Preprint
Article

Microstructure and Martensitic Transformation Behavior in Thermal Cycled Equiatomic Cuzr Shape Memory Alloy

Altmetrics

Downloads

320

Views

317

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 April 2019

Posted:

03 May 2019

You are already at the latest version

Alerts
Abstract
Equiatomic CuZr alloy undergoes a martensitic transformation from the B2 parent phase to martensitic phases (P21/m and Cm) below 150 °C. We clarified the effect of the thermal cycling on the morphology and crystallography of martensite in equiatomic CuZr alloy using a transmission electron microscopy. The 10th cycled specimens consisted of different multiple structures at the maximum temperature of DSC measurement: 400 °C and 500°C, respectively. At the maximum temperature 400 °C of DSC measurement, it is composed of the fine plate-like variants, and a lamellar eutectoid structure consisting of Cu10Zr7 and CuZr2 phases on the martensitic variant. Concerning the maximum temperature 500 °C of DSC measurement, it is observed the martensitic structure and the lamellar structure in which the martensitic phase was completely eutectoid transformed. The formation of this lamellar eutectoid structure due to thermal cycling leads to the shift of forward and reverse transformation peaks to low and high temperature side. In addition, new forward and reverse transformation peaks indicating a new transformation appeared by thermal cycling, and the peaks remained around -20 °C. This new martensitic transformation behavior is also discussed.
Keywords: 
Subject: Chemistry and Materials Science  -   Metals, Alloys and Metallurgy
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated