goals. LoopHashKIC80 addresses this problem and uses the Rosetta LoopHash algorithm81 
to efficiently query a database of loop conformations based on rigid-body transforms between the first and 
last loop residues. LoopHashKIC uses LoopHash to identify a suitable peptide fragment, and then uses 
KIC to find an exact solution to close the backbone. To improve the local sequence-structure compatibility 
in de novo designed loops, the ConsensusLoopDesign task operation accessed through Rosetta Scripts 
allows a user to restrict the amino acid identities of loops based on sequence profiles of naturally 
occurring loops with the same region of backbone dihedral angle space (Ramachandran bins)23,82. 
 
Modeling antibodies and other proteins in the immune system 
Due to the therapeutic significance of antibodies, several protocols have been developed in our 
community for structure prediction, docking and design that involve antibodies and other proteins in the 
immune system, such as T-cell receptors (TCR), displayed antigens of the Major Histocompatibility 
Complex (MHC) and other soluble antigens and immunogens. An overview of the various applications 
can be found in Table 1.  
 
protocol target task comments 
RosettaAntibo
dy83–86 
Gray lab 

antibodies homology 
modeling 
/ docking 

Identifies templates, assembles them into a structure, and 
models loops de novo while refining VH-VL orientation87; 
allows multiple templates; uses a key constraint88,89 for 
CDR H3 modeling; good for modeling camelid antibodies90 
and antibodies on the scale of the human repertoire91,92 

AbPredict93 
Fleishman lab 

antibodies structure 
prediction 

Does not rely on templates, samples backbone fragments 
and rigid-body orientations from known structures, without 
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considering sequence homology, hence being able to 
model antibodies accurately with sequence identity as low 
as 10%; AbPredict2 available as webserver94 

RosettaMHC95 
Sgourakis lab 

antigen / MHC-I 
/ (chaperone or 
T-cell receptor) 

modeling 
/ docking 

Predicts peptide antigens that bind to all known MHC-I 
alleles models peptide/MHC-I structures96; code 
implementation in PyRosetta 

RosettaTCR97 
Pierce lab 

T-cell receptors structure 
prediction 

Models TCRs from sequence, via template identification, 
grafting of loop templates onto framework regions, 
minimization and loop refinement; to gain structural insights 
into TCRs, e.g. those targeting cancer neoepitopes98, or to 
identify features of sets of TCRs from high throughput 
sequencing; can be combined with docking to generate 
models of TCR-peptide-MHC complexes99 or TCRs in 
complex with non-peptide antigens bound to MHC-like 
proteins100. 

SnugDock101 
Gray lab 

antibody-
antigen 

docking Input is starting conformation and optionally an ensemble 
of antibodies/antigens, then runs local docking to refine 
both the antibody–antigen interface and the heavy–light 
chain interface (within the antibody) and re-models the 
CDR H2/H3 loops at the interface; also includes a CDR H3 
structural constraint88,89 and docking of camelid 
antibodies90 

RosettaAntibo
dyDesign102 
(RAbD) 
Dunbrack lab 

antibody-
antigen 

design Based on RosettaAntibody85; design of specific CDRs of 
different clusters and lengths, sequence design using 
cluster-based CDR profiles or conservative mutations, or 
de novo design of whole antibodies; based on the North-
Dunbrack CDR clustering103, reducing deleterious 
sequence mutations; benchmarked on a diverse set of 60 
interfaces from both lambda and kappa antibodies; 
experimental benchmarking of two complexes showed 
affinity improvements between 10 and 50-fold 

Epitope 
removal104,105 
Baker lab 

MHC epitopes design Includes experimental immunogenic epitope data, MHC 
epitope prediction tools, and host genomic data to enable 
protein design with reduced immunogenicity while retaining 
function and stability104; uses a machine learning-based 
epitope prediction for 28 different alleles, restricts design to 
select 15mer epitope regions, and uses a greedy stepwise 
protein design105 to eliminate the most immunogenic 
epitopes with as few mutations as possible, avoiding 
disruptive core mutations likely to destabilize the protein 

AbDesign106,10

7 
Fleishman lab 

antibodies design Cuts experimentally determined antibody structures along 
conserved positions to create interchangeable segments, 
recombines them to produce novel antibody models106,107; 
models are docked to a target of interest, either locally to a 
specific epitope, or globally, followed by optimization 
comprised of backbone sampling and sequence design for 
improving stability and binding affinity 

 
Using experimental data to direct modeling 
The use of experimental data in modeling can vastly restrict the conformational search space, therefore 
allowing the modeling of larger, more complex biomolecules to greater accuracy. Electron density maps 
from cryo-electron microscopy (cryoEM) or X-ray crystallography have become more readily available in 
the past decade and methods to incorporate these types of data have been successfully used for high-
resolution structure determination. Since cryoEM density maps are often of low resolution, de novo 
structure determination methods require a combinatorial search procedure to unambiguously assign all 
densities to residues in the protein. A de novo method described by Wang et al. applies a model building 
approach108 for density maps between 3-5Å that fits fragments into densities and scores their match 
based on secondary structure, fit with density, loop closure, clashes and consistency between 
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overlapping fragments to assign sequence into densities. While this method requires >70% of the map to 
be assigned initially, an updated version of this method, the RosettaES109 enumerative sampling 
approach, forgoes this requirement. RosettaES gradually extends the model one residue at a time until all 
residues have been assigned. At each iteration, short fragments are used to sample the nearby 
conformational space of the growing model, while undergoing a series of clustering and filtering steps 
based on the Rosetta energy and fit to the density.  
 
If assignment is complete but the data are low-resolution, refinement into density maps is necessary. 
Several methods have been developed for density maps in the 3.0-4.5Å resolution range. One method110 
iterates between refinement with Phenix in reciprocal space to physically plausible conformations, and 
Rosetta in real space, because Rosetta’s all-atom scorefunction compensates for the lack of high-
resolution data, while the density map restrains backbone and side-chain sampling in real space. 
Refinement can also be seeded from homology models, followed by density-guided rebuilding and 
refinement of coordinates and B-factors111. More recently, an automated fragment-guided refinement 
pipeline112 splits the density map into independent training and validation maps. It finds regions with poor 
density fit, iteratively rebuilds them with fragments using the training map, filters the models based on 
their fit to the validation map, model geometry from MolProbity and fit to the full map, and then optimizes 
against the full map. The frameworks for electron density maps and carbohydrate modeling26 in Rosetta 
(below) were connected113 for refinement of carbohydrates into low-resolution electron density maps from 
cryoEM or crystallography.  
 
NMR data were incorporated into de novo structure prediction early in Rosetta development, creating 
RosettaNMR. Chemical shifts were used for fragment picking using CS-Rosetta114, which could be used 
in conjunction with NOE, RDC115, PCS116–118 and PRE data. Improvements, for instance through 
RASREC resampling119 allowed the use of sparse120 or unassigned data121, easier-to-obtain data 
(backbone-only122), modeling larger and more complex proteins123, membrane proteins124, symmetric 
systems125, and combination with data from SAXS126, cryoEM127, distance restraints from homologous 
proteins128 and evolutionary couplings129. CS-Rosetta also has the AutoNOE130,131 module for automatic 
assignment of NOESY data for use in structure calculations. RosettaNMR was recently overhauled and 
reconciled with CS-Rosetta and PCS-Rosetta to allow seamless integration of several types of NMR 
restraints (CS, RDC, PCS, PRE, NOE) in one consistent framework132 that could be applied to structure 
prediction, protein-protein docking, protein-ligand docking, and symmetric assemblies.  
 
Covalent labeling mass spectrometry data provides information on relative solvent exposure of residues, 
therefore yielding information on protein tertiary structure. A low-resolution score term from hydroxyl 
radical foot-printing has been implemented in Rosetta that can improve model quality in structure 
prediction133,134. Finally, data from chemical cross-linking mass spectrometry has been incorporated into 
an automated workflow to identify protein-protein interactions. The PyTXMS25 method combines the 
sensitivity of mass spectrometry to analyze complex samples with the power of Rosetta structural 
modeling and protein-protein docking to efficiently sample the vast conformational space and identify 
interactions (Figure 3C). A machine learning algorithm based on high resolution MS1 data guide the 
potential binding interface selection which is then validated and adjusted by a repository of structural 
models and MS2 (DDA) samples. 
 
Modeling nucleic acids and their interactions with proteins 
Several advances have been made in the representation of nucleic acids in Rosetta. The StepWise 
Monte Carlo protocol (SWM) has achieved RNA structure predictions reaching atomic accuracy135; the 
approach provides an acceleration over the original enumerative StepWise Assembly (SWA) 
method136,137. A version of SWA that rebuilds one nucleotide at a time enables fine-grained correction of 
errors in RNA coordinates fit into crystallographic or cryo-EM maps by Enumerative Real-space 
Refinement ASsisted by Electron density under Rosetta138,139 (ERRASER). 
  
The Fragment Assembly of RNA with Full-Atom Refinement (FARFAR) structure prediction protocol140,141 
also permits working with chemically modified nucleotides, picking fragments for the most chemically 
similar base available135. Homologous fragments can automatically be eliminated from fragment sets to 
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give pseudo-blind prediction results135. As another connection of Rosetta’s RNA tools to experimental 
structural biology, 1H NMR data can be used for RNA modeling via the CS-Rosetta-RNA protocol142.  
 
The most recent advances in Rosetta RNA tools expand the fragment assembly protocol to support 
modeling RNA-protein complexes through simultaneous folding and docking143. RNA-protein interactions 
are handled via additional knowledge-based score terms that supplement the low-resolution RNA 
scorefunction. Free energy perturbations from RNA or protein mutations can be modeled with the 
Rosetta-Vienna DDG protocol144. Structure coordinates can further be built into cryo-EM density maps for 
large RNA-protein complexes with DRRAFTER (De novo Ribonucleoprotein modeling in Real space 
through Assembly of Fragments Together with Experimental density in Rosetta)145. 
 
Redesign and prediction of protein-DNA interfaces is also possible in Rosetta146,147 and has been 
accomplished with flexible protein backbones148, genetic algorithms146,148,149 and motif-biased rotamer 
sampling150,151. However, the biggest limitation of these approaches is that they rely on fixed DNA 
backbone conformations, which in nature can be highly flexible. Key to successful protein-DNA design is 
an energy function that is optimized151,152 for these highly polar and solvated interfaces. Rosetta further 
supports prediction of specificity and affinity153 and the prediction of DNA binding preferences of 
homologous proteins. Multi-template modeling in RosettaCM154 was successfully applied to this 
challenge155. To accomplish this, protein homology modeling was followed by docking of multiple 
competing DNA sequences threaded onto the original crystal structure backbone and comparing the 
energies of the resulting protein-DNA complexes.  
 
Modeling membrane proteins  
Membrane proteins constitute about 30% of all proteins and are targets for over 60% of pharmaceuticals 
on the market156. However, experimental difficulties have limited our understanding of their structures157. 
Previously, Yarov-Yarovoy158,159 and Barth160 implemented tools for low- and high-resolution structure 
prediction of membrane proteins, termed RosettaMembrane. These tools were recently re-engineered for 
compatibility with Rosetta32 into a platform called RosettaMP161. RosettaMP implements core modules for 
representing, sampling, and scoring proteins in the context of an implicit membrane. RosettaMP is 
compatible with key modeling protocols including docking, design, ∆∆G prediction52, PyMOL 
visualization162, and assembly of symmetric proteins. In addition, a set of basic modeling tools163 is 
implemented, for instance for scoring, transforming a membrane protein into the membrane coordinate 
frame, de novo modeling for single transmembrane span helices, introducing mutations, and visualization 
in the membrane. RosettaMP has further enabled rapid development of new modeling tools including 
structure-based detection of lipid exposed residues in the membrane164 environment and domain 
assembly of full-length protein models from structures of transmembrane and soluble domains165. The 
RosettaCM protocol for multi-template homology modeling has also been adopted for membrane 
proteins8.  
 
Adding carbohydrates to the modeling process 
Carbohydrates are fundamental to life166,167, but because of challenges in experimental characterization 
and computational sampling and scoring, their structures have been historically under-studied. The 
RosettaCarbohydrate framework26 allows modeling of carbohydrate structures and complexes. The 
framework is integrated into Rosetta such that it is possible to model glycosylated proteins or protein–
sugar complexes (Figure 3F) with the same algorithms one would use for proteins. RosettaCarbohydrate 
is not limited to commonly studied sugars but can handle the full gamut of carbohydrate structures, 
including linear, cyclic, and branched structures, sugar modifications, and conjugations. Methods exist for 
sampling ring conformations, packing substituents, refining glycosidic linkages, sampling from linkage 
“fragments”, and extending glycan chains. Scoring of saccharide-containing sugars includes a quantum-
mechanically derived intrinsic backbone term168. Because saccharide residues are stored as distinct data 
structures, we can integrate bioinformatic and statistical data into our algorithms, which opens the doors 
for glycoengineering and design applications. RosettaCarbohydrate has been integrated with various 
other frameworks in Rosetta, such as loop modeling (GenKIC and Stepwise Assembly), refinement 
(GlycanTreeModeler), symmetry, and RosettaScripts-accessible classes such as MoveMaps and 
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ResidueSelectors. Linkages are automatically determined during PDB read-in. Carbohydrates work with 
Cartesian minimization, and they can be refined into electron density maps113. 
 
2. The brain of Rosetta: its scorefunction 
Rosetta’s energy function has been continuously improved over many years169 and a full review of the 
modern all-atom energy function was published recently3. Briefly, the newest energy function REF20154 
(REF stands for Rosetta Energy Function) features two main advancements. First, reproducibility of 
thermodynamic observables (such as liquid-phase properties170 and liquid-to-vapor transfer free 
energies171) was added to the optimization objectives, in addition to structure172-based tests. Second, a 
new, derivative-free optimization technique was developed, which is suitable for robust optimization of 
>100 parameters. Further, a new energy term was added that takes into consideration non-ideality of 
bond lengths and angles in cartesian space173. The cartesian term173 is also the basis for a cartesian_ddG 
method that has been used to calculate ΔΔGs of mutation to probe changes in protein stability. Only the 
backbones and side chains of residues nearby the mutation site are allowed to move174. Due to the local 
optimization, this protocol is much faster than ddg_monomer175, while retaining the same level of 
accuracy. The default Rosetta energy function is now also compatible with an expanded palette of 
chemical building-blocks: canonical and non-canonical L-α-amino acids and their D-amino acid 
counterparts, exotic achiral amino acids like 2-aminoisobutyric acid (AIB), peptoids, and oligoureas. The 
ability to model metalloproteins has also been added to Rosetta176,177. As noted above, scorefunctions 
that enable simultaneous modeling of protein and RNA are being explored144. The scorefunction is now 
thread-safe and fully mirror symmetric, i.e. enantiomers in mirror conformations score identically. 
Guidance energy terms for design have been added to encourage certain features, such as specific 
amino acid compositions44,73, hydrogen bonding networks, or global or local net charges, and discourage 
others, such as repeat sequences that hinder NMR assignments, buried unsatisfied hydrogen bond 
donors and acceptors, or voids within the protein178. Further, a consensus scoring method, which utilizes 
the semi-orthogonal nature of the Rosetta and Amber energy functions, was developed for model ranking 
to identify most near-native models179 from the pool of generated decoys. This approach led to the 
development of a Python-based tool (AMBRose) for interconversion between Rosetta and Amber models 
to facilitate consensus scoring. 
 
Hydrogen bond networks are important for biomolecular structure and catalysis but have been 
challenging to design because of pairwise interactions that have multi-body, cooperative properties. The 
HBNet protocol180 has been used to design de novo coiled coils with interaction specificity mediated by 
designed hydrogen bond networks, including homo-oligomers180, membrane proteins63, and large sets of 
orthogonal heterodimers181. An improvement to HBNet uses a Monte Carlo search procedure to sample 
hydrogen bond networks with drastically improved performance182. We further developed a statistical 
potential to place highly-coordinated water molecules on the surface of biomolecules. On a data set of 
153 high-resolution protein-protein interfaces, the method predicts 17% of native interface waters with 
20% precision within 0.5 Å of the crystallographic water positions183. The potential is accessible through 
the WaterBoxMover in RosettaScripts.  
 
