Preprint
Article

An Agent-Based Model Simulation of Human Mobility Based on Mobile Phone Data: How Commuting Relates to Congestion

Altmetrics

Downloads

309

Views

378

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 June 2019

Posted:

06 June 2019

You are already at the latest version

Alerts
Abstract
Abstract:Commuting of residents in big city often brings tidal traffic pressure or congestions. Understanding the causes behind this phenomenon is of great significance for urban space optimization. Various spatial big data make possible the fine description of urban residents travel behaviors, and bring new approaches to related studies. The present study focuses on two aspects: one is to obtain relatively accurate features of commuting behaviors by using mobile phone data, and the other is to simulate commuting behaviors of residents through the agent-based model and inducing backward the causes of congestion. Taking the Baishazhou area of Wuhan, a local area of a mega city in China, as a case study, travel behaviors of commuters are simulated: the spatial context of the model is set up using the existing urban road network and by dividing the area into travel units; then using the mobile phone call detail records (CDR) of a month, statistics of residents' travel during the four time slots in working day mornings are acquired and then used to generated the OD matrix of travels at different time slots; and then the data are imported into the model for simulation. By the preset rules of congestion, the agent-based model can effectively simulate the traffic conditions of each traffic intersection, and can also induce backward the causes of traffic congestion using the simulation results and the OD matrix. Finally, the model is used for the evaluation of road network optimization, which shows evident effects of the optimizing measures adopted in relieving congestion, and thus also proves the value of this method in urban studies.
Keywords: 
Subject: Social Sciences  -   Geography, Planning and Development
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated