Preprint
Article

Designing a Feature Vector for Statistical Texture Analysis of Brain Tumor

Altmetrics

Downloads

281

Views

292

Comments

0

This version is not peer-reviewed

Submitted:

14 June 2019

Posted:

18 June 2019

You are already at the latest version

Alerts
Abstract
This paper presented a feature vector using a different statistical texture analysis of brain tumor from MRI image. The statistical feature texture is computed using GLCM (Gray Level Co-occurrence Matrices) of Brain Nodule structure. For this paper, the brain nodule segmented using strips method to implemented marker watershed image segmentation based on PSO (Particle Swarm Optimization) and Fuzzy C-means clustering (FCM). Furthermore, the four angles 0o, 45o, 90o and 135o are calculated the segmented brain image in GLCM. The four angular directions are calculated using texture features are correlation, energy, contrast and homogeneity. The texture analysis is performed a different types of images using past years. So the algorithm proposed statistical texture features are calculated for iterative image segmentation. These results show that MRI image can be implemented in a system of brain cancer detection.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated