Preprint
Article

Gray Level Image Threshold Using Neutrosophic Shannon Entropy

Altmetrics

Downloads

260

Views

302

Comments

0

This version is not peer-reviewed

Submitted:

23 June 2019

Posted:

25 June 2019

You are already at the latest version

Alerts
Abstract
This article presents a new method of segmenting grayscale images by minimizing Shannon's neutrosophic entropy. For the proposed segmentation method, the neutrosophic information components, i.e., the degree of truth, the degree of neutrality and the degree of falsity are defined taking into account the belonging to the segmented regions and at the same time to the separation threshold area. The principle of the method is simple and easy to understand and can lead to multiple thresholds. The efficacy of the method is illustrated using some test gray level images. The experimental results show that the proposed method has good performance for segmentation with optimal gray level thresholds.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated