Preprint
Article

On the Investigation of Temperature Effects on Oil Relative Permeability: Robust Modeling and Data Assessments

Altmetrics

Downloads

356

Views

343

Comments

0

Submitted:

27 June 2019

Posted:

09 July 2019

You are already at the latest version

Alerts
Abstract
Various empirical models are available to evaluate the temperature effects on relative permeability of the different rock and fluid systems. However, the implementation of limited experimental data points may hinder the applicability of such models to other systems. This study aims to develop new predictive models for kro estimation based on multilayer perceptron artificial neural network (MLP-ANN), adaptive neuro-fuzzy inference system (ANFIS), and least squares support vector machine (LSSVM) approaches. A database comprising of 626 data points applied to the model development. The independent variables are temperature, oil viscosity, water viscosity, water saturation ( ), and the absolute permeability. Each variable covers a wide range of variations which increases models’ potential to be applied in various systems with different characteristics. The doubtful experimental data points excluded using a leverage value approach and a sensitivity analysis carried out to determine the quantitative impact of every individual independent variable on the kro. Statistical error analyses demonstrated the coefficient of determination (R2) values of 0.985, 0.975, and 0.999 for MLP-ANN, ANFIS, and LSSVM, respectively. The comparative study indicated that the LSSVM had the best performance regarding both graphical and statistical error analyses among the newly proposed models and previously reported models in the literature.
Keywords: 
Subject: Computer Science and Mathematics  -   Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated