Longitudinal dispersion coefficient (LDC) plays an essential role in modeling the transport of pollution and sediment in the natural rivers. As a result of transportation processes, the concentration of pollution changes along the river. Different studies have been conducted to provide simple equations for estimating LDC. In this study, Support Vector Regression (SVR), Gaussian Process Regression (GPR), M5P and Random Forest (RF) examined to predict the LDC in the natural streams. The hydraulic and geometric features of different rivers gathered for developing the mentioned models for LDC estimation and various statistical criteria were utilized to scrutinize of the models. Furthermore, the Taylor chart was used to evaluate the models and achieved results showed that among machine learning models, M5P displayed the superior performance with CC of 0.823, SI of 0.812, NS of 0.577 and WI of 0.879. As well, S-D model with CC of 0.795 SI of 0.827, NS of 0.558 and WI of 0.890 had more precise results than other empirical models. The results indicates that the developed M5P model with simple formulations was superior to other machine learning models and empirical models and therefore, it can be used as a proper tool for estimating LDC in natural rivers.
Keywords:
Subject: Engineering - Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.