3. User interfaces and usability 
Advances in Rosetta have also focused on improving usability of the software through developing several 
user interfaces to suit different use cases and styles (Figure 4). The command line interface was the first 
and is still the most-often used interface to Rosetta methods. Structure input and output was enhanced by 
the ability to read and write mmCIF files (via an external library) using the same mechanisms as PDB 
files, which permits representation of large complexes that are ill-suited for the PDB format (e.g. the 
ribosome). This comes with the ability to read the Protein Databank's Chemical Component Dictionary, 
the description of the chemical composition of residues in the officially released PDB structures. 
Multithreading support has been added to Rosetta, which required a major refactor of its core architecture 
for thread-safety, allowing shared-memory parallelism. Multithreading is currently available for specific 
protocols (simple_cycpep_predict) with planned expansion to other applications (including the 
JobDistributor jd3).  
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Figure 4: User interfaces to Rosetta 
(A) Rosetta can be run from a terminal and offers three different interfaces to the codebase. The top 
panel outlines the task to be accomplished: making two mutations in a protein and then refining the 
structure. The panels underneath show how this task can be accomplished in the different interfaces. The 
command line panel shows the executable, input files and options to run two specific Rosetta 
applications. RosettaScripts is an XML-based scripting language that offers more flexibility by combining 
Movers and ScoreFunctions into a custom Protocol. PyRosetta offers direct access to the underlying 
Rosetta code objects but requires knowledge of the Rosetta codebase. (B) Point-and-click interfaces to 
Rosetta. InteractiveRosetta is a graphical user-interface (GUI) to PyRosetta. It offers controls to the most 
popular protocols, file formats and options. Foldit is a videogame primarily used to crowd-source real-
world scientific puzzles but can also be used on custom proteins of interest. It allows access to some 
popular applications via a game interface. ROSIE is a super-server hosting a multitude of servers each 
executing a particular Rosetta protocol. It currently includes servers for 21 Rosetta methods. [The 
InteractiveRosetta panel was reproduced with permission from Bioinformatics.] 
 

 
 
In addition to the command line interface, Rosetta features two major scripting interfaces: RosettaScripts 
and PyRosetta. RosettaScripts6 is a popular scripting interface that uses Extensible Markup Language 
(XML) to build fairly complex protocols using core Rosetta machinery2. Comprehensive knowledge of the 
codebase is unnecessary since most of the underlying modules8 have been thoroughly documented – 
documentation is now also generated using XML schema, which validates the RosettaScripts XML files at 
runtime. RosettaScripts was further extended and generalized to enhance consistency: ResidueSelectors 
enable selection of residues based on specific properties such as chain, amino acid, secondary structure, 
index, solvent accessible surface area, and others, and can be used in conjunction with 
MoveMapFactories, which control a structure’s flexibility during energy minimization. ResidueSelectors 
are also accepted by TaskOperations which control side-chain identity and optimization. A more general 
analysis tool, SimpleMetrics, allows custom analyses of models through RosettaScripts and writes the 
output into the scorefile. The SimpleMetrics system is more integrated and robust than previous tools, 
such as the InterfaceAnalyzer or the FeaturesReporter. 
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PyRosetta5,184 is a collection of Python bindings to the source code, exposing ~7,400 classes and 88,000 
functions. PyRosetta allows custom protocol development that is flexible and fast, but it requires 
familiarity with the underlying structure of the codebase. Not all of options available in RosettaScripts 
have corresponding API-level configuration, so in order to take full advantage of those protocols, 
PyRosetta can now configure objects using RosettaScripts XML. This brings the added advantage of 
harmonizing the documentation across multiple interfaces. 

 
InteractiveROSETTA185 is a graphical interface for PyRosetta that presents easy-to-use controls for 
several of the most widely-used Rosetta protocols alongside a selection system that uses PyMOL as a 
visualizer. InteractiveROSETTA is capable of interacting with remote servers running a standalone 
Rosetta install, rendering it easy to incorporate more sophisticated protocols that are not accessible in 
PyRosetta and/or require significant computational resources.  
 
Foldit Standalone186,187 is a graphical interface to Rosetta based on the Foldit video game7,188. Foldit 
Standalone provides several interactive structure manipulations, including pulling directly on the structure, 
rigid body docking, and residue mutation, insertion and deletion. Users can apply hard and soft 
constraints that guide automated moves such as packing and minimization, and provides real-time 
scoring updates as the structure changes. Additional features include multiple sequence alignments for 
template-based modeling, along with electron density-, Ramachandran-, and contact-map visualizations. 
Further, scientists and educators can now run their own custom Foldit puzzles for a group of their 
choosing, a new feature called “Custom Contests”189. 
 
The Rosetta community has further devoted an enormous effort to enhance the user friendliness of 
Rosetta by rewriting and adding documentation (Figure 5). We now use a public-facing Gollum wiki 
(https://www.rosettacommons.org/docs/latest/Home) for various levels of documentation, such as 
application documentation, tutorials for beginning users, and static protocol captures that accompany 
manuscripts for scientific reproducibility (see supplement for links). The Gollum wiki is easily editable by 
members of the RosettaCommons. Command line executables accept a -info option, which prints 
relevant options for the current application in RosettaScripts, and debugging command lines is facilitated 
by improved error messages. Default, system-wide options (e.g. database paths) can now be specified in 
a rosetta.rc file. Lastly, code development in C++ is now easier with the help of available code templates 
that create much of the boilerplate code required to extend Rosetta. 
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Figure 5: Main external documentation page for Rosetta 
In 2015, our community performed a complete overhaul of the documentation for Rosetta. Documentation 
is now hosted on a Gollum wiki, which is version controlled and easily editable for members of our 
community. Accessibility and ability to edit the documentation has drastically improved the user-
experience of Rosetta.  
 

 
 
A limitation of Rosetta is the need for a local installation and compilation in a Unix-like environment. 
Webservers provide a user-friendly alternative and a number of independent servers have emerged in the 
Rosetta community. However, implementing and maintaining such servers comes at a substantial cost. 
To make it easier to provide Rosetta protocols as a webserver, ROSIE (Rosetta Online Server that 
Includes Everyone)72,190 (http://rosie.rosettacommons.org/) provides a simple framework for 
“serverification” of protocols. ROSIE currently contains 21 webservers, with additional protocols 
continually being added. 
 
Conclusion 
The Rosetta software is developed by a large, global community that aims to solve complex problems 
through collaborative solutions and code implementations. In the last five years, great strides have been 
made in Rosetta. More protocols are available now that enable modeling a broader range of biologically- 
and chemically-realistic systems, larger macromolecular complexes and in general more sophisticated 
systems. Prediction accuracies have improved through advances in the scorefunction, which is a 
combination of physics-based and knowledge-based potentials that were also fit against thermodynamic 
observables. Incorporating experimental data into the modeling process has also been facilitated and 
improved. Further, our community saw the need to develop more general, reusable, user-friendly, and 
scientifically reproducible protocols. This was motivated by the growth of the software and the developer 
community, the various user interfaces, the diversity of the community1, and the complexities of the 
protocols in this complex piece of software. The improvements to documentation allow users to quickly 
start using or developing custom protocols, while facilitating user support for the various Rosetta 
interfaces (command line, RosettaScripts, PyRosetta, etc.). Over the years, these applications have 
moved away from simply tackling basic science questions to more application-based scientific 
developments. The myriad of advances described above have made integration of Rosetta into existing 
experimental and computational scientific workflows increasingly useful and standard. Rosetta’s 
predictive powers can be used not only to analyze and verify existing data but to inform experiments to 
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galvanize engineering tomorrow's industrial enzymes, enable the creation of novel biomaterials, and 
accelerate the discovery of new potent, life-saving therapeutics that will change the world as we know it. 
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