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15 Abstract: Accurate prediction of mercury content emitted from fossil-fueled power stations is of
16 utmost important for environmental pollution assessment and hazard mitigation. In this paper,
17 mercury content in the output gas of power stations’ boilers was predicted using adaptive neuro-
18 fuzzy inference system (ANFIS) method integrated with particle swarm optimization (PSO). The
19 input parameters of the model include coal characteristics and the operational parameters of the
20 boilers. The dataset has been collected from 82 power plants and employed to educate and examine

21 the proposed model. To evaluate the performance of the proposed ANFIS-PSO model the statistical
22 meter of MARE% was implemented, which resulted 0.003266 and 0.013272 for training and testing

23 respectively. Furthermore, relative errors between acquired data and predicted values were
24 between -0.25% and 0.1%, which confirm the accuracy of the model to deal nonlinearity and
25 representing the dependency of flue gas mercury content into the specifications of coal and the

26 boiler type.
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30 1. Introduction

31 Intelligent monitoring of the industrial air pollutants is of utmost important to maintain an
32 acceptable air quality [1-4]. Among the numerous industrial pollutants, the mercury contamination
33  has been identified as one of the most acute air pollutants produced by conventional fossil fueled
34  power stations [5-8]. Mercury contamination can cause significant ecological hazard with a
35  considerable effect on human well-being around the world [9-12] . As a lethal and hugely volatile
36 metal, mercury can cause contamination of the surface streams and lakes, as well as groundwater
37  [13].Itis the most dangerous hazard for infants and young adults as it influences the central nervous
38  system, causing utero and severe illnesses [14]. Previous studies, e.g. [7-11] report that a substantial
39  amount of mercury outflows to the earth comes from coal-fired power plants. In 2010, roughly 2000
40  mg mercury outflows to the air from various sections worldwide [15]. Coal burning had a share of
41  24%, which is a relatively high share [16]. Power plants are in charge of around 33% Mercury
42  outflows, and this type of emission is caused by human beings [17], and Elemental mercury emission
43  is about 20-50% of mercury emissions which originate from combustion of coal [18, 19]. Nowadays,
44 mercury emission from coal consumption has become a global concern [12,13,14]. In 2006, total coal
45  consumption in China was about 40.1% of world consumption, which is equivalent to 1238.3 million
46  tons of oil [20]. Thus, some studies suggest that the amount of mercury emission is more likely to
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47  increase during the next years because of more uses in developing countries [21]. The environmental
48  protection agency of United States of America announced mercury as one of the most dangerous air
49  pollutants. In 1999, an approximated amount of 45 tons of mercury outflows from coal-consuming
50  plants to the environment (Alto 2000). The developing worry of this contamination in the U.S has
51  incited government and specialists to start endeavors to recognize, estimate, and cut off on the
52 anthropogenic emissions. As a result of the absence of cost-effective, promptly accessible and efficient
53  practical control methodologies in the U.S, discharge of this dangerous contaminant from coal-
54  consuming boilers are not basically under control. It gets worse when the greater of part power
55  supply in a big country such as the United States originates from utility boilers that use coal (EPA
56  2001) and furthermore About 70% of electricity power in china is produced by burning coal, in which
57  50% of this coal is burned in coal-based power plants [22-24].

58 In 1998, Paying attention to the enormous potential for environmental dangers, EPA proposed
59  a request to ask coal-consuming plants to publish information on the amounts of mercury
60  contaminant outflows from their systems. This request was designed to gather information in three
61  primary stages precisely. The first and principal stage was intended to collect all standard data on
62  coal-burning power plants around the U.S. afterward, as the second stage of the program, analyzed
63  feed data at the entrance of every plant during a year were collected. Eventually, in the third phase,
64  EPA chose 84 out of 1084 plants to gather data of mercury emission in some specified points within
65  the selected plants. This selection was based on some statistic activities on the feed specifications and
66  also the operational structure of each plant. Resulted in information from the third phase of the
67  program was evaluated. Representing correlations were developed to predict the emission of
68  mercury in each plant concerning coal qualities and operating conditions. It was found that the best
69  input data were characteristics of coal, for example, the concentration of mercury, heating value,
70 chlorine sulfur, operating parameters such as temperatures and pressures and also yield parameters
71  inboilers such as the amount of mercury oxidization. Beside abovementioned backgrounds, artificial
72 intelligence approaches are powerful tools to forecast parameters by finding correlations between
73 variables. This kind of networks can see the nonlinear relationship between parameters, so they are
74  valuable method [25].

75 A deep understanding of the power plant is needed to control the amounts of mercury
76  emissions. Therefore, an accurate estimation of emission is of utmost important to control and reduce
77  mercury emission [26]. Numerous investigations were published in the literature regarding
78  applications of artificial intelligence approaches. Computational intelligence has been both used to
79  predict the amount of mercury emission and also to model the elimination of elemental mercury from
80  boilers” outlet gas [27]. Dragomir and Oprea [28] present a multi-agent prediction tool for intelligent
81  monitoring of the pollutants on the power plants. They used a model based on neural networks to
82  predict the amount of SOz, NO, particulate matters (PMs), and mercury emissions. Jensen et al. [29]
83  presented a study on the relationship between mercury in the flue gas and coal specifications and the
84  type of boiler using a multilayer perceptron model. They derived an accurate model with a
85  correlation coefficient of 0.9750. Antanasijevic et al. [30] developed a prediction model using neural
86  networks and genetic algorithm (GA) to accurately calculate the amount of PM10 emissions for up to
87  two years ahead. Zhao et al. [31] used support vector machine to develop a model which provided
88  better performance and accuracy. In 2016, Wang et al. [32] worked on the application of GA-back
89  propagation (GA-BP) for predicting the amount of mercury component in flue gases of 20 different
90  coal-fired boilers. Correlation coefficient training data points was as high as 0.895, and they showed
91  that GA-BP is a promising method for this goal. Li et al. [33] employed computational intelligence
92  approach to cut off on the elemental mercury in coal-fired boilers, and finally, they found that the
93  increment of capture efficiency can approximately improve up to 15%.

94 Although, the application of machine learning for prediction of pollutants and mercury
95  emissions is well stablished within the scientific communities, the potential of the novel machine
96 learning models (e.g., ensembles and hybrids) is still not explored for mercury prediction. In
97  particular a wide range of novel hybrid machine learning methods have been recently developed to
98  deliver higher accuracy and performance [34-36]. For instance, the hybrid model of ANFIS-PSO
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99  which is an integration of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm
100  optimization (PSO) has shown to deliver promising results [37]. The aim of the present study is to
101  find a reliable relationship between elemental mercury in the output gas, the specification of feed,
102  and the type of boilers by utilizing an ANFIS-PSO based approach.

103 2. Model development

104 The description of the hybrid model of ANFIS-PSO is presented in [37]. Note that, when there is
105 not enough data on the detailed information of an operating power plant, it is extremely difficult to
106  build a precise model to predict the amount of mercury outflow. In the present study, an endeavor
107  has made to develop a model to predict mercury outflows from boilers at some specified testing
108  locations. In this kind of locations, every single factor that may influence the mercury discharge is
109  considered and incorporated into the model. A total number of 82 data points were gathered from
110  literature to train and evaluate the model [29]. The concentration of mercury in the inlet feed, ash
111 content, chlorine content, the heating value of coal, sulfur content, and temperature were chosen as
112 the most effective variables. This data bank comprises a total number of 82 data points, from which
113 75% were used as training, and the rest of them were exploited testing samples. In the developed
114  ANFIS model, six previously mentioned parameters were considered as input parameters, and the
115  elemental mercury emission was selected as the target variable. Furthermore, the PSO algorithm was
116  used to find the optimized Gaussian membership function parameters of the proposed ANFIS model.
117 The method of ANFIS is proposed by Jang [38, 39] and is a versatile and very intelligent hybrid
118  system. ANFIS approach can be expressed as a complete collaboration between computing activities
119  and neuro-fuzzy system [40]. This method integrates natural and neural networks and uses their
120  strength into its advantage. Such methodology exploits back-propagation calculation from the
121  information gathering process to make the essential basics of the fuzzy system. Its framework is
122 related to an arrangement of fuzzy IF-THEN rules which have learning ability to estimate nonlinear
123 functions. Basics of the ANFIS method are approximately similar to a fuzzy system developed by
124 Takagi-Sugeno-Kang [41, 42]. In reverse spread learning capability of the ANFIS method, which is
125  based on the calculation of derivatives of squared errors in a backward manner form output nodes
126  to the input ones, this method constructs and utilizes robust learning methodology based on gradient
127  least-squares approach. To determine the consequence factors in the forward section, the least square
128  approach is utilized. Then the preset parameters will reset by gradient descent in the regressive
129  advance [43]. The adaptive network is constructed of five layers. Figure 1 shows these layers, their
130  nodes and connections with the assumption of two inputs to the fuzzy inference system expressed
131 by “x” and "y” and a single output of “f”. As an explanation about the configuration of ANFIS, it
132 must be noted that two fuzzy 'if-then' rules are utilized which they follow sugeno FIS as:

133
fi=P+qy+r assume x=A, ,y=B,
134 f,=P,+Q,y+r, assume x=A,,y=B,
135
136 Fuzzification layer, which is the first layer of the structure produces all membership grades for

137  each variable. Node functions in this layer can be defined as follows:

O,;,= p, (%) i=1,2 (1)
O, = Hy,(x) =34 2)
138 Memberships of a fussy set are (A;, Bi) and Oy, i represents the resulted value from the it node of

139  the first layer. The input signals are generated by the nodes of layer 2.
O,,= w; =, (X)X py, 1=1,2 3)

140 The nodes of the third layer are used to compute the following parameter:
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141 Where Wi is ruled firing strengths of node i which has a normalized firing strength of wi. Results
142 of layer four can be written as follows:
O,,= of, =wi(P, +qy+r) i=12 ®)
143 In this notation p;, g, and ri are called consequent parameters. Eventually, the general output

144 can be defined as follows, which is calculated in the nodes of layer 5:

OS,i = Z_ifi :M (6)

W, +W,
145
Antecedent Consequent
Inputs Membership T rnorm Normaliser T norm Output
X Y
4 Al l Output
T — . reference
| @m, @ | war
' *
Input f
vectors A o
'@ | @wz @ L
, T Y %
4 B2 Xy Backpropagation
algorithm
t :
146 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
147 Figure 1. A schematic view of the ANFIS intelligent system.
148 ANFIS, has shown promising results in a wide range of applications for developing prediction

149  models [44-47]. However, optimization of the model parameters can dramatically improve the
150  quality and accuracy of modeling [37]. For that matter, a huge number of optimization
151 methodologies, such as PSO, are available to reinforce the parameters and answers of the ANFIS
152 system [48]. PSO is extraordinary compared to other approaches with the end goal of optimization.
153  This study takes the benefits of this algorithm.

154 Particle swarm optimization method has been inspired from birds behavior seeking food [49,
155  50]. In this model, particles update their places and pathways based on their and others information;
156  soit was proposed that the particle possess a memory function. The optimization process is based on
157  competition and collaboration between particles. When PSO is used to solve optimization problems,
158  one can follow the particles state by their pathways, and velocities. Three vectors Xi, Vi, Pbesti are
159  introduced to explain the properties of a particle: Xi is the current place; Vi the current speed; Pbesti
160  the best spatial placement sought by the particle and gbesti is the optimal solution searched by the
161  whole group of particles. The position and pathway of the particle will be updated gradually, based
162  on the following formula:

v(k +1) = v(k) +c,rand (0,1) x [ pbest(k) — persent(k)] + c,rand (0,1) x[gbest(k) — persent(k)] (7)

163

164

165 present (k + 1) = present (k) + v (k + 1) 8

166 Where, v( ) is particle speed in kth and k+1th iterations; present ( ) is particle position; c1, c2 are

167  learning constants which are greater than zero, and a random number between [0,1] is denoted using
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168  rand(). Formula (7) represents the updating process of the particle’s speed, which includes a particle’s
169  historical velocities and personal and global best positions [51].

170 3. Results

171 The amount of mercury emission was estimated using an ANFIS approach. Emission of mercury
172 into the environment generally is a strong function of mercury six previously mentioned variables.
173 We used MATLAB software to construct our model. A Gaussian function was used to optimize the
174 parameters. In addition to that, the total number of 10 clusters were utilized in the ANFIS hybrid
175  system. Optimization was conducted on a total number of parameters that were determined by:

176 NT :NchNmf (9)

177  Where the number of parameters for undergoing optimization is denoted by N1, and Nm¢ is used to
178  show the number of Gaussian membership functions that are used, Nvand Nc show how many
179  variables, and clusters are used in the model, respectively. It is noteworthy to state that in this study,
180  two membership functions, seven input and output variables, and 10 clusters are used. Eventually,
181  usingaPSO algorithm, optimization was conducted for 140 tuning parameters. As is shown in Figure
182 2, to evaluate the functionality of the PSO algorithm, a root means square error (RMSE) analyze was
183 used. Results show that in a total number of 1000 iterations, the minimum value of RMSE is touched.
184  Figure 3 indicates train membership function parameters for each input variables. It is seen that the
185  results of the presented model are in good agreement with the obtained data, which is the result of
186  great learning capability of the developed ANFIS model. Figure 4 illustrates the obtained data of
187  mercury emissions versus the test and training of ANFIS hybrid system.
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189 Figure 2. Root mean square errors versus number of iterations.
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Figure 4. Obtained data form plants and ANFIS values for mercury emissions in the stages of training

and testing.

As is shown in Figure 5, actual and predicted mercury emissions are located on a straight line
with an approximate slope of 1 (45°line) which indicates that the obtained information and ANFIS
predicted ones are in good agreement. The obtained cross-fit line in both test and training data sets

Equal to 1, which shows the accurateness of the model. To compare the results of the

model and evaluate its precision, the method of mean absolute relative error is used. For training and
testing steps, using mean absolute relative error percentage (MARE %) method, percentage values of
0.003266 and 0.013272 are calculated, respectively. Resulted relative deviations are presented in the
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202  Figure 6. Low relative deviations are observed due to accurately-predicted values. Different statistical
203  analyses were also presented in Table 1 for the suggested model.

@ Train @ Test

Linear (Train)

Linear (Test)

12

Train: y = 1.0001x - 0.0002
R=1

10

Actual Outlet elemental Hg, 1b/1012Btu
[e2]

4
Test: y = 1.0001x - 0.0002
R=1
2
0
0 2 4 6 8 10 12
Estimated Outlet elemental Hg, I1b/1012Btu
204
205 Figure 5. Regressions derived between estimated and collected data of mercury emissions.
206 Table 1. Statistical analysis of the model for all phases.
Train Test
R? 1.000 1.000

MSE 1.40E-07 1.39E-07
MRE (%)  0.037 0.044

207
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209 Figure 6. Deviation between the obtained data from plants and predicted mercury emissions.

210 4. Conclusions

211 Emission of mercury is known as one of the most perilous environmental contamination. In this
212 study, a comprehensive literature review was done, and a predictive model was built to predict the
213 amount of mercury emission based on the characteristics of the coal supply, operational conditions,
214  and so forth. The presented model is based on the ANFIS system, which utilizes a PSO algorithm to
215  estimate the amount of mercury emission to the environment. Data from 82 power plants have been
216  used to train and develop the ANFIS model. The MARE% for training and testing were 0.003266 and
217  0.013272, respectively. Furthermore, relative errors between acquired data and predicted values were
218 between -0.25% and 0.1%, which confirm the accuracy of PSO-ANFIS model. It was seen that for both
219  training and testing parts, the coefficient of determination was calculated to equal to unity, which
220  reflects the accuracy of the proposed ANFIS-PSO based model.
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