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Abstract

Diversity as well as temporal and spatial changes of the proportional abundances of
different antibiotics (cycling, mixing or combinations thereof) have been hypothesised to
be an effective administrative control strategy in hospitals to reduce the prevalence of
antibiotic-resistant pathogens in nosocomial or community-acquired infections. However,
a rigorous assessment of the efficacy of these control strategies is lacking. The main
purpose here is to present a mathematical framework for the assessment of control
stategies from a processual stance. To this end, we adopt diverse measures of
heterogeneity and diversity of proportional abundances based on the concept of entropy
from other fields and adapt them to the needs in assessing the impact of variations in
antibiotic consumption on antibiotic resistance. Thereby, we derive a family of diversity
measures whose members exhibit different degrees of complexity. Most important, we
extent these measures such that they account for the assessment of temporal changes in
heterogeneity including otherwise undetected diversity-invariant permutations of
antibiotics consumption and prevalence of resistant pathogens. We apply a correlation
analysis for the assessment of associations between changes of heterogeneities on the
antibiotics and on the pathogen side. As a showcase, which serves as a
proof-of-principle, we apply the derived methods to records of antibiotic consumption
and prevalence of antibiotic-resistant germs from University Hospital Dresden. Besides
the quantification of heterogeneities of antibiotics consumption and antibiotic resistance,
we show that a reduction of prevalence of antibiotic-resistant germs correlates with a
temporal change of similarity with respect to the first observation of antibiotics
consumption, although heterogeneity remains approximately constant. Although an
interventional study is pending, our mathematical framework turns out to be a viable
concept for the assessment and optimisation of control strategies intended to reduce
antibiotic resistance.

Introduction 1

The drastic increase of antimicrobial resistance worldwide resulting in an alarming 2

increase in morbidity and mortality from clinical infections urges scientists and 3

clinicians to develop counter-strategies [1]. Designing new antiinfective agents is an 4

option. However, the creation of new drugs is time-consuming and success is not 5
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guaranteed. Therefore, the control of consumption of available antibiotics or, more 6

general, of antiinfectives, is obligatory. 7

Since a quick replacement of existing antibiotics is not feasible, antibiotic strategies 8

as “antibiotic mixing”, “antibiotic cycling”, “antibiotic switching”, and “rotation 9

protocols” gained evermore attention in the recent decades [2–6] (for a review cf. [7]). 10

All these concepts refer to heterogeneity of antibiotic usage and non-constant 11

prescription rates. For example, antibiotic cycling means to extract one or a subset of 12

classes of antibiotics from administration in a temporarily alternating way whereas 13

other strategies refer to a scheduled change of the dominantly used class of antibiotics. 14

Frequently, mixing refers to a strategy where a group of patients receives drug (class) A 15

and another group receives drug (class) B in an alternating way. Hereby, the 16

permutation usually takes place between wards leading to a spatial heterogeneity of 17

antibiotic consumption. In clinical reality, empirical antibiotic therapy rarely follows 18

strictly defined control schemes but rather adjusted forms of cycling and mixing in 19

consequence of clinical requirements, thus “clinical cycling” (notion adopted from [4]). 20

Although there is some evidence that the temporal and spatial permutations of rates 21

of consumption of different antiinfectives are able to reduce prevalence of resistant 22

pathogens [2–4,8], there is a lack of rigorous evaluations of the ongoing processes, which 23

prevents optimisation. The nonlinear time series analysis presented by Lopez-Lozano et 24

al. 2019 is indicative for an approach from a processual stance, but needs to be 25

generalised. Usually, the impact of cycling and mixing strategies (for a review and meta 26

analysis cf. [7]) is investigated by means of prospective (randomized clinical trials 27

(RCTs), controlled clinical trials (CCT), controlled before-after, cross-over) based on 28

well-defined rotation/switch protocols, thereby neglecting (continuous real-world) 29

processes. Interrupted time series analyses with at least three observations before and 30

after intervention exist, but once more, a precise time point of intervention is 31

preconditioned, thereby excluding adjusted strategies of cycling and mixing. Of note, 32

other researchers as e.g. Karam et al. [5] could not confirm a significant reduction of 33

antimicrobial resistance through cycling or mixing protocols. 34

The main purpose of this work is to present an analytical framework to quantify 35

heterogeneity of both, antibiotic consumption as well as prevalence of 36

antibiotic-resistant pathogens as a function of observation time. This enables the 37

assessment of associations between consumption and resistance and, potentially, to 38

optimise control strategies based on diversity, mixing and cycling either in their 39

adjusted versions, i.e. “semi-controlled” field-like or observational studies, or in their 40

extremes. The analytic framework consists of adapted methods known in other areas 41

like ecosystems [9, 10]. For the purpose of illustrating the mathematical framework, the 42

method is applied to real observational data, i.e., to records of antibiotic consumption 43

and prevalences of antibiotic-resistant pathogens of University Hospital Dresden in 44

Germany. Although these data have been recorded in the absence of a clearcut study 45

design and without genuine applications of common cycling or mixing strategies, we 46

nevertheless opted to use these data instead of simulated data for illustration purpose 47

and to preserve a “real world” character of our methodological approach. Thus, the 48

application of the proposed mathematical framework has to be understood as a 49

proof-of-principle. Rigorous controlled interventional studies are planned, however, we 50

regard the immediate provision of the analytical framework to have utmost priority. 51
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Materials and methods 52

Records of antibiotic consumption 53

The available data set contains 25 consecutive quarterly records of antibiotic 54

consumption starting from the first quarter 2012. Consumption has been recorded per 55

administrative units (cost centres, typically wards). However, for the elementary stage 56

of illustrating the proposed method, a grouping of these small subunits into functional 57

units is considered to be sufficient. Therefore, the departments are grouped into the 58

three top-level units: surgical/OP units, intensive care units, and medical/normal care 59

units. Consumption has also been recorded per active agent, which is nested within 60

antibiotic class. In total, 49 active agents have been observed, which are pooled to 12 61

antibiotic classes. 62

The consumption of an antibiotic is measured in standardised units according to the 63

ATC/WHO definition of defined daily doses, DDD, in order to allow for comparisons of 64

different active agents. In addition, the number of cases as well as patient days have 65

been recorded on a quarterly basis. This allows to compute the consumption density 66

DDD per 100 patient days in hospitals: 67

DDDdensity =
DDD

100 patient days
. (1)

Please note, for the sake of completeness, consumption density sometimes refers to 68

DDD per 100 or per 1000 cases, respectively. In the following, we use DDD only since 69

DDDdensity gives virtually the same results (data not shown). Moreover, some 70

measures of diversity are functions of proportions of “species” within an “ecosystem”, 71

which is why we make use of proportions of consumption. If DDDi(t) denotes the 72

consumption of antibiotics within the antibiotic class i ∈ {1, . . . , n} at time t, the 73

proportion is given by 74

dddi(t) =
DDDi(t)
n∑

i=1

DDDi(t)
(2)

Depending on the context, index i may also refer to the active agent. 75

Coefficient of variation 76

The coefficient of variation, 77

V (t) =
SD(DDD(t))

Mean(DDD(t))
, (3)

where the mean is taken over the antibiotic classes and SD(DDD(t)) denotes the 78

corresponding standard deviation, can be used as a rough estimate of “homogeneity” in 79

a properly defined sense. Unfortunately, analogous to the notion of “dispersion,” 80

“homogeneity” is an ambiguous term which deserves clarification. In ecological analyses, 81

the concept of “maximisation of statistical heterogeneity” refers to an approach by 82

means of an entropy or a related diversity measure as discussed in the following section 83

(cf. [11]). In this context, an ecosystem is maximally heterogeneous, thus has maximum 84

entropy, if all species are equally abundant, at least in the absence of specific weights of 85

the species abundances [9]. In the latter case, V would be zero, i.e., the system has no 86

variability and is thus without (statistical) dispersion. In contrast, physicists prefer to 87

speak of a perfect dispersion, aka a perfect mixture, in such a situation. Thus, an 88

ecosystem or a society close to a monoculture is “homogeneous” whereas a multi-cultural 89

society/ecosystem is called “heterogeneous” which is used synonymously to “diversity.” 90
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In economics, to the contrary, the distribution of incomes is called homogeneous in 91

the case of equal incomes of all individuals in accordance with the idea of a 92

dispersion-free perfect mixture [12]. Due to compatibility, we stick with the ecological 93

approach in the sequel. In this regard, the coefficient of variation is an inverse measure 94

of ecological heterogeneity. Arguably, heterogeneity in the ecological sense is better 95

captured using the concept of diversity, as introduced in the following section. In order 96

to provide compatibility with the terminology based on the notion of “heterogeneity” 97

suggested in relevant publications on antibiotics resistance [2, 13], we cannot completely 98

drop this term. 99

Heterogeneity and entropy 100

Although the coefficient of variation can be interpreted as a rough measure of (inverse) 101

heterogeneity, it has several inadequacies including the lack of uniquely capturing 102

temporal changes. In the sequel, we harness methods known in ecological population 103

modelling and other fields of research for an adequate quantification and assessment of 104

antibiotic mixing behaviour and strategies as well as temporal patterns of prevalence of 105

antibiotic resistance. 106

Let ai and bi with i = 1, . . . , n be the proportions of species of two n−species 107

populations composed of the same set of species with
∑n

i=1 ai =
∑n

i=1 bi = 1. Similarity 108

of these two populations in terms of species’ abundances can be quantified by the 109

similarity index 110

SI = 1− 0.5

n∑
i=1

∣∣ai − bi
∣∣. (4)

If ai = bi,∀i = 1, . . . , n, then SI = 1, i.e., the populations are identical in terms of their 111

species distributions. If, on the contrary, the populations consist of disjoint sets of 112

species, then SI = 0. Similarity index SI scales between 0 and 1. If we now fix say the 113

first population to ai = 1
n ,∀i = 1, . . . , n, which means maximum heterogeneity for this 114

reference population, then, for the other population a heterogeneity index can be 115

defined by 116

HI = 1− n

2(n− 1)

n∑
i=1

∣∣∣ 1
n
− bi

∣∣∣. (5)

Hereby, the slightly adapted factor n
2(n−1) compared to 0.5 in SI (Eq 4) ensures 117

HI ∈ [0, 1] independent from the concrete value of n. As far as we know, HI defined by 118

Eq 5 has been used by Sandiumenge et al. [2] for the first time in the context of 119

assessing antibiotic resistance and reapplied by Plüss-Suard et al. [13]1. Abel zur 120

Wiesch and collaborators [4] explicitly call this measure “antibiotic heterogeneity index 121

(AHI)”, although it originated in other fields of research. 122

Diversity, a notion frequently used in ecology, is a more general concept than 123

heterogeneity [9, 14]. However, diversity is not uniquely defined. Thus, it depends on 124

the specific context to which particular definition of diversity should be drawn on. Even 125

within the field of antibiotic consumption and related antibiotic resistance, the concrete 126

context can vary considerably. Since we here aim at presenting a general mathematical 127

framework, a family of measures whose members are characterised by exhibiting 128

different levels of complexity is presented. 129

To start with, an obvious somewhat simplistic way to quantify diversity is given by 130

the so called richness, which is merely the number of species in a multi-species 131

population (e.g. ecosystem). In terms of richness, a heterogeneous n−species population 132

with equally frequent species has the same diversity as an n−species population with a 133

1Please note that the typesettings of the formulas for HI in refs. [2, 13] are incorrect.
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minority of dominating and a majority of very rare species, that is to say n. It follows 134

that an expedient diversity measure should be based on the distribution of species’ 135

abundances in some way. 136

A meaningful definition of diversity Da is based on an “effective number of species” 137

(cf. [9, 14]) given by the species’ proportions pi and a weight parameter a by means of: 138

Da =

(
n∑

i=1

pai

) 1
1−a

. (6)

Setting a = 0 yields D0 = n independently from pi, i.e. richness. Other special cases are: 139

D1 = eR1

D2 = 1∑n
i=1 p2

i

D∞ = 1
max(pi)

(7)

with R1 = −
∑n

i=1 pi ln(pi) being the so called “Shannon entropy”, sometimes also 140

called “Shannon index.” A unique name for D1 itself, i.e. the exponential of the 141

Shannon entropy, does not exist, however, in information science it is sometimes called 142

“perplexity.” Diversity measure D2 is called “inverse Simpson index.” The frequently 143

used Gini-Simpson-Index derived from D2 is given by: GS = 1− 1
D2

. The inverse of 144

D∞ is found in the literature named “Berger–Parker index,” which is simply the 145

proportional abundance of the most abundant type. 146

The Shannon entropy is a special case of a Renyi entropy defined by 147

Ra =
1

1− a
ln

(
n∑

i=1

pi

)
, (8)

thus we have Da = eRa . In other words, Ra is a monotonous function of Da, thus, the 148

two measures can be used interchangeably without loss of information since diversity 149

has only a relative meaning, anyway. The same holds for GS and other possible 150

monotonous functions of Da. Entropy Ra, thus Da, independently of a reach their 151

maximum for the fully heterogeneous situation pi = 1
n (∀i = 1, . . . , n) and it then follows 152

that Da = n. From the latter result we conclude that richness might be a sufficient 153

diversity measure for populations close to full heterogeneity. Having said that, 154

heterogeneity HI itself, although it cannot be derived as a special case of a Renyi 155

entropy, shares features of an entropy and is thus a legitimate measure of diversity. 156

Finally, the frequently used Gini coefficient deserves to be mentioned: 157

G = 1− 1

2(n− 1)

n∑
i=1

n∑
j=1

∣∣pi − pj
∣∣. (9)

The Gini coefficient in this form (for this and other variants see [14]) is an interesting 158

variant of the similarity index SI insofar as it can be interpreted as kind of a 159

self-similarity. Once more, full heterogeneity (equal proportions) pi = 1
n ,∀i = 1, . . . , n, 160

implies G = 1, and maximally unequal proportions (e.g. pi = 1, pj 6=i = 0) implies G = 0. 161

For what follows, it is important to bring to mind that both heterogeneity, HI, as 162

well as measures of diversity, Da, GS, and G, are invariant under permutations of 163

indices. In other words, if the proportions of two species are exchanged, diversity 164

(heterogeneity) does not change. However, similarity index SI is capable to account for 165

such a change after some adaptations, as shown in the Results section. In order to 166
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assess both (temporal) cycling as well as (spatial) mixing behaviour of antibiotic 167

administration or consumption, respectively, the proper similarity index extends to 168

SI = 1− 0.25

n∑
i=1

m∑
j=1

∣∣aij − bij
∣∣ (10)

where
∑n

i=1

∣∣aij∣∣ =
∑n

i=1

∣∣bij∣∣ = 1 ∀ j = 1 . . .m. Hereby, the inner sum is taken over 169

the m wards or groups of patients between which antibiotic mixing takes place. In this 170

case, aij and bij refer to the relative abundances before and after the swap of antibiotics 171

administrations between the wards, respectively. In practice, i.e. in the absence of a 172

properly defined study protocol, an allocation of both antibiotic consumption as well as 173

the prevalence of resistant pathogens to precisely defined wards or groups of patients is 174

hampered by the reality of adjusted clinical cycling/mixing. In the following, due to 175

lack of appropriate information on mixing strategies, we present definitions of similarity 176

tailored to our needs without taking strict mixing into account. 177

Statistical analysis 178

Main purpose of this article is to apply a diversity analysis to records of both clinical 179

consumption of antibiotics as well as prevalence of pathogens exhibiting antimicrobial 180

resistance. We refer to the previous section for a detailed introduction of the applied 181

diversity measures. It remains to mention that the expected impact of diversity of 182

antimicrobial consumption on the prevalence of resistant pathogens is analysed by 183

means of Pearson’s correlations of the corresponding time series. 184

Specifically, slopes along with their significance of differing from zero taken from 185

linear regression quantify the temporal changes of both diversity as well as differential 186

diversity. Of particular interest is the comparison between the time courses of 187

differential diversities of antibiotic consumption and prevalence of resistant pathogens. 188

Such a comparison can be achieved by testing of whether the two corresponding slopes 189

differ significantly or not, or, equivalently, by calculating Pearson’s correlation 190

coefficient along with the corresponding significance test. In the same line, the time 191

series of the relative abundance of resistant pathogens is tested for correlations with the 192

time course of the differential diversity of antibiotic consumption using, as before, 193

Pearson’s product moment correlation analysis. 194

Of note, each of the three time series, i.e. differential diversity of consumption, 195

differential diversity of prevalence, and relative abundance of resistant pathogens, are 196

expected to exhibit autocorrelations. This is a common feature of time series analyses. 197

Nevertheless, Pearson’s correlation is commonly used as a standard technique to 198

quantify the co-variation of two correlated time series and we here regard it to be 199

sufficient for raising hypotheses based on the available preliminary dataset. A more 200

appropriate application of a cross-correlation function with one of two time series being 201

subject to a time lag is not applicable in our case due to the insufficient lengths (and 202

low sampling frequencies) of the time series. 203

Numerical calculations, statistics, and graphics have been performed with R [15]. 204

Results 205

Preliminary note 206

Before presenting the results of applying the derived diversity measures to observational 207

clinical data, we reemphasise that this work mainly aims in presenting the mathematical 208

framework. The following application to real data has an illustrative purpose and 209
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outlines future applications to adequately collected data from a controlled trial. 210

Therefore, in terms of clinically relevant results, the following explanations remain 211

provisional. 212

Descriptive analysis 213

Fig 1a shows the 12 time courses of antibiotic consumption per antibiotic class, 214

DDDi(t). The consumptions of 9 classes largely remain constant on a moderate level. 215

One class, that is to say “second-generation cephalosporins”, is characterised by a high 216

consumption at the outset but declines approximately monotonously by more than half 217

towards the end of the observation period. The consumptions of two other classes, in 218

contrast, i.e. “aminopenicillin/beta-lactamase inhibitors” and “narrow-spectrum 219

penicillins” increase approximately monotonously and roughly compensate for the 220

aforementioned decline. 221
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Fig 1. Time course of antibiotic consumption by antibiotic class. Time
courses of a) consumption DDD per antibiotic class, b) proportions of consumption ddd
per antibiotic class, c) mean consumption averaged over the antibiotic class, d)
coefficient of variation with respect to the antibiotic classes.

Calculations based on DDD are hardly distinguishable from calculations based on 222

the corresponding densities, 100×DDDi/patient days. Henceforth, due to these minor 223

differences, we skip to report our results with respect to consumption densities since we 224

here primarily deal with an introduction of a methodological concept. The distinction 225

between DDD and the corresponding densities might become important in other 226

contexts, though. The proportions, dddi(t), however, depicted in Fig 1b, will be used in 227

later sections where we calculate measures of diversity. 228

Fig 1c shows the time course of the quarterly sampled mean antibiotic consumption, 229

Mean(DDD(t)), averaged over the 12 observed antibiotic classes (cf. Fig 1a). The 230
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corresponding coefficient of variation, Eq 3, is depicted in Fig 1d. 231

In the present case, variability thus homogeneity in the ecological sense is rather 232

high during the first 4 to 6 quarters compared with the remaining time course. After an 233

approximately monotonous decline until 2016, V (t) slightly increases again during the 234

final quarters. These results are consistent with the visual impressions from Fig 1a. 235

Starting with a rather homogeneous distribution at the outset with an outstandingly 236

large proportion of a single antibiotic class, we observe a trend towards a narrow 237

distribution around the mean that starts to weakly widen towards the end. Equal 238

proportions, thus V (t) = 0, means perfect heterogeneity, therefore, V (t) can be 239

interpreted as an inverse measure of heterogeneity. 240

In the same line, the descriptive analysis can be applied to consumption with respect 241

to active agents. Fig 2a shows the 49 time courses of consumption per active agent. We 242

observe that a single active agent, viz. “cefuroxime”, dominates consumption at the 243

outset but declines approximately monotonously towards the end to a level still 244

significantly above the bulk. This decline is compensated by an increase in consumption 245

mainly of “amoxicillin + clavulanic acid” but also some other agents. The time courses 246

of mean DDD and the coefficient of variation with respect to the active agents shown in 247

Figs 2b-c reveal that variability remains on a high level during the time course. Thus, it 248

turns out that pooling agents into antibiotic classes has a damping effect with respect to 249

variability or homogeneity, respectively. 250
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Fig 2. Time course of antibiotic consumption by active agent. Time courses
of a) consumption DDD per active agent, b) mean consumption averaged over the
active agents, c) coefficient of variation with respect to the active agents.

Next step is to account for the Hospital’s functional units. The three panels of Fig 3 251

show the time courses of antibiotic consumption per antibiotic class stratified by the 252

three functional units: unit 1 = intensive care units, unit 2 = medical/normal care 253

units, unit 3 = surgical/OP units. Unit 1 consumed antibiotics out of 11 classes, 254

whereas unit 3 consumed antibiotics out of only 8 different classes in at least one 255
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quarter during the whole observation period. Only unit 2 has non-zero consumption of 256

antibiotics out of all 12 classes in at least one quarter. 257
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aminopenicillin/beta-lactamase inhibitors
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fourth-generation cephalosporins

broad-spectrum penicillins

carbapenems

folate antagonists

macrolides + clindamycin

narrow-spectrum penicillins

tetracyclines

other antibiotics

Fig 3. Time courses of antibiotic consumption by antibiotic class separated
by functional units. Time courses of antibiotic consumption per antibiotic class
shown separately for the functional units a) unit 1 = intensive care units, b) unit 2 =
medical/normal care units, c) unit 3 = surgical/OP units. Please note, the different
scales of the y-axes reflect the different total amounts of consumption within each unit
due to their different sizes. Important are the relative abundances within each unit.

Fig 4 shows the time courses of mean consumption averaged over the antibiotic 258

classes per functional unit (Fig 4a) as well as the three corresponding coefficients of 259

variation (Fig 4b). Unit 3 (the surgical/OP units) exhibits the lowest mean consumption 260

but by far the highest coefficient of variation, both of which remain approximately 261

constant over the time course. The explanation follows by throwing a glance on Fig 3c: 262

Unit 3 has one absolutely dominating consumption of antibiotics out of the class 263

“second-generation cephalosporins.” Units 1 and 2 both exhibit approximately 264

temporarily constant mean consumption, however, unit 2 on a roughly 5-fold higher 265

magnitude. Noteworthy, the variation of consumption of unit 2 approximately follows 266

the variation for the whole clinic with a more or less monotonous decline during the first 267

half of the observation period, whereas the coefficient of variation for unit 1 is 268

approximately constant over the time course, with the exception of a marked rise at the 269

final observation (first quarter of 2018), which can be explained by the sudden rise of 270

consumption of “narrow-spectrum penicillins” antibiotics (cf. Fig 3a). 271

Heterogeneity of antibiotic consumption 272

The diversity measures introduced in the “Materials and methods” section are now 273

calculated using the observed proportions pi of antibiotic consumption with respect to 274

antibiotic classes, thus i = 1, . . . , 12 refers to the 12 antibiotic classes. Fig 5 shows time 275

courses of a) Renyi entropies, Ra, for 7 different values of weight parameter a (cf. figure 276

legend), b) the corresponding diversities, Da = eRa for the same set of parameters a, c) 277
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Fig 4. Mean antibiotic consumptions and coefficient of variation by
functional unit. Time courses per functional unit of a) mean antibiotic consumption
averaged over antibiotic classes, b) corresponding coefficient of variation, with unit 1 =
intensive care units, unit 2 = medical/normal care units, unit 3 = surgical/OP units.

the Gini-Simpson diversity, GS, and d) the Gini coefficient, G. Specifically, a = 0 yields 278

D0 = n = 12 (Fig 5b) in agreement with what we expected from theory. 279
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Fig 5. Measures of diversity with respect to antibiotic classes. a) Renyi
entropies Ra for a = 0, 0.5, 0.99, 1.5, 2, 3, 100, b) Diversities Da for
a = 0, 0.5, 0.99, 1.5, 2, 3, 100, c) Gini-Simpson index GS, d) Gini coefficient G.

Apparently, for all a > 0 the curves exhibit the same shape, i.e., they differ at each 280

time point by a factor that seems to be a monotonous function of the values of a 281

reference curve at these time points. A unique rule which specifies the best value of a 282

does not exist. However, some researchers invoke a rule of thumb (e.g. [10]) which states 283

that if one exactly observes such a monotonous relation between the different curves as 284
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we did, then the Renyi entropy is a robust measure and a > 0 can be chosen arbitrarily 285

but consistently, since entropy does not have an absolute meaning, anyway. Apparently, 286

the rule also holds for the Gini-Simpson diversity, GS, and the Gini coefficient G. 287

Fig 5 reveals that all diversity measures increase from 2012 until approximately 2016. 288

Thereafter, this tendency is stopped and the data even suggest the initiation of a 289

decrease in diversity. This behaviour coincides with the time course of the coefficient of 290

variation (Fig 1). 291

Compared to the Renyi entropy, heterogeneity HI, defined in Eq 5, is easier to 292

comprehend, which might explain that its application in the context of antibiotic 293

resistance is unparalleled up to date [2, 4, 13]. However, the invariance under species 294

permutations has not been taken into account thus far. A cycling strategy that dictates 295

an occasional temporal swap of consumption of two antibiotics with respect to the 296

hospital unit under consideration leads to a temporarily constant heterogeneity and, 297

therefore, to wrong conclusions if the assessment is merely based on HI. Likewise, a 298

mixing strategy, i.e. switching the consumption of two antibiotics between two units 299

would remain unnoticed unless the diversity of the two units are not separately 300

calculated (cf. Eq 10). Since heterogeneity is nothing but a special case of similarity SI, 301

we can now make use of SI to introduce a differential measure. Similarity with respect 302

to the initial observation at the outset of a study 303

SI0(t) = 1− n

2(n− 1)

n∑
i=1

∣∣∣pi(t = 0)− pi(t)
∣∣∣, (11)

with t = 0, 1, . . . , 24 being the number of elapsed quarters, captures changes with 304

respect to the first observation. In the same line, 305

SI∆(t) = 1− n

2(n− 1)

n∑
i=1

∣∣∣pi(t− 1)− pi(t)
∣∣∣, for t > 0. (12)

defines changes with respect to consecutive quarters, thus defines an approximation to a 306

differential measure of similarity. The time courses of HI, SI0, and SI∆ are depicted in 307

Figs 6a-c. Heterogeneity HI varies only within a small range from 0.63 to 0.69 (Fig 6a). 308

However, we observe a monotonous, almost linearly increasing displacement from the 309

first observation (Fig 6b). Due to this linear increase, the magnitude of the differential 310

displacement SI∆(t) is more or less constant and is approximately one minus the slope 311

of SI0(t) (Fig 6c). Obviously, the difference of the distribution of antibiotic abundances 312

accumulates over the time course, where SI∆(t) measures the intensity of the change as 313

a function of time. Thus, we now have a sound basis for the evaluation of changing 314

abundances and possibly related switching strategies. 315

Within the scope of physics and information sciences, it is common to base measures 316

of heterogeneity and diversity, respectively, on the Shannon entropy because it can be 317

interpreted as the negative mean information that arises from averaging over the 318

individual contributions ln(pi) to information. In this context, the similarity index 319

between two distributions given by ai and bi corresponds to the Kullback-Leibler 320

divergence [11] 321

KLD(ai, bi) =

n∑
i=1

ai log

(
ai
bi

)
. (13)

However, KLD is asymmetric, which is why the symmetric variant 322

KLD(ai, bi) + KLD(bi, ai), known as Kullback-Leibler difference, has been introduced. 323

KLD is the mean information difference taken over the individual information 324

differences log(ai)− log(bi). 325

August 26, 2020 11/21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   doi:10.20944/preprints201906.0019.v2

Peer-reviewed version available at PLOS ONE 2020, 15; doi:10.1371/journal.pone.0238692

https://doi.org/10.20944/preprints201906.0019.v2
https://doi.org/10.1371/journal.pone.0238692


2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

H
I

a) Heterogeneity HI

2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

S
I 0

b) Similarity index SI0

2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

S
I Δ

c) Similarity index SIΔ

2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

K
L

d) Kullback-Leibler heterogeneity KL

2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

K
L 0

e) Kullback-Leibler difference KL0

2012 2013 2014 2015 2016 2017 2018

0.
6

0.
7

0.
8

0.
9

1.
0

Time [Calendar Years]

K
L Δ

f) Kullback-Leibler difference KLΔ

Fig 6. Measures of heterogeneity and similarity with respect to antibiotic
classes. a) Heterogeneity index HI, b) Similarity index SI0 with respect to
proportions of the first observation, c) Similarity index SI∆ with respect to proportions
of the preceding observation, d) Kullback-Leibler heterogeneity KL e) Kullback-Leibler
difference KL0 with respect to proportions of the first observation, f) Kullback-Leibler
difference KL∆ with respect to proportions of the preceding observation. Confer text
for definitions of these measures.

In order to harness KLD for our needs, we define the Kullback-Leibler heterogeneity 326

KL(t) = 1− 1

2 ln(2)

(
n∑

i=1

ai(t) log

(
ai(t) + 1

1
n + 1

)
+

n∑
i=1

1

n
log

( 1
n + 1

ai(t) + 1

))
. (14)

Furthermore, the Kullback-Leibler similarity KL0(t) of distribution ai(t) at time t with 327

the distribution at t = 0 (first observation) can be defined by 328

KL0(t) =

n∑
i=1

ai(t) log

(
ai(t) + 1

ai(t = 0) + 1

)
+

n∑
i=1

ai(t = 0) log

(
ai(t = 0) + 1

ai(t) + 1

)
. (15)

Finally, the Kullback-Leibler similarity KL∆(t) between two distributions observed at 329

subsequent time points (here quarters) is given by 330

KL∆(t) =

n∑
i=1

ai(t) log

(
ai(t) + 1

ai(t− 1) + 1

)
+

n∑
i=1

ai(t− 1) log

(
ai(t− 1) + 1

ai(t) + 1

)
. (16)

Hereby, the +1 terms within the arguments of the logarithms ensure that situations 331

with pi = 0 remain well-defined. 332

Figs 6d–6f show time courses of KL, KL0 and KL∆, respectively. A comparison 333

with the ordinary heterogeneity and similarity measures of Figs 6a–6c reveals that the 334

values of KL, KL0 and KL∆ are located within narrower intervals. In addition, KL 335

appears to be smoother than HI and, noteworthy, the decreasing curve of KL0(t) has a 336

concave shape. From these differences we conclude that measures based on information 337

differences, due to their logarithmic dependence, weight larger differences in proportions 338

stronger than small differences, whereas the ordinary measures exhibit a proportional 339

weight. 340

August 26, 2020 12/21

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   doi:10.20944/preprints201906.0019.v2

Peer-reviewed version available at PLOS ONE 2020, 15; doi:10.1371/journal.pone.0238692

https://doi.org/10.20944/preprints201906.0019.v2
https://doi.org/10.1371/journal.pone.0238692


In the same line, the time courses of measures of diversity and heterogeneity, 341

respectively, with respect to active agents are depicted in Figs 7 and 8. Qualitatively, 342

similar results as for the antibiotic classes are obtained. Once more, as already observed 343

for the coefficient of variation, we see a damping effect of pooling the active agents into 344

antibiotic classes. The variations of temporal changes of heterogeneity and related 345

measures are larger for the active agents than for the more coarse grained antibiotic 346

classes. No need to mention, the question of which stratification level should be 347

prioritised is a matter of the concrete studies’ objectives and the availability of adequate 348

data. The usage of the more fine-grained level of active agents is advisable if records of 349

prevalence of antibiotic resistance are available at the same fine-grained level. 350
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Fig 7. Diversity measures with respect to active agents. a) Renyi entropies Ra

for a = 0, 0.5, 0.99, 1.5, 2, 3, 100, b) Diversities Da for a = 0, 0.5, 0.99, 1.5, 2, 3, 100, c)
Gini-Simpson index GS, d) Gini coefficient G.

Finally, we briefly report on the results obtained when the hospital’s functional units 351

are included as a second factor in addition to the antibiotic classes. Firstly, Fig 9 shows 352

time courses of diversity measures stratified by the three functional units as previously 353

defined. Secondly, heterogeneity HI and the similarity indexes SI0 and SI∆ are shown 354

in Fig 10. Strikingly, diversities Da and GS as well as heterogeneity HI remain 355

approximately constant in the course of time for functional unit 3 and varies only very 356

slightly for unit 1. To the contrary, the diversities for functional unit 2 resemble the 357

corresponding curves for the whole hospital as shown in Figs 5 and 6, i.e., they exhibit 358

an increase in the course of time. Apparently, the functional units have different policies 359

of antibiotic administration. This becomes even more obvious when throwing a glance 360

onto the curve SI0(t) shown in Fig 10b. The administration in unit 3 essentially 361

remains constant with respect to the first observed administration in 2012. The 362

administrations in unit 1 and unit 2, in contrast, show a cumulative difference with 363

respect to the first observation. 364

So far, we conclude that neither of the diversity or heterogeneity measures Da, GS, 365
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Fig 8. Measures of heterogeneity and similarity with respect to active
agents. a) Heterogeneity index HI, b) Similarity index SI0 with respect to proportions
of the first observation, c) Similarity index SI∆ with respect to proportions of the
preceding observation. Confer text for the definitions of these measures.
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Fig 9. Measures of diversity with respect to antibiotic classes stratified by
functional units. a) Diversities Da for unit 1 with a = 0, 0.5, 0.99, 1.5, 2, 3, 100, b)
Diversities Da for unit 2 with a = 0, 0.5, 0.99, 1.5, 2, 3, 100, c) Diversities Da for unit 3
with a = 0, 0.5, 0.99, 1.5, 2, 3, 100, d) Gini-Simpson Index GS. See text for definitions.

G, HI, and KL are capable to catch suspected policies of clinical cycling without a 366

concomitant assessment based on the newly introduced similarity indexes SI0 and SI∆ 367

or, alternatively, KL0 and KL∆. A very weak long-term clinical cycling, as actually 368

observed for the data under investigation, can leave diversity more or less invariant. To 369

be specific, the constant non-vanishing slope of SI0(t), thus the constant SI∆(t) < 1 370

reflects a long-term “cycling-like” change of antibiotic abundances. Assuming a full 371

cycle in case of a rigorously applied cycling protocol, SI0(t) would also exhibit a full 372

cycle in the course of time. 373
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Fig 10. Heterogeneity and similarities with respect to antibiotic classes
stratified by functional units. a) Heterogeneity HI. b) Similarity index SI0 with
respect to proportions of the first observation, c) Similarity index SI∆ with respect to
proportions of the preceding observation. Confer text for the definitions of these
measures.

Correlation of antibiotic administration and prevalence of 374

antibiotic resistance 375

The most important and at the same time most challenging question, in the given 376

context, is whether the clinical cycling of antibiotic administrations correlates or even 377

causally relates to the prevalence of antibiotic resistances. Only sufficient knowledge 378

about existence and structure of such an association renders the design of 379

administration policies that aim in minimising resistances meaningful. Unfortunately, 380

recorded data on prevalence of antibiotic resistance are rare and often collected in a 381

non-systematic way. Therefore, the following analysis should be viewed as paradigmatic 382

rather than taking the results as credible. 383

Infections have been recorded on a yearly basis within intensive care units and 384

medical/normal care units, however, not in a controlled and regular way as may be 385

required by a controlled study design. Fig 11 shows the time courses of the number of 386

registered cases per pathogen stratified by resistance. Resistance, hereby, has been 387

dichotomised in a yes/no-variable although for some cases a more detailed information 388

on the type of resistance (the corresponding antibiotic agent, multiresistance, etc.) is 389

available. The time courses of infection frequencies suggest a rising prevalence. However, 390

the awareness of the problem of antibiotic resistance and the adherence to diagnostic 391

and therapeutic guidelines increased over time. We suspect that the rigorous diagnostic 392

of pathogens is responsible for the added detection of more (resistant) pathogens. The 393

proportions of infections with resistant infectious agents per type of pathogen is perhaps 394

more reliable than the total number of infections. Fig 12 shows the time courses of 395

these proportions and it no longer appears as drastic as before. It appears natural to 396

apply the measures of heterogeneity and similarity introduced above to the proportions 397

of resistant pathogens with respect to the total population of resistant pathogens. 398

Fig 13 depicts the time courses of HI, SI0, and SI∆ both for the proportions of 399

antibiotic consumption and for the proportions of resistant pathogens in order to allow 400

for a direct comparison. Heterogeneity hardly changes in the time’s course both for 401

antibiotic consumption and resistant pathogens (Fig 13, left panel). The slopes of 402

heterogeneity HI(t) (denoted by mean (2.5%CI; 97.5%CI) in the following) resulting 403

from linear regression are essentially zero (which is the null hypothesis of the linear 404

model) with −0.004 (−0.012; 0.004) and p = 0.300 (antibiotics, unit 1), with 405

0.001 (−0.003; 0.005) and p = 0.705 (pathogens, unit 1), with −0.003 (−0.021; 0.016) 406

and p = 0.629 (antibiotics, unit 2), and with −0.006 (−0.019; 0.008) and p = 0.300 407
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(pathogens, unit 2), respectively. However, heterogeneity of the population of resistant 408

pathogens is slightly lower compared to antibiotic consumption. Thus, we have constant 409

heterogeneity but pathogens may, as observed for antibiotics, exhibit a “cycling-like” 410

characteristic in form of exchanges of prevalences of pathogens which leave 411

heterogeneity invariant. 412

The differential (quarter-by-quarter or year-by-year) changes of distributions with 413

time averages 1− SI∆ of 0.1 (0.08, 0.11) (antibiotics, unit 1), 0.15 (0.12, 0.18) 414

(pathogens, unit 1), 0.053(0.05, 0.06) (antibiotics, unit 2), and 0.11(0.07, 0.14) 415

(pathogens, unit 2), are slightly greater for the distribution of resistant pathogens 416

compared to antibiotics consumption (Fig 13, right panel), however, both are constant 417

in essence for both units with slopes (derived from a linear model) 418
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Fig 13. Association of heterogeneities of antibiotic consumption and
pathogen prevalence. Time courses of heterogeneity, HI and similarity indexes, SI0

and SI∆ for antibiotic consumption with respect to antibiotic classes and prevalence of
resistant pathogens stratified by the hospital’s units 1 (intensive care) and 2
(medical/normal care).

0.0002 (−0.0078; 0.0081) and p = 0.968 (antibiotics, unit 1), with 419

−0.0091 (−0.0460; 0.0279) and p = 0.492 (pathogens, unit 1), with 420

−0.0010 (−0.0053; 0.0034) and p = 0.653 (antibiotics, unit 2), and with 421

0.021 (−0.002; 0.045) and p = 0.0637 (pathogens, unit 2). Therefore, we expect that 422

SI0(t) exhibits a linear decline with constant slope approximately given by SI∆ − 1, as 423

shown in the following. 424

Most strikingly, the time series of the accumulated similarity index SI0 for the 425

resistant pathogens strongly correlates with the corresponding time series of antibiotic 426

consumption, in fact in both units. A Pearson product moment correlation analysis 427

gives correlation coefficients 0.92 with p = 0.009 (unit 1) and 0.89 with p = 0.02 (unit 428

2). The slopes significantly differ from zero with the concrete values 429

−0.055 (−0.062;−0.047) per year (antibiotics, unit 1, p < 10−3), 430

−0.049 (−0.078;−0.021) per year (pathogens, unit 1, p = 0.009), 431

−0.067 (−0.072;−0.063) per year (antibiotics, unit 2, p < 10−3), and 432

−0.044 (−0.088;−7.3e− 04) per year (pathogens, unit 2, p = 0.048), respectively. It is 433

appealing to speculate whether these coinciding changes are a result of correlations or 434

even causal relations. For the time being, this speculation has to be treated with 435

caution. However, this analysis gives directions to a proper controlled observational or 436

experimental study design. 437

A further observation underpins our speculation. The total percentage of resistant 438

pathogens reduces significantly from roughly 20% to 10% in functional unit 1. A linear 439

regression gives a slope of −0.017 (−0.025;−0.008) per year for the proportion 440

(significantly different from zero with p = 0.005). In functional unit 2 the proportion of 441

resistant pathogens reduces non-significantly by −0.007 (−0.015; 7.1e− 05) per year, 442

however, at the edge of significance (p = 0.051). An additional support for our 443

hypothesis is given by explicitly calculating the correlation coefficients between SI0 and 444

the approximately linear decline of the ratio of resistant pathogens: 0.92 (p = 0.009) for 445

unit 1 and 0.86 (p = 0.03) for unit 2. 446

To conclude, although a genuine control strategy in the common sense of 447

antimicrobial cycling or mixing was not applied, we observe that a rather long-term 448

temporal change (clinical cycling) of consumption of different antibiotics (SI0 applied to 449

antibiotics consumption) correlates with a change of prevalence of antibiotic-resistant 450

bacteria (SI0 applied to prevalence of resistant pathogens). This correlation is 451

expressed by means of almost equal slopes as well as a corresponding large correlation 452

coefficient, where the slopes are significantly different from zero and approximately 453
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equal, of the two similarity indexes SI0 for antibiotics and pathogens, respectively. 454

Whether these temporal changes in antibiotic consumption have a direct causal impact 455

is still speculative but gains additional evidence through the observed reduction of 456

prevalent resistant bacteria. Controlled studies that allow comparisons with more or less 457

static “control strategies” and other types of switching behaviours (including mixing) 458

are needed to draw reliable inferences. It is the main intention of this work to supply an 459

appropriate mathematical framework for such studies. 460

Discussion 461

Applications of measures of heterogeneity and diversity are rare and unsatisfactory in 462

the context of assessing antibiotic resistance. This is somewhat surprising since 463

antibiotic administration policies that rely on cycling or mixing strategies in order to 464

reduce antibiotic resistances have been promoted for quite some time [2, 4, 6, 7, 13] (for a 465

counter example see [5]). Cycling strategies, this is our claim, are best characterised by 466

means of differential measures of heterogeneity and diversity, respectively. This 467

approach can, in principle, be extended to capture mixing by introducing a spatial 468

stratification of the diversity measures. Although some attempts to tackle antibiotic 469

resistance by means of heterogeneity analyses exist [2,4,13], a satisfactory mathematical 470

framework is due. 471

We adopted diversity measures known in other fields of research [9, 11] and adapted 472

them to the needs within the scope of analysing antibiotic resistance. It is natural to 473

seek for dependencies between the heterogeneity of consumption of antibiotics and the 474

heterogeneity of the pattern of prevalence of antibiotic-resistant pathogens. 475

In order to provide a flexible methodological basis for the analysis of antibiotic 476

resistance, we introduced and discussed a simple measure of heterogeneity as well as a 477

general family of diversity measures, i.e., the so called family of Renyi diversities and 478

derivatives thereof. It should be noted that the notions of “heterogeneity” and 479

“diversity” do not refer to conceptually different measures, they merely reflect their 480

emergence in different fields of application. As a novel aspect within the given context, 481

we derived differential measures of similarity which are needed to capture temporal 482

changes due to swapping proportions which leave moments like heterogeneity and 483

diversity invariant. 484

For many real-world applications, the simple heterogeneity measure HI and 485

differential measures of similarity SI0 and SI∆ will suffice. However, showing 486

simultaneously that the whole family of diversity measures leads to the same 487

conclusions supplies additional evidence (“We can regard a sample more diverse if all of 488

its Renyi diversities are higher than in another samples.”, [10]). Moreover, the 489

smoothing and non-linear weighting effect of higher order measures like Shannon 490

entropy and derivatives (Kullback-Leibler heterogeneity, etc.) might become important 491

for damping spurious fluctuations by weighting larger deviations. A solid reason for the 492

choice of entropies is the straightforward application of a maximum entropy method. 493

Maximum entropy proved as the method of choice when it comes to learn dynamics of 494

biological systems (e.g. [16], see also [11]). With the aid of such an optimisation tool we 495

expect that an optimal cycling and arguably also an optimal mixing schedule can be 496

learned from the observed correlation patterns between antibiotics consumption and 497

prevalences of antibiotic-resistance. 498

The presented inclusion of covariates and factors like clinical units and groupings of 499

active agents has exemplary character. The concrete choice of covariates depends on 500

their availability and, most important, on the specific questions that are raised. In the 501

case of mixing with two (or more) subpopulations of patients that receive different 502

drugs in a temporarily alternating way, it might be better to stratify for these 503
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subpopulations instead of functional units, unless these strata coincide. Furthermore, 504

since transmission occurs at the microlevel, it would certainly be of advantage to 505

include individual-level administration data instead of aggregated dispensing data. Such 506

microlevel data have not been available for our elementary methodological approach. 507

However, our analytical framework is flexible enough to account for such peculiarities. 508

In addition, we point to the possibility to expand measures of heterogeneity and 509

similarity to be applicable to joint probabilities of antibiotic consumption and resistance. 510

This is beyond the scope of the present work, however, we paved the way for doing so. 511

It deserves to be mentioned, that some authors approached the problem by means of 512

extended SIR-like epidemiological models [4, 17]. From a theoretical point of view, these 513

models have benchmark character. However, the validation of these models necessitates 514

recording of data on antibiotics consumption and pathogen load on an individual basis 515

which is not feasible for most hospitals. As opposed to this, so called composite indices 516

as “summary measures of the net impact of antibiotic resistance on empiric 517

therapy” [18] are much more coarse-grained epidemiological measures based on the 518

cumulative antibiogram [19], which reside on a higher population level. Our approach is 519

compatible to both sides and bridges the gap. 520

In addition, our method complements time series analyses (e.g. [8]) that pointed to 521

thresholds in associations between population antibiotic use and prevalence of resistant 522

pathogens. Within the scope of the time series analyses as discussed by López-Lozano et 523

al. [8], the correlation of the time series of the prevalence of a specific pathogen with the 524

time series of the amount of corresponding administered antibiotics is calculated. 525

Commonly, such a correlation of two time series is given by a mutual entropy. Thus, our 526

approach is a generalisation in that it treats diversities of both antibiotic consumption 527

as well as pathogen prevalence and correlates these diversities. 528

The time series analyses [8] supplied evidence that prevalence rates increase in a 529

nonlinear fashion when exceeding a prevalence threshold after a sufficiently long 530

duration of administration of certain antibiotics. The existence of such a threshold 531

indicates that a switch to an alternative antibiotic agent is due. Our approach goes a 532

step further by including the dynamics of switching in the analysis to allow, eventually, 533

for an optimised (temporal and/or spatial) switching strategy. Results of stochastic 534

simulations of microbial populations subjected to a periodic presence of 535

antimicrobials [20] boost our confidence. 536

Moreover, due to its intermediate complexity it is able to serve as a performative 537

boundary object [21], thence constituting a clinically relevant basis for a modelling for 538

policy [22]. This holds all the more if implemented on a boundary infrastructure [23] as, 539

for example, the modelling platform MAGPIE [24] that enables experts with different 540

expertises to dock on. In other words, the proposed method has the potentiality to be 541

translated to the point of decision making as a monitoring system. 542

Conclusion 543

To conclude, the presented analysis has paradigm character. We focused on setting up a 544

methodological framework because the available data do not allow to assess cycling or 545

mixing strategies in a controlled way. To be exact, a control strategy in a genuinely 546

defined sense of cycling or mixing appears not to have been applied. In other words, we 547

have a purely observational situation exhibiting a weak long-term “clinical cycling” but 548

without ample background information particularly on individual-level administration. 549

However, the performed applications of the suggested analytic methods to records of 550

antibiotic consumption and prevalence of antibiotic-resistant bacteria definitely go 551

beyond mere illustrations. That is to say, the results allow to raise hypotheses or at 552

least to formulate conjectures. Specifically, we observe a strong positive correlation of 553
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time courses of similarity with respect to the initial observation of antibiotic 554

consumption and prevalence of antibiotic-resistant pathogens. In addition, clinical 555

cycling correlates with a decreasing ratio of resistant pathogens. These correlations have 556

to be confirmed in an experimental/interventional study. We are convinced that the 557

derived mathematical framework provides a sound basis to substantially improve the 558

determination of a viable roll back administration policy to defeat antibiotic resistance. 559
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