Preprint
Article

Influence of Interfacial Traps on the Operating Temperature of Perovskite Solar Cells

Altmetrics

Downloads

249

Views

355

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

26 June 2019

Posted:

27 June 2019

You are already at the latest version

Alerts
Abstract
In this paper, by developing a mathematical model, the operating temperature of perovskite solar cells (PSCs) under different operating conditions has been calculated. It is found that by reducing the density of tail states at the interfaces, acting as recombination centres, through some passivation mechanisms, the operating temperature can be reduced significantly at higher applied voltages. The results show that if the density of tail states at the interfaces is reduced by three orders of magnitude through some passivation mechanisms, then the active layer may not undergo any phase change up to an ambient temperature 300 K and it may not degrade up to 320 K. The calculated heat generation at the interfaces at different applied voltages with and without passivation shows that the heat generation can be reduced by passivating the interfaces. It is expected that this study may provide a deeper understanding of the influence of interface passivation on the operating temperature of PSCs.
Keywords: 
Subject: Physical Sciences  -   Condensed Matter Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated