Preprint
Article

Crystal Transition Behavior and Thermal Properties of Thermal-Energy-Storage Copolymer Materials with N-Behenyl Side-Chain

Altmetrics

Downloads

328

Views

206

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

19 July 2019

Posted:

22 July 2019

You are already at the latest version

Alerts
Abstract
In this paper, we synthesized MC(BeA-co-MMA) copolymer microcapsules through suspension polymerization. The pendent n-behenyl group of BeA is highly crystalline, and it acts as the side-chain in the structure of BeA-co-MMA copolymer. The highly crystalline n-behenyl side-chain provides BeA-co-MMA copolymer thermal-energy-storage capacity. In order to investigate the correlation between thermal properties and crystal structure of BeA-co-MMA copolymer, the effects of monomer ratio, temperature changing and changing rate, as well as synthesis method were discussed. The monomer ratio influenced crystal transition behavior and thermal properties greatly. The DSC results proved that when the monomer ratio of BeA and MMA was 3:1, MC(BeA-co-MMA)3 showed the highest average phase change enthalpy ΔH (105.1 J·g–1). It indicated that the n-behenyl side-chain formed relatively perfect crystal region, which ensured a high energy storage capacity of copolymer. All the DSC and SAXS results proved that the amount of BeA had a strong effect on the thermal-energy-storage capacity of copolymer and the long spacing of crystals, but barely on the crystal lamella. It was found that MMA units worked like defects in the n-behenyl side-chain crystal structure of BeA-co-MMA copolymer. Therefore, a lower fraction of MMA, that is, a higher fraction of BeA contributed to a higher crystallinity of BeA-co-MMA copolymer for providing a better energy storage capacity and thermoregulation property. ST(BeA-co-MMA) copolymer sheets with the same ingredients as microcapsules were also prepared through light-induced polymerization aiming at clarifying the effect of synthesis method. The results proved that synthesis method mainly influenced the copolymer chemical component, but lightly on the crystal packing of n-behenyl side-chain.
Keywords: 
Subject: Chemistry and Materials Science  -   Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated