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Abstract: Accurate prediction of mercury content emitted from fossil-fueled power stations is of 15 
utmost important for environmental pollution assessment and hazard mitigation. In this paper, 16 
mercury content in the output gas of power stations’ boilers was predicted using adaptive neuro-17 
fuzzy inference system (ANFIS) method integrated with particle swarm optimization (PSO). The 18 
input parameters of the model include coal characteristics and the operational parameters of the 19 
boilers. The dataset has been collected from 82 power plants and employed to educate and examine 20 
the proposed model. To evaluate the performance of the proposed ANFIS-PSO model the statistical 21 
meter of MARE% was implemented, which resulted 0.003266 and 0.013272 for training and testing 22 
respectively. Furthermore, relative errors between acquired data and predicted values were 23 
between -0.25% and 0.1%, which confirm the accuracy of the model to deal nonlinearity and 24 
representing the dependency of flue gas mercury content into the specifications of coal and the 25 
boiler type. 26 

Keywords: ANFIS-PSO; air pollution prediction; flue gas, emission, mercury; adaptive neuro-fuzzy 27 
inference system (ANFIS); particle swarm optimization (PSO); hybrid machine learning model 28 

 29 

1. Introduction 30 

Intelligent monitoring of the industrial air pollutants is of utmost important to maintain an 31 
acceptable air quality [1-4].  Among the numerous industrial pollutants, the mercury contamination 32 
has been identified as one of the most acute air pollutants produced by conventional fossil fueled 33 
power stations [5-8]. Mercury contamination can cause significant ecological hazard with a 34 
considerable effect on human well-being around the world [9-12] . As a lethal and hugely volatile 35 
metal, mercury can cause contamination of the surface streams and lakes, as well as groundwater 36 
[13]. It is the most dangerous hazard for infants and young adults as it influences the central nervous 37 
system, causing utero and severe illnesses [14]. Previous studies, e.g. [7-11] report that a substantial 38 
amount of mercury outflows to the earth comes from coal-fired power plants. In 2010, roughly 2000 39 
mg mercury outflows to the air from various sections worldwide [15]. Coal burning had a share of 40 
24%, which is a relatively high share [16]. Power plants are in charge of around 33% Mercury 41 
outflows, and this type of emission is caused by human beings [17], and Elemental mercury emission 42 
is about 20-50% of mercury emissions which originate from combustion of coal [18, 19]. Nowadays, 43 
mercury emission from coal consumption has become a global concern [12,13,14]. In 2006, total coal 44 
consumption in China was about 40.1% of world consumption, which is equivalent to 1238.3 million 45 
tons of oil [20]. Thus, some studies suggest that the amount of mercury emission is more likely to 46 
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increase during the next years because of more uses in developing countries [21]. The environmental 47 
protection agency of United States of America announced mercury as one of the most dangerous air 48 
pollutants. In 1999, an approximated amount of 45 tons of mercury outflows from coal-consuming 49 
plants to the environment (Alto 2000). The developing worry of this contamination in the U.S has 50 
incited government and specialists to start endeavors to recognize, estimate, and cut off on the 51 
anthropogenic emissions. As a result of the absence of cost-effective, promptly accessible and efficient 52 
practical control methodologies in the U.S, discharge of this dangerous contaminant from coal-53 
consuming boilers are not basically under control. It gets worse when the greater of part power 54 
supply in a big country such as the United States originates from utility boilers that use coal (EPA 55 
2001) and furthermore About 70% of electricity power in china is produced by burning coal, in which 56 
50% of this coal is burned in coal-based power plants [22-24]. 57 

In 1998, Paying attention to the enormous potential for environmental dangers, EPA proposed 58 
a request to ask coal-consuming plants to publish information on the amounts of mercury 59 
contaminant outflows from their systems. This request was designed to gather information in three 60 
primary stages precisely. The first and principal stage was intended to collect all standard data on 61 
coal-burning power plants around the U.S. afterward, as the second stage of the program, analyzed 62 
feed data at the entrance of every plant during a year were collected. Eventually, in the third phase, 63 
EPA chose 84 out of 1084 plants to gather data of mercury emission in some specified points within 64 
the selected plants. This selection was based on some statistic activities on the feed specifications and 65 
also the operational structure of each plant. Resulted in information from the third phase of the 66 
program was evaluated. Representing correlations were developed to predict the emission of 67 
mercury in each plant concerning coal qualities and operating conditions. It was found that the best 68 
input data were characteristics of coal, for example, the concentration of mercury, heating value, 69 
chlorine sulfur, operating parameters such as temperatures and pressures and also yield parameters 70 
in boilers such as the amount of mercury oxidization. Beside abovementioned backgrounds, artificial 71 
intelligence approaches are powerful tools to forecast parameters by finding correlations between 72 
variables. This kind of networks can see the nonlinear relationship between parameters, so they are 73 
valuable method [25].  74 

A deep understanding of the power plant is needed to control the amounts of mercury 75 
emissions. Therefore, an accurate estimation of emission is of utmost important to control and reduce 76 
mercury emission [26]. Numerous investigations were published in the literature regarding 77 
applications of artificial intelligence approaches. Computational intelligence has been both used to 78 
predict the amount of mercury emission and also to model the elimination of elemental mercury from 79 
boilers’ outlet gas [27]. Dragomir and Oprea [28] present a multi-agent prediction tool for intelligent 80 
monitoring of the pollutants on the power plants. They used a model based on neural networks to 81 
predict the amount of SO2, NOx, particulate matters (PMs), and mercury emissions. Jensen et al. [29] 82 
presented a study on the relationship between mercury in the flue gas and coal specifications and the 83 
type of boiler using a multilayer perceptron model. They derived an accurate model with a 84 
correlation coefficient of 0.9750. Antanasijevic et al. [30] developed a prediction model using neural 85 
networks and genetic algorithm (GA) to accurately calculate the amount of PM10 emissions for up to 86 
two years ahead. Zhao et al. [31] used support vector machine to develop a model which provided 87 
better performance and accuracy. In 2016, Wang et al. [32] worked on the application of GA-back 88 
propagation (GA-BP) for predicting the amount of mercury component in flue gases of 20 different 89 
coal-fired boilers. Correlation coefficient training data points was as high as 0.895, and they showed 90 
that GA-BP is a promising method for this goal. Li et al. [33] employed computational intelligence 91 
approach to cut off on the elemental mercury in coal-fired boilers, and finally, they found that the 92 
increment of capture efficiency can approximately improve up to 15%.   93 

Although, the application of machine learning for prediction of pollutants and mercury 94 
emissions is well stablished within the scientific communities, the potential of the novel machine 95 
learning models (e.g., ensembles and hybrids) is still not explored for mercury prediction. In 96 
particular a wide range of novel hybrid machine learning methods have been recently developed to 97 
deliver higher accuracy and performance [34-36]. For instance, the hybrid model of ANFIS-PSO 98 
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which is an integration of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm 99 
optimization (PSO) has shown to deliver promising results [37]. The aim of the present study is to 100 
find a reliable relationship between elemental mercury in the output gas, the specification of feed, 101 
and the type of boilers by utilizing an ANFIS-PSO based approach. 102 

2. Model development  103 

The description of the hybrid model of ANFIS-PSO is presented in [37]. Note that, when there is 104 
not enough data on the detailed information of an operating power plant, it is extremely difficult to 105 
build a precise model to predict the amount of mercury outflow. In the present study, an endeavor 106 
has made to develop a model to predict mercury outflows from boilers at some specified testing 107 
locations. In this kind of locations, every single factor that may influence the mercury discharge is 108 
considered and incorporated into the model. A total number of 82 data points were gathered from 109 
literature to train and evaluate the model [29].  The concentration of mercury in the inlet feed, ash 110 
content, chlorine content, the heating value of coal, sulfur content, and temperature were chosen as 111 
the most effective variables. This data bank comprises a total number of 82 data points, from which 112 
75% were used as training, and the rest of them were exploited testing samples. In the developed 113 
ANFIS model, six previously mentioned parameters were considered as input parameters, and the 114 
elemental mercury emission was selected as the target variable. Furthermore, the PSO algorithm was 115 
used to find the optimized Gaussian membership function parameters of the proposed ANFIS model. 116 

