Preprint
Article

Parkinson’s Disease Detection Using Biogeography-Based Optimization

Altmetrics

Downloads

272

Views

247

Comments

0

Submitted:

08 May 2019

Posted:

10 May 2019

You are already at the latest version

Alerts
Abstract
In recent years, Parkinson's Disease (PD) as a progressive syndrome of the nervous system has become highly prevalent worldwide. In this study, a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network (MLP) with the Biogeography-based Optimization (BBO) to classify PD based on a series of biomedical voice measurements. BBO is employed to determine the optimal MLP parameters and boost prediction accuracy. The inputs comprised of 22 biomedical voice measurements. The proposed approach detects two PD statuses: 0– disease status and 1– reasonable control status. The performance of proposed methods compared with PSO, GA, ACO and ES method. The outcomes affirm that the MLP-BBO model exhibits higher precision and suitability for PD detection. The proposed diagnosis system as a type of speech algorithm detects early Parkinson’s symptoms, and consequently, it served as a promising new robust tool with excellent PD diagnosis performance.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated