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Abstract

Diversity as well as temporal and spatial changes of the proportional abundances of
different antibiotics (cycling, mixing or combinations thereof) have been hypothesised to
be an effective administrative control strategy in hospitals to reduce the prevalence of
antibiotic-resistant pathogens in nosocomial or community-acquired infections. However,
a rigorous assessment of the efficacy of these control strategies is lacking. The main
purpose here is to present a mathematical framework for the assessment of control
stategies from a processual stance. To this end, we adopt diverse measures of
heterogeneity and diversity of proportional abundances based on the concept of entropy
from other fields and adapt them to the needs in assessing the impact of variations in
antibiotic consumption on antibiotic resistance. Thereby, we derive a family of diversity
measures whose members exhibit different degrees of complexity. Most important, we
extent these measures such that they account for the assessment of temporal changes in
heterogeneity including otherwise undetected diversity-invariant permutations of
antibiotics consumption and prevalence of resistant pathogens. We apply a correlation
analysis for the assessment of associations between changes of heterogeneities on the
antibiotics and on the pathogen side. As a showcase, which serves as a
proof-of-principle, we apply the derived methods to records of antibiotic consumption
and prevalence of antibiotic-resistant germs from University Hospital Dresden. Besides
the quantification of heterogeneities of antibiotics consumption and antibiotic resistance,
we show that a reduction of prevalence of antibiotic-resistant germs correlates with a
temporal change of similarity with respect to the first observation of antibiotics
consumption, although heterogeneity remains approximately constant. Although an
interventional study is pending, our mathematical framework turns out to be a viable
concept for the assessment and optimisation of control strategies intended to reduce
antibiotic resistance.

Introduction :
The drastic increase of antimicrobial resistance worldwide resulting in an alarming 2
increase in morbidity and mortality from clinical infections urges scientists and 3
clinicians to develop counter-strategies . Designing new antiinfective agents is an 4
option. However, the creation of new drugs is time-consuming and success is not 5
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guaranteed. Therefore, the control of consumption of available antibiotics or, more 6
general, of antiinfectives, is obligatory. 7

Since a quick replacement of existing antibiotics is not feasible, antibiotic strategies
as “antibiotic mixing”, “antibiotic cycling”, “antibiotic switching”, and “rotation 9
protocols” gained evermore attention in the recent decades (for a review cf. ) 10
All these concepts refer to heterogeneity of antibiotic usage and non-constant 1
prescription rates. For example, antibiotic cycling means to extract one or a subset of 12
classes of antibiotics from administration in a temporarily alternating way whereas 13

other strategies refer to a scheduled change of the dominantly used class of antibiotics. 1
Frequently, mixing refers to a strategy where a group of patients receives drug (class) A 1

and another group receives drug (class) B in an alternating way. Hereby, the 16
permutation usually takes place between wards leading to a spatial heterogeneity of 17
antibiotic consumption. In clinical reality, empirical antibiotic therapy rarely follows 18
strictly defined control schemes but rather adjusted forms of cycling and mixing in 19
consequence of clinical requirements, thus “clinical cycling” (notion adopted from ) 2

Although there is some evidence that the temporal and spatial permutations of rates =
of consumption of different antiinfectives are able to reduce prevalence of resistant 2

pathogens [274,, there is a lack of rigorous evaluations of the ongoing processes, which 23
prevents optimisation. The nonlinear time series analysis presented by Lopez-Lozano et 2

al. 2019 is indicative for an approach from a processual stance, but needs to be 2
generalised. Usually, the impact of cycling and mixing strategies (for a review and meta 2
analysis cf. [7]) is investigated by means of prospective (randomized clinical trials 27
(RCTs), controlled clinical trials (CCT), controlled before-after, cross-over) based on 28
well-defined rotation/switch protocols, thereby neglecting (continuous real-world) 20
processes. Interrupted time series analyses with at least three observations before and
after intervention exist, but once more, a precise time point of intervention is 3
preconditioned, thereby excluding adjusted strategies of cycling and mixing. Of note, 32
other researchers as e.g. Karam et al. could not confirm a significant reduction of 33
antimicrobial resistance through cycling or mixing protocols. e

The main purpose of this work is to present an analytical framework to quantify 3
heterogeneity of both, antibiotic consumption as well as prevalence of 3
antibiotic-resistant pathogens as a function of observation time. This enables the 37
assessment of associations between consumption and resistance and, potentially, to 38
optimise control strategies based on diversity, mixing and cycling either in their 39
adjusted versions, i.e. “semi-controlled” field-like or observational studies, or in their 40
extremes. The analytic framework consists of adapted methods known in other areas a

like ecosystems @ For the purpose of illustrating the mathematical framework, the
method is applied to real observational data, i.e., to records of antibiotic consumption 4

and prevalences of antibiotic-resistant pathogens of University Hospital Dresden in 4
Germany. Although these data have been recorded in the absence of a clearcut study a5
design and without genuine applications of common cycling or mixing strategies, we as
nevertheless opted to use these data instead of simulated data for illustration purpose a7
and to preserve a “real world” character of our methodological approach. Thus, the a8
application of the proposed mathematical framework has to be understood as a 49
proof-of-principle. Rigorous controlled interventional studies are planned, however, we  so
regard the immediate provision of the analytical framework to have utmost priority. 51
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Materials and methods

Records of antibiotic consumption

The available data set contains 25 consecutive quarterly records of antibiotic
consumption starting from the first quarter 2012. Consumption has been recorded per
administrative units (cost centres, typically wards). However, for the elementary stage
of illustrating the proposed method, a grouping of these small subunits into functional
units is considered to be sufficient. Therefore, the departments are grouped into the
three top-level units: surgical/OP units, intensive care units, and medical /normal care
units. Consumption has also been recorded per active agent, which is nested within
antibiotic class. In total, 49 active agents have been observed, which are pooled to 12
antibiotic classes.

The consumption of an antibiotic is measured in standardised units according to the
ATC/WHO definition of defined daily doses, DD D, in order to allow for comparisons of
different active agents. In addition, the number of cases as well as patient days have
been recorded on a quarterly basis. This allows to compute the consumption density
DDD per 100 patient days in hospitals:

DDD
100 patient days’

DDDdensity = (1)
Please note, for the sake of completeness, consumption density sometimes refers to
DDD per 100 or per 1000 cases, respectively. In the following, we use DD D only since
DDD gensity gives virtually the same results (data not shown). Moreover, some
measures of diversity are functions of proportions of “species” within an “ecosystem”,
which is why we make use of proportions of consumption. If DD D;(t) denotes the
consumption of antibiotics within the antibiotic class ¢ € {1,...,n} at time ¢, the

proportion is given by
DDD;(t)
n

DDD;(t)

ddd;(t) =

i=1

Depending on the context, index ¢ may also refer to the active agent.

Coefficient of variation

The coefficient of variation,

SD(DDD(t))
Vie) = Mean(DDD(t))’ ®)
where the mean is taken over the antibiotic classes and SD(DDD(t)) denotes the
corresponding standard deviation, can be used as a rough estimate of “homogeneity” in
a properly defined sense. Unfortunately, analogous to the notion of “dispersion,”
“homogeneity” is an ambiguous term which deserves clarification. In ecological analyses,
the concept of “maximisation of statistical heterogeneity” refers to an approach by
means of an entropy or a related diversity measure as discussed in the following section
(cf. ) In this context, an ecosystem is maximally heterogeneous, thus has maximum
entropy, if all species are equally abundant, at least in the absence of specific weights of
the species abundances [9]. In the latter case, V would be zero, i.e., the system has no
variability and is thus without (statistical) dispersion. In contrast, physicists prefer to
speak of a perfect dispersion, aka a perfect mixture, in such a situation. Thus, an
ecosystem or a society close to a monoculture is “homogeneous” whereas a multi-cultural
society /ecosystem is called “heterogeneous” which is used synonymously to “diversity.”
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In economics, to the contrary, the distribution of incomes is called homogeneous in
the case of equal incomes of all individuals in accordance with the idea of a
dispersion-free perfect mixture . Due to compatibility, we stick with the ecological
approach in the sequel. In this regard, the coefficient of variation is an inverse measure
of ecological heterogeneity. Arguably, heterogeneity in the ecological sense is better
captured using the concept of diversity, as introduced in the following section. In order
to provide compatibility with the terminology based on the notion of “heterogeneity”
suggested in relevant publications on antibiotics resistance [2,, we cannot completely
drop this term.

Heterogeneity and entropy

Although the coefficient of variation can be interpreted as a rough measure of (inverse)
heterogeneity, it has several inadequacies including the lack of uniquely capturing
temporal changes. In the sequel, we harness methods known in ecological population
modelling and other fields of research for an adequate quantification and assessment of
antibiotic mixing behaviour and strategies as well as temporal patterns of prevalence of
antibiotic resistance.

Let a; and b; with 4 = 1,...,n be the proportions of species of two n—species
populations composed of the same set of species with Y, a; = Y| b; = 1. Similarity
of these two populations in terms of species’ abundances can be quantified by the
similarity index

SI=1-05|a;—bi. (4)
i=1
Ifa; =b;,Vi=1,...,n, then ST =1, i.e., the populations are identical in terms of their

species distributions. If, on the contrary, the populations consist of disjoint sets of
species, then ST = 0. Similarity index ST scales between 0 and 1. If we now fix say the
first population to a; = %, Vi=1,...,n, which means maximum heterogeneity for this
reference population, then, for the other population a heterogeneity index can be
defined by

n

n 1
HI=1—- —— ’——bi
Q(n—l); n

Hereby, the slightly adapted factor ﬁ compared to 0.5 in ST (qu%') ensures
HI € [0,1] independent from the concrete value of n. As far as we know, HI defined by
Eq [p| has been used by Sandiumenge et al. [2] for the first time in the context of
assessing antibiotic resistance and reapplied by Pliiss-Suard et al. [13ﬂ Abel zur
Wiesch and collaborators [4] explicitly call this measure “antibiotic heterogeneity index
(AHI)”, although it originated in other fields of research.

Diversity, a notion frequently used in ecology, is a more general concept than
heterogeneity [9,. However, diversity is not uniquely defined. Thus, it depends on
the specific context to which particular definition of diversity should be drawn on. Even
within the field of antibiotic consumption and related antibiotic resistance, the concrete
context can vary considerably. Since we here aim at presenting a general mathematical
framework, a family of measures whose members are characterised by exhibiting
different levels of complexity is presented.

To start with, an obvious somewhat simplistic way to quantify diversity is given by
the so called richness, which is merely the number of species in a multi-species
population (e.g. ecosystem). In terms of richness, a heterogeneous n—species population
with equally frequent species has the same diversity as an n—species population with a

: ()

IPlease note that the typesettings of the formulas for HT in refs. [2,13] are incorrect.
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minority of dominating and a majority of very rare species, that is to say n. It follows
that an expedient diversity measure should be based on the distribution of species’
abundances in some way.

A meaningful definition of diversity D, is based on an “effective number of species’
(cf. [9,14]) given by the species’ proportions p; and a weight parameter a by means of:

)

1—a

Dy = (Zm) : (6)
i=1

Setting a = 0 yields Dy = n independently from p;, i.e. richness. Other special cases are:

D1 = BRl
_ 1

Do = srom (™)
_ 1

Do = mmn

with Ry = — Y"1, p; In(p;) being the so called “Shannon entropy”, sometimes also
called “Shannon index.” A unique name for Dy itself, i.e. the exponential of the
Shannon entropy, does not exist, however, in information science it is sometimes called
“perplexity.” Diversity measure Dy is called “inverse Simpson index.” The frequently
used Gini-Simpson-Index derived from Dy is given by: GS =1 — %2' The inverse of
D, is found in the literature named “Berger—Parker index,” which is simply the
proportional abundance of the most abundant type.

The Shannon entropy is a special case of a Renyi entropy defined by

— <§p> , (8)

thus we have D, = ef'e. In other words, R, is a monotonous function of D,, thus, the
two measures can be used interchangeably without loss of information since diversity
has only a relative meaning, anyway. The same holds for GS and other possible
monotonous functions of D,. Entropy R,, thus D,, independently of a reach their
maximum for the fully heterogeneous situation p; = %(Vz =1,...,n) and it then follows
that D, = n. From the latter result we conclude that richness might be a sufficient
diversity measure for populations close to full heterogeneity. Having said that,
heterogeneity H 1 itself, although it cannot be derived as a special case of a Renyi
entropy, shares features of an entropy and is thus a legitimate measure of diversity.
Finally, the frequently used Gini coefficient deserves to be mentioned:

1 n n
GZl_mééW-mY 9)

R, =

The Gini coefficient in this form (for this and other variants see [14]) is an interesting
variant of the similarity index ST insofar as it can be interpreted as kind of a
self-similarity. Once more, full heterogeneity (equal proportions) p; = %,Vi =1,...,n,
implies G = 1, and maximally unequal proportions (e.g. p; = 1,p;j»;, = 0) implies G = 0.
For what follows, it is important to bring to mind that both heterogeneity, HI, as
well as measures of diversity, D,, GS, and G, are invariant under permutations of
indices. In other words, if the proportions of two species are exchanged, diversity
(heterogeneity) does not change. However, similarity index ST is capable to account for
such a change after some adaptations, as shown in the Results section. In order to
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assess both (temporal) cycling as well as (spatial) mixing behaviour of antibiotic
administration or consumption, respectively, the proper similarity index extends to

szl—a%jiﬁémﬁ—mﬂ (10)

i=1 j=1

where Y1 |aij| =3, ’bij’ =1V j=1...m. Hereby, the inner sum is taken over
the m wards or groups of patients between which antibiotic mixing takes place. In this
case, a;; and b;; refer to the relative abundances before and after the swap of antibiotics
administrations between the wards, respectively. In practice, i.e. in the absence of a
properly defined study protocol, an allocation of both antibiotic consumption as well as
the prevalence of resistant pathogens to precisely defined wards or groups of patients is
hampered by the reality of adjusted clinical cycling/mixing. In the following, due to
lack of appropriate information on mixing strategies, we present definitions of similarity
tailored to our needs without taking strict mixing into account.

Statistical analysis

Main purpose of this article is to apply a diversity analysis to records of both clinical
consumption of antibiotics as well as prevalence of pathogens exhibiting antimicrobial
resistance. We refer to the previous section for a detailed introduction of the applied
diversity measures. It remains to mention that the expected impact of diversity of
antimicrobial consumption on the prevalence of resistant pathogens is analysed by
means of Pearson’s correlations of the corresponding time series.

Specifically, slopes along with their significance of differing from zero taken from
linear regression quantify the temporal changes of both diversity as well as differential
diversity. Of particular interest is the comparison between the time courses of
differential diversities of antibiotic consumption and prevalence of resistant pathogens.
Such a comparison can be achieved by testing of whether the two corresponding slopes
differ significantly or not, or, equivalently, by calculating Pearson’s correlation
coefficient along with the corresponding significance test. In the same line, the time
series of the relative abundance of resistant pathogens is tested for correlations with the
time course of the differential diversity of antibiotic consumption using, as before,
Pearson’s product moment correlation analysis.

Of note, each of the three time series, i.e. differential diversity of consumption,
differential diversity of prevalence, and relative abundance of resistant pathogens, are
expected to exhibit autocorrelations. This is a common feature of time series analyses.
Nevertheless, Pearson’s correlation is commonly used as a standard technique to
quantify the co-variation of two correlated time series and we here regard it to be
sufficient for raising hypotheses based on the available preliminary dataset. A more
appropriate application of a cross-correlation function with one of two time series being
subject to a time lag is not applicable in our case due to the insufficient lengths (and
low sampling frequencies) of the time series.

Numerical calculations, statistics, and graphics have been performed with R .

Results

Preliminary note

Before presenting the results of applying the derived diversity measures to observational
clinical data, we reemphasise that this work mainly aims in presenting the mathematical
framework. The following application to real data has an illustrative purpose and
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outlines future applications to adequately collected data from a controlled trial.
Therefore, in terms of clinically relevant results, the following explanations remain
provisional.

Descriptive analysis

Fig [Th shows the 12 time courses of antibiotic consumption per antibiotic class,
DDD;(t). The consumptions of 9 classes largely remain constant on a moderate level.
One class, that is to say “second-generation cephalosporins”, is characterised by a high
consumption at the outset but declines approximately monotonously by more than half
towards the end of the observation period. The consumptions of two other classes, in
contrast, i.e. “aminopenicillin/beta-lactamase inhibitors” and “narrow-spectrum
penicillins” increase approximately monotonously and roughly compensate for the
aforementioned decline.

a) DDD per antibiotic class b) Proportions of DDD per antibotic class

15000 03
Q
8 10000
=)

5000

2012 2014 2016 2018 2012 2014 2016 2018

Time [Calendar Years] Time [Calendar Years]
-~ aminopenicillin/beta-lactamase inhibitors ~ -@- fourth-generation cephalosporins macrolides + clindamycin
L -@- first-generation cephalosporins -8 broad-spectrum penicillins -@- narrow-spectrum penicillins
Antibiotic class
second-generation cephalosporins carbapenems -~ tetracyclines
-~ third-generation cephalosporins ~@- folate antagonists -@- other antibiotics
¢) Mean DDD d) Coefficient of variation
12
15000 11
g 10
o 1
Q 10000 a
E S
o > 09
=
50001 o g e® 000000 o000 0t 00000
08
0

2012 2014 2016 2018 2012 2014 2016 2018
Time [Calendar Years] Time [Calendar Years]

Fig 1. Time course of antibiotic consumption by antibiotic class. Time
courses of a) consumption DDD per antibiotic class, b) proportions of consumption ddd
per antibiotic class, ¢) mean consumption averaged over the antibiotic class, d)
coefficient of variation with respect to the antibiotic classes.

Calculations based on DDD are hardly distinguishable from calculations based on
the corresponding densities, 100 x DD D;/patient days. Henceforth, due to these minor
differences, we skip to report our results with respect to consumption densities since we
here primarily deal with an introduction of a methodological concept. The distinction
between DDD and the corresponding densities might become important in other
contexts, though. The proportions, ddd;(t), however, depicted in Fig 1b, will be used in
later sections where we calculate measures of diversity.

Fig 1c shows the time course of the quarterly sampled mean antibiotic consumption,
Mean(DDD(t)), averaged over the 12 observed antibiotic classes (cf. Fig 1a). The
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corresponding coefficient of variation, Eq[3] is depicted in Fig 1d. 231

In the present case, variability thus homogeneity in the ecological sense is rather 23
high during the first 4 to 6 quarters compared with the remaining time course. After an 23
approximately monotonous decline until 2016, V (¢) slightly increases again during the 2.

final quarters. These results are consistent with the visual impressions from Fig 1a. 235
Starting with a rather homogeneous distribution at the outset with an outstandingly 236
large proportion of a single antibiotic class, we observe a trend towards a narrow 237
distribution around the mean that starts to weakly widen towards the end. Equal 238
proportions, thus V(¢) = 0, means perfect heterogeneity, therefore, V' (t) can be 239
interpreted as an inverse measure of heterogeneity. 240

In the same line, the descriptive analysis can be applied to consumption with respect 2a
to active agents. Fig[2h shows the 49 time courses of consumption per active agent. We 21
observe that a single active agent, viz. “cefuroxime”, dominates consumption at the 23
outset but declines approximately monotonously towards the end to a level still 244
significantly above the bulk. This decline is compensated by an increase in consumption s
mainly of “amoxicillin + clavulanic acid” but also some other agents. The time courses s
of mean DDD and the coefficient of variation with respect to the active agents shown in 2
Figs 2b-c reveal that variability remains on a high level during the time course. Thus, it s
turns out that pooling agents into antibiotic classes has a damping effect with respect to 2.
variability or homogeneity, respectively. 250

a) DDD per active agent Active agent

amodciin ceftobiproke meropenem

amodiin + cawlanic acd ceftokozane + tazobactam metronidazole
ampiciin ceftiaxone minocycine

ampiciin + sulbactam cefurodime. nirofuranton

15000 -
azthromyen carithromycn niroxolne
azeonam cindarmycin paromomycn

benzybenclin

DDD

cofalain
cofazoin

cofepime

5000 +

R EERRERE

.
.
-.
.
.
.
.
10000 - -@ cofacor
.
.
-
-
-
-
-
- + avibactam
-

2012 2014 2016 2018
Time [Calendar Years]

b) Mean DDD c) Coefficient of variation

2550
15000 -

)

DDD;

10000 -

V(DDD)

Mean

5000 -

0000000000000 00000 o000 o0

04

2012 2014 2016 2018 2012 2014 2016 2018
Time [Calendar Years] Time [Calendar Years]

Fig 2. Time course of antibiotic consumption by active agent. Time courses
of a) consumption DDD per active agent, b) mean consumption averaged over the
active agents, c) coefficient of variation with respect to the active agents.

Next step is to account for the Hospital’s functional units. The three panels of Fig[3] s

show the time courses of antibiotic consumption per antibiotic class stratified by the 250
three functional units: unit 1 = intensive care units, unit 2 = medical/normal care 253
units, unit 3 = surgical/OP units. Unit 1 consumed antibiotics out of 11 classes, 254
whereas unit 3 consumed antibiotics out of only 8 different classes in at least one 255
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quarter during the whole observation period. Only unit 2 has non-zero consumption of
antibiotics out of all 12 classes in at least one quarter.

a) DDD per antibiotic class for unit 1 b) DDD per antibiotic class for unit 2

3000
15000 -

2000

DDD

1000 5000+

. . . sy S =
[0 SeatS 2he & POe —oS—o—o

2012 2014 2016 2018 2012 2014 2016 2018
Time [Calendar Years] Time [Calendar Years]

c) DDD per antibiotic class for unit 3

1500 Antibiotic class

e~ aminopenicillin/beta-lactamase inhibitors

~e- first-generation cephalosporins
second-generation cephalosporins

1000 e~ third-generation cephalosporins

e~ fourth-generation cephalosporins

DDD

-8~ broad-spectrum penicillins
carbapenems

e~ folate antagonists
macrolides + clindamycin

e~ narrow-spectrum penicillins

o~ tetracyclines

-8~ other antibiotics

2012 2014 2016 2018
Time [Calendar Years]

Fig 3. Time courses of antibiotic consumption by antibiotic class separated
by functional units. Time courses of antibiotic consumption per antibiotic class
shown separately for the functional units a) unit 1 = intensive care units, b) unit 2 =
medical/normal care units, ¢) unit 3 = surgical/OP units. Please note, the different
scales of the y-axes reflect the different total amounts of consumption within each unit
due to their different sizes. Important are the relative abundances within each unit.

Fig [] shows the time courses of mean consumption averaged over the antibiotic
classes per functional unit (Fig 4a) as well as the three corresponding coefficients of
variation (Fig 4b). Unit 3 (the surgical/OP units) exhibits the lowest mean consumption
but by far the highest coefficient of variation, both of which remain approximately
constant over the time course. The explanation follows by throwing a glance on Fig 3c:
Unit 3 has one absolutely dominating consumption of antibiotics out of the class
“second-generation cephalosporins.” Units 1 and 2 both exhibit approximately
temporarily constant mean consumption, however, unit 2 on a roughly 5-fold higher
magnitude. Noteworthy, the variation of consumption of unit 2 approximately follows
the variation for the whole clinic with a more or less monotonous decline during the first
half of the observation period, whereas the coefficient of variation for unit 1 is
approximately constant over the time course, with the exception of a marked rise at the
final observation (first quarter of 2018), which can be explained by the sudden rise of
consumption of “narrow-spectrum penicillins” antibiotics (cf. Fig 3a).

Heterogeneity of antibiotic consumption

The diversity measures introduced in the “Materials and methods” section are now

calculated using the observed proportions p; of antibiotic consumption with respect to
antibiotic classes, thus i = 1,...,12 refers to the 12 antibiotic classes. Fig [5| shows time
courses of a) Renyi entropies, R, for 7 different values of weight parameter a (cf. figure
legend), b) the corresponding diversities, D, = e« for the same set of parameters a, c)
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Fig 4. Mean antibiotic consumptions and coefficient of variation by
functional unit. Time courses per functional unit of a) mean antibiotic consumption
averaged over antibiotic classes, b) corresponding coefficient of variation, with unit 1 =
intensive care units, unit 2 = medical /normal care units, unit 3 = surgical/OP units.

the Gini-Simpson diversity, GS, and d) the Gini coefficient, G. Specifically, a = 0 yields
Dy =n =12 (Fig 5b) in agreement with what we expected from theory.
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Fig 5. Measures of diversity with respect to antibiotic classes. a) Renyi
entropies R, for a = 0,0.5,0.99, 1.5,2, 3,100, b) Diversities D, for
a =0,0.5,0.99,1.5,2, 3,100, c) Gini-Simpson index GS, d) Gini coefficient G.

Apparently, for all a > 0 the curves exhibit the same shape, i.e., they differ at each
time point by a factor that seems to be a monotonous function of the values of a
reference curve at these time points. A unique rule which specifies the best value of a
does not exist. However, some researchers invoke a rule of thumb (e.g. [10]) which states
that if one exactly observes such a monotonous relation between the different curves as
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we did, then the Renyi entropy is a robust measure and a > 0 can be chosen arbitrarily
but consistently, since entropy does not have an absolute meaning, anyway. Apparently,
the rule also holds for the Gini-Simpson diversity, GS, and the Gini coefficient G.

Fig 5 reveals that all diversity measures increase from 2012 until approximately 2016.

Thereafter, this tendency is stopped and the data even suggest the initiation of a
decrease in diversity. This behaviour coincides with the time course of the coefficient of
variation (Fig 1).

Compared to the Renyi entropy, heterogeneity HI, defined in Eq 5, is easier to
comprehend, which might explain that its application in the context of antibiotic
resistance is unparalleled up to date [2,4,13]. However, the invariance under species
permutations has not been taken into account thus far. A cycling strategy that dictates
an occasional temporal swap of consumption of two antibiotics with respect to the
hospital unit under consideration leads to a temporarily constant heterogeneity and,
therefore, to wrong conclusions if the assessment is merely based on HI. Likewise, a
mixing strategy, i.e. switching the consumption of two antibiotics between two units
would remain unnoticed unless the diversity of the two units are not separately
calculated (cf. Eq . Since heterogeneity is nothing but a special case of similarity ST,
we can now make use of ST to introduce a differential measure. Similarity with respect
to the initial observation at the outset of a study

n n
SIp(t) =1 — — (t=0) — m‘, 11
o(t) 2(nil);p( ) — pilt) (11)
with ¢ =0,1,...,24 being the number of elapsed quarters, captures changes with

respect to the first observation. In the same line,

SIA(t)zl—ﬁZ pit—1) —p;(t)], fort>o0. (12)

=1

defines changes with respect to consecutive quarters, thus defines an approximation to a
differential measure of similarity. The time courses of HI, SIy, and SIa are depicted in

Figs @a—c. Heterogeneity HI varies only within a small range from 0.63 to 0.69 (Fig 6a).

However, we observe a monotonous, almost linearly increasing displacement from the
first observation (Fig 6b). Due to this linear increase, the magnitude of the differential
displacement SIa(t) is more or less constant and is approximately one minus the slope
of SIy(t) (Fig 6¢). Obviously, the difference of the distribution of antibiotic abundances
accumulates over the time course, where ST (t) measures the intensity of the change as
a function of time. Thus, we now have a sound basis for the evaluation of changing
abundances and possibly related switching strategies.

Within the scope of physics and information sciences, it is common to base measures
of heterogeneity and diversity, respectively, on the Shannon entropy because it can be
interpreted as the negative mean information that arises from averaging over the
individual contributions In(p;) to information. In this context, the similarity index
between two distributions given by a; and b; corresponds to the Kullback-Leibler
divergence [11]

KLD@“m):E:mkg(?>. (13)
i=1 i

However, K LD is asymmetric, which is why the symmetric variant

KLD(a;,b;) + KLD(b;,a;), known as Kullback-Leibler difference, has been introduced.

K LD is the mean information difference taken over the individual information
differences log(a;) — log(b;).
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Fig 6. Measures of heterogeneity and similarity with respect to antibiotic
classes. a) Heterogeneity index HI, b) Similarity index SIy with respect to
proportions of the first observation, ¢) Similarity index STa with respect to proportions
of the preceding observation, d) Kullback-Leibler heterogeneity K L e) Kullback-Leibler
difference K L with respect to proportions of the first observation, f) Kullback-Leibler
difference K L with respect to proportions of the preceding observation. Confer text
for definitions of these measures.

In order to harness K LD for our needs, we define the Kullback-Leibler heterogeneity

n ) n 1
KL(#) =1— 21;(2) (Z a(#) log (“f”:) Y % log (%)) L4

i=1

Furthermore, the Kullback-Leibler similarity K Lo(t) of distribution a;(t) at time ¢ with
the distribution at ¢t = 0 (first observation) can be defined by

KLO(t):zn:aZ()log< (t(_0+1>+2a1 = (W) (15)

i=1

Finally, the Kullback-Leibler similarity K L (t) between two distributions observed at
subsequent time points (here quarters) is given by

KLa(t E:az bg( - ><+§:azt—1 <((;ijl). (16)

Hereby, the +1 terms within the arguments of the logarithms ensure that situations
with p; = 0 remain well-defined.

Figs 6d—6f show time courses of KL, KLy and K La, respectively. A comparison
with the ordinary heterogeneity and similarity measures of Figs 6a—6¢ reveals that the
values of KL, KLy and KLa are located within narrower intervals. In addition, KL
appears to be smoother than HI and, noteworthy, the decreasing curve of K Ly(t) has a
concave shape. From these differences we conclude that measures based on information
differences, due to their logarithmic dependence, weight larger differences in proportions
stronger than small differences, whereas the ordinary measures exhibit a proportional
weight.
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In the same line, the time courses of measures of diversity and heterogeneity,
respectively, with respect to active agents are depicted in Figs[7] and 8l Qualitatively,
similar results as for the antibiotic classes are obtained. Once more, as already observed
for the coefficient of variation, we see a damping effect of pooling the active agents into
antibiotic classes. The variations of temporal changes of heterogeneity and related
measures are larger for the active agents than for the more coarse grained antibiotic
classes. No need to mention, the question of which stratification level should be
prioritised is a matter of the concrete studies’ objectives and the availability of adequate
data. The usage of the more fine-grained level of active agents is advisable if records of
prevalence of antibiotic resistance are available at the same fine-grained level.

a) Renyi entropies R, b) Diversities D,=e"*
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Fig 7. Diversity measures with respect to active agents. a) Renyi entropies R,
for a = 0,0.5,0.99,1.5,2, 3,100, b) Diversities D, for a = 0,0.5,0.99,1.5,2,3,100, c)
Gini-Simpson index GS, d) Gini coefficient G.

Finally, we briefly report on the results obtained when the hospital’s functional units
are included as a second factor in addition to the antibiotic classes. Firstly, Fig[0] shows
time courses of diversity measures stratified by the three functional units as previously
defined. Secondly, heterogeneity HI and the similarity indexes SIy and SIa are shown
in Fig[I0] Strikingly, diversities D, and G'S as well as heterogeneity HI remain
approximately constant in the course of time for functional unit 3 and varies only very
slightly for unit 1. To the contrary, the diversities for functional unit 2 resemble the
corresponding curves for the whole hospital as shown in Figs 5 and 6, i.e., they exhibit
an increase in the course of time. Apparently, the functional units have different policies
of antibiotic administration. This becomes even more obvious when throwing a glance
onto the curve SIy(t) shown in Fig 10b. The administration in unit 3 essentially
remains constant with respect to the first observed administration in 2012. The
administrations in unit 1 and unit 2, in contrast, show a cumulative difference with
respect to the first observation.

So far, we conclude that neither of the diversity or heterogeneity measures D,, GS,
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Fig 8. Measures of heterogeneity and similarity with respect to active
agents. a) Heterogeneity index HI, b) Similarity index SIy with respect to proportions
of the first observation, ¢) Similarity index SIn with respect to proportions of the
preceding observation. Confer text for the definitions of these measures.
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Fig 9. Measures of diversity with respect to antibiotic classes stratified by
functional units. a) Diversities D, for unit 1 with a =0,0.5,0.99,1.5,2, 3,100, b)
Diversities D, for unit 2 with ¢ = 0,0.5,0.99,1.5,2, 3,100, ¢) Diversities D, for unit 3
with ¢ = 0,0.5,0.99,1.5,2,3,100, d) Gini-Simpson Index GS. See text for definitions.

G, HI, and KL are capable to catch suspected policies of clinical cycling without a
concomitant assessment based on the newly introduced similarity indexes Sy and STa
or, alternatively, KLy and K La. A very weak long-term clinical cycling, as actually
observed for the data under investigation, can leave diversity more or less invariant. To
be specific, the constant non-vanishing slope of S1y(t), thus the constant SIa(t) <1
reflects a long-term “cycling-like” change of antibiotic abundances. Assuming a full
cycle in case of a rigorously applied cycling protocol, STy(t) would also exhibit a full
cycle in the course of time.
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Fig 10. Heterogeneity and similarities with respect to antibiotic classes
stratified by functional units. a) Heterogeneity HI. b) Similarity index SIy with
respect to proportions of the first observation, ¢) Similarity index SIa with respect to
proportions of the preceding observation. Confer text for the definitions of these
measures.

Correlation of antibiotic administration and prevalence of
antibiotic resistance

The most important and at the same time most challenging question, in the given
context, is whether the clinical cycling of antibiotic administrations correlates or even
causally relates to the prevalence of antibiotic resistances. Only sufficient knowledge
about existence and structure of such an association renders the design of
administration policies that aim in minimising resistances meaningful. Unfortunately,
recorded data on prevalence of antibiotic resistance are rare and often collected in a
non-systematic way. Therefore, the following analysis should be viewed as paradigmatic
rather than taking the results as credible.

Infections have been recorded on a yearly basis within intensive care units and
medical /normal care units, however, not in a controlled and regular way as may be
required by a controlled study design. Fig|l11|shows the time courses of the number of
registered cases per pathogen stratified by resistance. Resistance, hereby, has been
dichotomised in a yes/no-variable although for some cases a more detailed information
on the type of resistance (the corresponding antibiotic agent, multiresistance, etc.) is
available. The time courses of infection frequencies suggest a rising prevalence. However,
the awareness of the problem of antibiotic resistance and the adherence to diagnostic
and therapeutic guidelines increased over time. We suspect that the rigorous diagnostic
of pathogens is responsible for the added detection of more (resistant) pathogens. The
proportions of infections with resistant infectious agents per type of pathogen is perhaps
more reliable than the total number of infections. Fig[[2]shows the time courses of
these proportions and it no longer appears as drastic as before. It appears natural to
apply the measures of heterogeneity and similarity introduced above to the proportions
of resistant pathogens with respect to the total population of resistant pathogens.

Fig [13] depicts the time courses of HI, Sy, and SIa both for the proportions of
antibiotic consumption and for the proportions of resistant pathogens in order to allow
for a direct comparison. Heterogeneity hardly changes in the time’s course both for
antibiotic consumption and resistant pathogens (Fig 13, left panel). The slopes of
heterogeneity HI(t) (denoted by mean (2.5%CI; 97.5%CI) in the following) resulting
from linear regression are essentially zero (which is the null hypothesis of the linear
model) with —0.004 (—0.012;0.004) and p = 0.300 (antibiotics, unit 1), with
0.001 (—0.003;0.005) and p = 0.705 (pathogens, unit 1), with —0.003 (—0.021;0.016)
and p = 0.629 (antibiotics, unit 2), and with —0.006 (—0.019;0.008) and p = 0.300
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Fig 11. Pathogen prevalence. Sum of yearly registered number of cases of 9
observed pathogens stratified by resistance.
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Fig 12. Fraction of antibiotic-resistant germs. Time courses of the fractions of
resistance per pathogen plotted separately for units 1 (intensive care) and unit 2
(normal care unit).

(pathogens, unit 2), respectively. However, heterogeneity of the population of resistant s
pathogens is slightly lower compared to antibiotic consumption. Thus, we have constant

heterogeneity but pathogens may, as observed for antibiotics, exhibit a “cycling-like” 410
characteristic in form of exchanges of prevalences of pathogens which leave an
heterogeneity invariant. a2

The differential (quarter-by-quarter or year-by-year) changes of distributions with a3
time averages 1 — SIa of 0.1 (0.08,0.11) (antibiotics, unit 1), 0.15 (0.12,0.18) a4
(pathogens, unit 1), 0.053(0.05,0.06) (antibiotics, unit 2), and 0.11(0.07,0.14) 415
(pathogens, unit 2), are slightly greater for the distribution of resistant pathogens 416
compared to antibiotics consumption (Fig 13, right panel), however, both are constant a7
in essence for both units with slopes (derived from a linear model) 418
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Fig 13. Association of heterogeneities of antibiotic consumption and
pathogen prevalence. Time courses of heterogeneity, HI and similarity indexes, SIj
and SIa for antibiotic consumption with respect to antibiotic classes and prevalence of
resistant pathogens stratified by the hospital’s units 1 (intensive care) and 2

(medical /normal care).

0.0002 (—0.0078;0.0081) and p = 0.968 (antibiotics, unit 1), with

—0.0091 (—0.0460;0.0279) and p = 0.492 (pathogens, unit 1), with

—0.0010 (—0.0053;0.0034) and p = 0.653 (antibiotics, unit 2), and with

0.021 (—0.002;0.045) and p = 0.0637 (pathogens, unit 2). Therefore, we expect that
SIy(t) exhibits a linear decline with constant slope approximately given by SIn — 1, as
shown in the following.

Most strikingly, the time series of the accumulated similarity index S1j for the
resistant pathogens strongly correlates with the corresponding time series of antibiotic
consumption, in fact in both units. A Pearson product moment correlation analysis
gives correlation coefficients 0.92 with p = 0.009 (unit 1) and 0.89 with p = 0.02 (unit
2). The slopes significantly differ from zero with the concrete values
—0.055 (—0.062; —0.047) per year (antibiotics, unit 1, p < 1073),

—0.049 (—0.078; —0.021) per year (pathogens, unit 1, p = 0.009),

—0.067 (—0.072; —0.063) per year (antibiotics, unit 2, p < 1073), and

—0.044 (—0.088; —7.3e — 04) per year (pathogens, unit 2, p = 0.048), respectively. It is
appealing to speculate whether these coinciding changes are a result of correlations or
even causal relations. For the time being, this speculation has to be treated with
caution. However, this analysis gives directions to a proper controlled observational or
experimental study design.

A further observation underpins our speculation. The total percentage of resistant
pathogens reduces significantly from roughly 20% to 10% in functional unit 1. A linear
regression gives a slope of —0.017 (—0.025; —0.008) per year for the proportion
(significantly different from zero with p = 0.005). In functional unit 2 the proportion of
resistant pathogens reduces non-significantly by —0.007 (—0.015;7.1e — 05) per year,
however, at the edge of significance (p = 0.051). An additional support for our
hypothesis is given by explicitly calculating the correlation coefficients between S1I; and
the approximately linear decline of the ratio of resistant pathogens: 0.92 (p = 0.009) for
unit 1 and 0.86 (p = 0.03) for unit 2.

To conclude, although a genuine control strategy in the common sense of
antimicrobial cycling or mixing was not applied, we observe that a rather long-term
temporal change (clinical cycling) of consumption of different antibiotics (S applied to
antibiotics consumption) correlates with a change of prevalence of antibiotic-resistant
bacteria (SIy applied to prevalence of resistant pathogens). This correlation is
expressed by means of almost equal slopes as well as a corresponding large correlation
coefficient, where the slopes are significantly different from zero and approximately
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equal, of the two similarity indexes S for antibiotics and pathogens, respectively.
Whether these temporal changes in antibiotic consumption have a direct causal impact
is still speculative but gains additional evidence through the observed reduction of
prevalent resistant bacteria. Controlled studies that allow comparisons with more or less
static “control strategies” and other types of switching behaviours (including mixing)
are needed to draw reliable inferences. It is the main intention of this work to supply an
appropriate mathematical framework for such studies.

Discussion

Applications of measures of heterogeneity and diversity are rare and unsatisfactory in
the context of assessing antibiotic resistance. This is somewhat surprising since
antibiotic administration policies that rely on cycling or mixing strategies in order to
reduce antibiotic resistances have been promoted for quite some time [2,4,6,7,13] (for a
counter example see [5]). Cycling strategies, this is our claim, are best characterised by
means of differential measures of heterogeneity and diversity, respectively. This
approach can, in principle, be extended to capture mixing by introducing a spatial
stratification of the diversity measures. Although some attempts to tackle antibiotic
resistance by means of heterogeneity analyses exist [2,4,13], a satisfactory mathematical
framework is due.

We adopted diversity measures known in other fields of research [9,11] and adapted
them to the needs within the scope of analysing antibiotic resistance. It is natural to
seek for dependencies between the heterogeneity of consumption of antibiotics and the
heterogeneity of the pattern of prevalence of antibiotic-resistant pathogens.

In order to provide a flexible methodological basis for the analysis of antibiotic
resistance, we introduced and discussed a simple measure of heterogeneity as well as a
general family of diversity measures, i.e., the so called family of Renyi diversities and
derivatives thereof. It should be noted that the notions of “heterogeneity” and
“diversity” do not refer to conceptually different measures, they merely reflect their
emergence in different fields of application. As a novel aspect within the given context,
we derived differential measures of similarity which are needed to capture temporal
changes due to swapping proportions which leave moments like heterogeneity and
diversity invariant.

For many real-world applications, the simple heterogeneity measure HI and
differential measures of similarity S1Iy and SIa will suffice. However, showing
simultaneously that the whole family of diversity measures leads to the same
conclusions supplies additional evidence (“We can regard a sample more diverse if all of
its Renyi diversities are higher than in another samples.”, [10]). Moreover, the
smoothing and non-linear weighting effect of higher order measures like Shannon
entropy and derivatives (Kullback-Leibler heterogeneity, etc.) might become important
for damping spurious fluctuations by weighting larger deviations. A solid reason for the
choice of entropies is the straightforward application of a maximum entropy method.
Maximum entropy proved as the method of choice when it comes to learn dynamics of
biological systems (e.g. [16], see also [11]). With the aid of such an optimisation tool we
expect that an optimal cycling and arguably also an optimal mixing schedule can be
learned from the observed correlation patterns between antibiotics consumption and
prevalences of antibiotic-resistance.

The presented inclusion of covariates and factors like clinical units and groupings of
active agents has exemplary character. The concrete choice of covariates depends on
their availability and, most important, on the specific questions that are raised. In the
case of mixing with two (or more) subpopulations of patients that receive different
drugs in a temporarily alternating way, it might be better to stratify for these
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subpopulations instead of functional units, unless these strata coincide. Furthermore,
since transmission occurs at the microlevel, it would certainly be of advantage to
include individual-level administration data instead of aggregated dispensing data. Such
microlevel data have not been available for our elementary methodological approach.
However, our analytical framework is flexible enough to account for such peculiarities.
In addition, we point to the possibility to expand measures of heterogeneity and

similarity to be applicable to joint probabilities of antibiotic consumption and resistance.

This is beyond the scope of the present work, however, we paved the way for doing so.
It deserves to be mentioned, that some authors approached the problem by means of
extended SIR-like epidemiological models [4,. From a theoretical point of view, these
models have benchmark character. However, the validation of these models necessitates
recording of data on antibiotics consumption and pathogen load on an individual basis
which is not feasible for most hospitals. As opposed to this, so called composite indices
as “summary measures of the net impact of antibiotic resistance on empiric
therapy” are much more coarse-grained epidemiological measures based on the
cumulative antibiogram , which reside on a higher population level. Our approach is
compatible to both sides and bridges the gap.

In addition, our method complements time series analyses (e.g. [8]) that pointed to
thresholds in associations between population antibiotic use and prevalence of resistant
pathogens. Within the scope of the time series analyses as discussed by Lépez-Lozano et
al. [8], the correlation of the time series of the prevalence of a specific pathogen with the
time series of the amount of corresponding administered antibiotics is calculated.
Commonly, such a correlation of two time series is given by a mutual entropy. Thus, our
approach is a generalisation in that it treats diversities of both antibiotic consumption
as well as pathogen prevalence and correlates these diversities.

The time series analyses [8] supplied evidence that prevalence rates increase in a
nonlinear fashion when exceeding a prevalence threshold after a sufficiently long
duration of administration of certain antibiotics. The existence of such a threshold
indicates that a switch to an alternative antibiotic agent is due. Our approach goes a
step further by including the dynamics of switching in the analysis to allow, eventually,
for an optimised (temporal and/or spatial) switching strategy. Results of stochastic
simulations of microbial populations subjected to a periodic presence of
antimicrobials boost our confidence.

Moreover, due to its intermediate complexity it is able to serve as a performative
boundary object , thence constituting a clinically relevant basis for a modelling for
policy . This holds all the more if implemented on a boundary infrastructure as,
for example, the modelling platform MAGPIE that enables experts with different
expertises to dock on. In other words, the proposed method has the potentiality to be
translated to the point of decision making as a monitoring system.

Conclusion

To conclude, the presented analysis has paradigm character. We focused on setting up a
methodological framework because the available data do not allow to assess cycling or
mixing strategies in a controlled way. To be exact, a control strategy in a genuinely
defined sense of cycling or mixing appears not to have been applied. In other words, we
have a purely observational situation exhibiting a weak long-term “clinical cycling” but
without ample background information particularly on individual-level administration.
However, the performed applications of the suggested analytic methods to records of
antibiotic consumption and prevalence of antibiotic-resistant bacteria definitely go
beyond mere illustrations. That is to say, the results allow to raise hypotheses or at
least to formulate conjectures. Specifically, we observe a strong positive correlation of
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time courses of similarity with respect to the initial observation of antibiotic 554
consumption and prevalence of antibiotic-resistant pathogens. In addition, clinical 555
cycling correlates with a decreasing ratio of resistant pathogens. These correlations have  sss
to be confirmed in an experimental/interventional study. We are convinced that the 557
derived mathematical framework provides a sound basis to substantially improve the 558

determination of a viable roll back administration policy to defeat antibiotic resistance. sso
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