The method of ANFIS  is proposed by Jang [38, 39] and is a versatile and very intelligent hybrid 117 
system. ANFIS approach can be expressed as a complete collaboration between computing activities 118 
and neuro-fuzzy system [40]. This method integrates natural and neural networks and uses their 119 
strength into its advantage. Such methodology exploits back-propagation calculation from the 120 
information gathering process to make the essential basics of the fuzzy system. Its framework is 121 
related to an arrangement of fuzzy IF-THEN rules which have learning ability to estimate nonlinear 122 
functions. Basics of the ANFIS method are approximately similar to a fuzzy system developed by 123 
Takagi-Sugeno-Kang [41, 42]. In reverse spread learning capability of the ANFIS method, which is 124 
based on the calculation of derivatives of squared errors in a backward manner form output nodes 125 
to the input ones, this method constructs and utilizes robust learning methodology based on gradient 126 
least-squares approach. To determine the consequence factors in the forward section, the least square 127 
approach is utilized. Then the preset parameters will reset by gradient descent in the regressive 128 
advance [43]. The adaptive network is constructed of five layers. Figure 1 shows these layers, their 129 
nodes and connections with the assumption of two inputs to the fuzzy inference system expressed 130 
by “x” and ”y” and a single output of “f”. As an explanation about the configuration of ANFIS, it 131 
must be noted that two fuzzy 'if-then' rules are utilized which they follow sugeno FIS as: 132 

 133 

1 1 11 1 1

2 2 2 2 1 1
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                 as , s yum =Be 
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 134 

 135 
Fuzzification layer, which is the first layer of the structure produces all membership grades for 136 

each variable. Node functions in this layer can be defined as follows:  137 

 
1,

( ) 1, 2
i Ai

O x i  (1) 




 
1, 2

( ) 3, 4
i Bi

O x i  (2) 

Memberships of a fussy set are (Ai, Bi) and O1, i represents the resulted value from the ith node of 138 
the first layer. The input signals are generated by the nodes of layer 2. 139 

   
(2, )

( ) 1, 2
i Ai Bi xi

O w x i  (3) 

The nodes of the third layer are used to compute the following parameter:  140 
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Where Wi is ruled firing strengths of node i which has a normalized firing strength of ωi. Results 141 
of layer four can be written as follows: 142 

     
4,

2( ) 1,
i ii i i

O q r if i yP  (5) 

In this notation pi, qi, and ri are called consequent parameters. Eventually, the general output 143 
can be defined as follows, which is calculated in the nodes of layer 5: 144 

 



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 145 

 146 

Figure 1. A schematic view of the ANFIS intelligent system. 147 

ANFIS, has shown promising results in a wide range of applications for developing prediction 148 
models [44-47]. However, optimization of the model parameters can dramatically improve the 149 
quality and accuracy of modeling [37]. For that matter, a huge number of optimization 150 
methodologies, such as PSO, are available to reinforce the parameters and answers of the ANFIS 151 
system [48]. PSO is extraordinary compared to other approaches with the end goal of optimization. 152 
This study takes the benefits of this algorithm.  153 

Particle swarm optimization method has been inspired from birds behavior seeking food [49, 154 
50]. In this model, particles update their places and pathways based on their and others information; 155 
so it was proposed that the particle possess a memory function. The optimization process is based on 156 
competition and collaboration between particles. When PSO is used to solve optimization problems, 157 
one can follow the particles state by their pathways, and velocities. Three vectors Xi, Vi, Pbesti are 158 
introduced to explain the properties of a particle: Xi is the current place; Vi the current speed; Pbesti 159 
the best spatial placement sought by the particle and gbesti is the optimal solution searched by the 160 
whole group of particles. The position and pathway of the particle will be updated gradually, based 161 
on the following formula: 162 

1 2( 1) ( ) (0,1) [ ( ) ( )] (0,1) [ ( ) ( )]          (7)v k v k c rand pbest k persent k c rand gbest k persent k       
163 

 164 
present (k + 1) = present (k) + v (k + 1)                                                  (8)  165 
Where, v( ) is particle speed in kth and k+1th iterations; present ( ) is particle position; c1, c2 are 166 

learning constants which are greater than zero, and a random number between [0,1] is denoted using 167 
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rand( ). Formula (7) represents the updating process of the particle’s speed, which includes a particle’s 168 
historical velocities and personal and global best positions [51]. 169 

3. Results 170 

The amount of mercury emission was estimated using an ANFIS approach. Emission of mercury 171 
into the environment generally is a strong function of mercury six previously mentioned variables. 172 
We used MATLAB software to construct our model. A Gaussian function was used to optimize the 173 
parameters. In addition to that, the total number of 10 clusters were utilized in the ANFIS hybrid 174 
system. Optimization was conducted on a total number of parameters that were determined by: 175 

N =N N N                                                             (9)  T c mf  176 
Where the number of parameters for undergoing optimization is denoted by NT, and Nmf, is used to 177 
show the number of Gaussian membership functions that are used, Nυ and Nc show how many 178 
variables, and clusters are used in the model, respectively. It is noteworthy to state that in this study, 179 
two membership functions, seven input and output variables, and 10 clusters are used. Eventually, 180 
using a PSO algorithm, optimization was conducted for 140 tuning parameters. As is shown in Figure 181 
2, to evaluate the functionality of the PSO algorithm, a root means square error (RMSE) analyze was 182 
used. Results show that in a total number of 1000 iterations, the minimum value of RMSE is touched. 183 
Figure 3 indicates train membership function parameters for each input variables. It is seen that the 184 
results of the presented model are in good agreement with the obtained data, which is the result of 185 
great learning capability of the developed ANFIS model. Figure 4 illustrates the obtained data of 186 
mercury emissions versus the test and training of ANFIS hybrid system. 187 

 188 

Figure 2. Root mean square errors versus number of iterations. 189 
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 190 

Figure 3. Trained membership function parameters. 191 

 192 

Figure 4. Obtained data form plants and ANFIS values for mercury emissions in the stages of training 193 
and testing. 194 

As is shown in Figure 5, actual and predicted mercury emissions are located on a straight line 195 
with an approximate slope of 1 (45o line) which indicates that the obtained information and ANFIS 196 
predicted ones are in good agreement. The obtained cross-fit line in both test and training data sets 197 
have an 𝑅2  Equal to 1, which shows the accurateness of the model. To compare the results of the 198 
model and evaluate its precision, the method of mean absolute relative error is used. For training and 199 
testing steps, using mean absolute relative error percentage (MARE %) method, percentage values of 200 
0.003266 and 0.013272 are calculated, respectively. Resulted relative deviations are presented in the 201 
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Figure 6. Low relative deviations are observed due to accurately-predicted values. Different statistical 202 
analyses were also presented in Table 1 for the suggested model. 203 

 204 

Figure 5. Regressions derived between estimated and collected data of mercury emissions. 205 

Table 1. Statistical analysis of the model for all phases. 206 
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 208 

Figure 6. Deviation between the obtained data from plants and predicted mercury emissions. 209 

4. Conclusions 210 

Emission of mercury is known as one of the most perilous environmental contamination. In this 211 
study, a comprehensive literature review was done, and a predictive model was built to predict the 212 
amount of mercury emission based on the characteristics of the coal supply, operational conditions, 213 
and so forth. The presented model is based on the ANFIS system, which utilizes a PSO algorithm to 214 
estimate the amount of mercury emission to the environment. Data from 82 power plants have been 215 
used to train and develop the ANFIS model. The MARE% for training and testing were 0.003266 and 216 
0.013272, respectively. Furthermore, relative errors between acquired data and predicted values were 217 
between -0.25% and 0.1%, which confirm the accuracy of PSO-ANFIS model. It was seen that for both 218 
training and testing parts, the coefficient of determination was calculated to equal to unity, which 219 
reflects the accuracy of the proposed ANFIS-PSO based model. 220 
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