Preprint
Article

A Study on Novel Extensions for the $p$-adic Gamma and $p$-adic Beta Functions

Altmetrics

Downloads

231

Views

364

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 May 2019

Posted:

21 May 2019

You are already at the latest version

Alerts
Abstract
In this paper, we introduce the (ρ,q)-analogue of the p-adic factorial function. By utilizing some properties of (ρ,q)-numbers, we obtain several new and interesting identities and formulas. We then construct the p-adic (ρ,q)-gamma function by means of the mentioned factorial function. We investigate several properties and relationships belonging to the foregoing gamma function, some of which are given for the case p = 2. We also derive more representations of the p-adic (ρ,q)-gamma function in general case. Moreover, we consider the p-adic (ρ,q)-Euler constant derived from the derivation of p-adic (ρ,q)-gamma function at x = 1. Furthermore, we provide a limit representation of aforementioned Euler constant based on (ρ,q)-numbers. Finally, we consider (ρ,q)-extension of the p-adic beta function via the p-adic (ρ,q)-gamma function and we then investigate various formulas and identities.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated