Preprint
Article

Characteristics of Spherical Organic Particles Emitted from Fixed-Bed Residential Coal Combustion

This version is not peer-reviewed.

Submitted:

21 May 2019

Posted:

22 May 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Residential coal combustion is one of the most significant sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal-burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the Sustainable Energy Technology and Research Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright. EDS analysis showed that 70% of the dark spherical organic particles had higher (~60%) relative oxygen content than in the bright SOPs. We quantified the morphology of spherical organic particles and classified them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions, and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights into the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.
Keywords: 
Subject: 
Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated