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12 Abstract: Currently, the most important challenge in any assessment of state-of-the-art sensor
13 technology and its reliability is to achieve road traffic safety targets. The research reported in this
14 paper is focused on the design of a procedure for evaluating the reliability of Internet-of-Things
15 (IoT) sensors and the use of a Cyber-Physical System (CPS) for the implementation of that evaluation
16 procedure to gauge reliability. An important requirement for the generation of real critical situations
17 under safety conditions is the capability of managing a co-simulation environment, in which both
18 real and virtual data sensory information can be processed. An IoT case study that consists of a
19 LiDAR-based collaborative map is then proposed, in which both real and virtual computing nodes
20 with their corresponding sensors exchange information. Specifically, the sensor chosen for this
21 study is a Ibeo Lux 4-layer LiDAR sensor with IoT added capabilities. Implementation is through
22 an artificial-intelligence-based modeling library for sensor data-prediction error, at a local level, and
23 a self-learning-based decision-making model supported on a Q-learning method, at a global level.
24 Its aim is to determine the best model behavior and to trigger the updating procedure, if required.
25 Finally, an experimental evaluation of this framework is also performed using simulated and real
26 data.

27 Keywords: Cyber-Physical Systems; reliability assessment; Internet-of-Things; LiDAR sensor;

28 driving assistance; obstacle recognition; reinforcement learning; Artificial Intelligence-based
29 modelling.
30

31  1.Introduction

32 Nowadays, knowledge of the most appropriate sensor operating conditions and fault detection
33  systems are among the cornerstones of scientific and technical studies for automated systems [1].
34  These are based upon on-line monitoring processes and additional comprehensive interpretation of
35  sensor data, by assessing sensor reliability. Sensors are driving the rapid growth of Cyber-Physical
36  Systems (CPSs) and the Internet of Things (IoT). Both paradigms are behind the next generation of
37  sensor networks and unpredictable future applications, meaning that sensor reliability has become
38  one of the most important and desirable performance indicators in the design, implementation, and
39  deployment of future sensor networks [2].

40  An important reliability-related issue to be detected in autonomous systems is the failure of one
41 network element, in order to self-correct problems such as lost data packages, and data collision,
42  among others [3]. One possible solution is to build real-time prediction models that maximize
43 robustness and lifetime [4]. There are, in fact, several methods for the evaluation of sensor reliability.
44 Each component that constitutes reliability or that might affect it can be assessed individually and as
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45  a whole, through a total error band figure. There are important features to be considered such as
46 sensitivity, range, precision, resolution, accuracy, offset, linearity, dynamic linearity, hysteresis and
47  response time. Evaluating sensor reliability includes probabilistic and statistical data that increase
48  estimation reliability [5]. Evidence theory can be used, such as the Dempster-Shafer theory of belief
49 functions. Quantifying reliability implies predictions concerning sensor lifetime and failure
50  probability. Reliability can therefore be based on both statistical and Artificial Intelligence (Al)
51  models. Suitable probability functions must be defined, which will be used to calculate the future
52 behavior of devices, based either on carefully controlled laboratory experiments or on thorough
53  failure analysis while in use. A typical product will be liable to various failure modes that change
94 over time in a characteristic manner, so that the probability functions are themselves time dependent.
55 The most widely used techniques for modelling predictions concerning product lifetime and
56 failure probability are probabilistic methods. Probabilistic methods for uncertain reasoning represent
57  another group of techniques. Probability theory predicts events from a state of partial knowledge,
58  while Fuzzy-Logic models are applied to situations with intrinsic vagueness and uncertainty.

59 However, the prediction techniques are hardly limited to those mentioned above. Several
60  clustering techniques such as nearest neighbor methods have been explored, in order to enable self-
61  detection and self-correction capabilities [6]. Other capabilities to be considered from the perspective
62  of reliability are self-adaptation and self-organization by embedding artificial neural networks
63  (ANNS) in CPSs [7]. Efficient performance of multiple sensors and their online monitoring and self-
64  correction procedures, through the application of machine learning (ML) such as Support Vector
65 Machines (SVM) and ANNSs, are very important for the reduction of maintenance costs, risk
66  minimization associated with uncalibrated and faulty sensors, increased instrument reliability and,
67  consequently, extended equipment life [8, 9].

68 With the aim of guaranteeing certain safety and security conditions in some critical applications,
69  the verification of sensory data and subsequent data evaluation are described in this paper through
70  the simulation of virtual and real scenarios, as well as frameworks that properly combine both
71 scenarios.

72 A reliability assessment procedure is therefore described in this paper that is applicable to data
73 captured by IoT LiDAR sensors in automotive applications: LiDAR self-testing methodology. The
74 reliability analysis is based on the paradigm of cyber-physical systems (CPS) by distributing nodes
75 locally and globally, as will be explained later on. Each computing node has data-processing methods
76  and machine-learning models for reliability prediction. In addition, a run-time self-learning and
77  decision-making model runs within a global node, in order to determine the best model and the
78  model updating mechanism on request.

79  The paper will be organized into five sections. Following this introduction, the second section will
80  present a state-of-art review of the CPS-based reliability concept for sensor system reliability using
81 Al methods. Subsequently, the specifications and the requirements obtained from the review of CPS
82  reliability frameworks will be summarized in section 3. A particular implementation of a CPS-based
83  co-simulation framework will also be proposed in this section. In addition, a case study for the
84  evaluation of an IoT sensor network using a CPS-based co-simulation framework approach will be
85  described in section 4. In that section, the experimental results and a discussion relating to a
86  comparative study will also be addressed. Finally, the conclusions and future research steps will be
87  presented in section 5.

88 2. CPS-based reliability approach

89 The truly challenging aspects of sensor network reliability and its evaluation have yet to prompt
90  an exhaustive exploration and evaluation of sensory data under critical conditions. A gap that is

91  addressed in this study through sensors incorporated in a CPS.
92

93

94 2.1. Sensor reliability assesment
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95 One approach to sensor reliability in automotive applications is to design a model-based

96  relationship between ‘model parameters’. Those parameters can be derived from process monitors

97  while ‘functional parameters’ refer to both the sensor characteristics and sensor lifetime, as well as

98  cost aspects due to process yields (see Figure 1).

99 With the aim of increasing the reliability of data collected by LIDAR, metrological assessment
100  procedures must also be applied. Linear interpolation of measurements from three detectors
101  arranged in series is a time-saving procedure for processing and reducing LIDAR data [10].

102
Monitoring ‘functional
parameter’
Metrological assessment
procedure
Accuracy of estimated
location for an object
MRSE
Model-based
relationship
103
104 Figure 1. Procedure for sensor reliability assessment using model-based relationship between sensor
105 data and key performance indices.
106 All the major sources of potential error that could influence point positioning accuracy have to

107  be considered in the analytical derivations, in order to determine the reliability of achievable point
108  positioning accuracy of LIDAR systems. Csanyi, May and Toth provided some of the random errors
109  that will be considered [11]. They also provided some formulas for point positioning accuracy that
110  were derived from the LiDAR equation, via rigorous error propagation:

111
T = Tarns + Rins(RLY 11, + byys) 1)

112

113 where, ry represents the 3D coordinates of an object point in the mapping frame; 7y, ;ys represents
114 time dependent 3D INS coordinates in the mapping frame, provided by GPS/INS; R}{sis the time
115  dependent rotation matrix between the INS body and the mapping frame; RN is the boresight
116  matrix between the laser frame and the INS body frame; r represents the 3D object coordinates in
117  the laser frame; and, byys is the boresight offset vector.

118 In addition, the calculation of the accuracy of the estimated location for an object using the
119  LiDAR sensor can be performed by other key performance indices. For example, the use of the
120  Distance Root Mean Squared (DRMS) measure for the data that are tracked on the x-y plane (2D) and
121  the Mean Radial Spherical Error (MRSE) measure for the data that are tracked in the x—y-z space (3D)
122 were reported in [12, 13]. Using derivable error formulas, any given random error and scan angle in
123  the LiDAR range can be modelled and simulated. By doing so, the factors affecting LiDAR system
124 accuracy can be analyzed [14].

125  2.2. Statistical and Artificial Intelligence-based methods

126 Bayesian and Hidden Markov models are the most widely applied for reliability assessment
127  under fuzzy environments [15, 16]. A Bayesian network is a directed acyclic graph consisting of a set
128  of nodes, representing random variables and a set of directed edges, representing their conditional
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129  dependencies. The dependencies in a Bayesian network can be adaptively determined from a dataset
130  through a learning process. The objective of this training is to induce the network with the best
131  description of the probability distribution over the dataset and can be categorized as an unsupervised
132  learning method, because the attribute values are not supplied in the dataset [17].

133 In addition to those probabilistic methods, new tools are reported in the literature, highlighting
134 the use of Artificial Intelligence (Al) techniques and in particular, Machine Learning (ML), to solve
135  complex situations [18]. Al techniques also provide cognitive abilities, so that performance may be
136  improved by increasing network life-time and reliability [19]. Some of those techniques are ANN and
137  fuzzy inference system [20, 21]. Zhang et al. proposed a soft-computing system based on Genetic
138  Algorithm-Support Vector Regression (GA-SVR), in order to facilitate the reliability and survivability
139  of the Structural Health Monitoring (SHM) system faced, for example, with an invalid fiber link in
140  the sensor network [22].

141 3. CPS-based co-simulation framework

142 Some factors that can affect CPS reliability are component failure, environmental effects, task
143 changes, and network update. A strategy for testing the reliability of CPSs and for their evaluation is
144 proposed in [23] by analyzing both the internal and the external factors that influence their reliability.
145  One solution could be to evaluate each element that constitutes the system: testing hardware,
146  software, and architecture, as well as performance reliability including service reliability, cyber
147  security reliability, resilience & elasticity reliability, and vulnerability reliability.

148 Behavioral simulations of CPS and IoT assume importance as a method to analyze reliability,
149  because the mathematical modeling of those factors is so difficult [24]. Those simulations are based
150  on addressing four main topics: node localization, energy management, network multi-objective
151  optimization, and self-capabilities approach [25, 26].

152 While the reliability evaluation of physical systems is well-understood and has been extensively
153  studied, the reliability evaluation of a CPS is of greater complexity, because software systems will not
154  degrade and follow a well-defined failure model in the same way as physical systems. An evaluation
155  framework is therefore necessary, in order to assess the CPSs. A framework for CPS reliability
156  analysis that includes reliability-based runtime reconfiguration is proposed in [27]. This framework
157  is codified in a domain-specific modelling language that provides details on operational constraints
158  and dependences.

159 However, domain-specific modelling-based analysis is, in many cases, unable to compute
160 reliability functions efficiently (e.g. in terms of failure distributions) for complex systems. To do so, a
161  frequency-domain reliability analysis framework of transportation CPSs was described in [28]. The
162  advantage of that method is its capability to capture higher-order moments of the system
163  characteristics, its scalability for the analysis of the reliability of complex systems, and efficient
164  calculations.

165 In addition, it is important to consider the evaluation of other aspects of the CPS, such as safety
166  and particularly security, different aspects of which have been focused upon over the past few years.
167  Therefore, the design of the CPS framework must address those aspects at three levels: security
168  objectives, security approaches and security in specific applications [29]. However, not only must the
169  cyber part be secured, but also the physical part of possible threats. A multi-cyber (computational
170  unit) framework was compared with traditional models to improve the availability of the CPS based
171 on the Markov model. It was efficiently evaluated, in terms of availability, downtime, downtime
172 costs, and the reliability of the CPS framework [30].

173 Finally, another work considered an Internet-based computing platform in the form of a global
174 computing node. In [31], a new cloud security management framework was introduced, based on
175  improving collaboration between cloud providers, service providers, and service consumers for the
176  management of cloud platform security and the hosting services. In addition, although in some
177  applications this will not be possible, it is important to consider the possibility of introducing the
178  human factor in the reliability analysis procedure. A human-interactive Hardware-In-the-Loop
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179  Simulation (HILS) framework for CPS was developed in [32] to support reliability and reusability in
180  a fully distributed operating environment.

181  3.1. CPS-based co-simulation framework proposed

182 Based on the above contributions and considering the initial list of requirements from the
183  previous section for the deployment of an IoT sensor network, a CPS-based co-simulation framework
184  isproposed where an IoT sensor network will supply physical data and (local and global) computing
185  nodes for processing the sensory data.

186  3.1.1. Conceptual Scheme

187 In addition, the IoT sensor network has a global or main node composed of a knowledge
188  database, a Q-learning method for decision-making and an Al-based model library. During the
189  simulation and the real running, a decision-making module will decide which specific model is the
190  best in the current instant, taking into account the data received by all nodes that make up the
191  network.

192 The functionalities are distributed in different nodes, both virtual and real, according to their
193  functions. The distributed virtual or real nodes manage the capture of sensory data and run the error
194  prediction calculation with the required accuracy, while the global or main node incorporates the

195  runtime model that is generated, the library, and the knowledge database (see Figure 2).
196

loT sensor n
H

loT sensor 2
loT sensor 1

Virtual Local
Node 1

j"‘;

Real Scenario

Wireless Communication

L
Node

Wireless Communicatioi

197

198 Figure 2. General scheme of the CPS-based co-simulation framework with virtual and real computing
199 nodes and IoT sensor network.

200 The IoT sensors should be able to establish reliable and accurate wireless communications,
201  ensuring that all the intrinsic challenges in an IoT network and in the different CPSs can be solved. It
202  isachieved through the implementation of the architecture that is represented in Figure 2: a network
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203  of n nodes, each node having n IoT sensors. In addition, the computing nodes must communicate
204  with each other and with their corresponding global node.

205  3.1.2. Procedure description

206 The framework is designed with the condition that both the real and the virtual (local)
207  computing nodes must operate in parallel with the global computing node [33]. Data exchange
208  between the different nodes takes place in two different ways. On the one hand, data exchange
209  between local nodes is produced in both the virtual (3D model simulation tool) and the real scenario.
210  Onthe other hand, there is the data exchange between different local nodes and the global node using
211  the 802.11p wireless communication protocol.

212 There is therefore interaction between the software for both the simulated and the real
213  environments, and external applications that are running in the main node. Figure 3 shows the
214 schematic diagram of the exchange of information or messages within the co-simulation framework.

215
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217 Figure 3. Conceptual flowchart showing the operation of a reliability co-simulation framework with
g p g p
218 CPS computing nodes and IoT sensors.
219 In the particular implementation that is described more accurately in the following section, there
p p y g

220  is a wireless exchange of messages between different nodes using the 802.11p communication
221  protocol in the following way. First, the local nodes with their IoT sensors detect different objects and
222  their respective properties. Secondly, this information is shared on the network through a broadcast

223 process.

224  4.10T LiDAR-based collaborative mapping — A case study

225 The IoT sensor network chosen to evaluate the CPS-based co-simulation framework is composed
226  of virtual and real LiDAR sensors [34]. An Ibeo Lux LiDAR 4-layer sensor was used with the
227  following specifications: horizontal field of 120 deg, horizontal step of 0.125 deg., vertical field of 3.2
228  deg., vertical step of 0.8 deg., range of 200 m, and an update frequency of 12.5 Hz. As previously
229  mentioned, the sensor network to be evaluated is composed of 10T sensors. The sensor network
230  therefore has IoT capabilities connected to its computing nodes. These nodes are on-board computers
231  integrated in an autonomous vehicle with a wireless communication interface between them.

232 The particular implementation of the CPS-based co-simulation framework, the LiDAR-based
233  collaborative map, is based on a co-simulation framework between two different software systems,
234 both for the simulated part, designed in [35]. However, the contribution of this study is to include the
235  real part in the co-simulation framework. This framework consists mainly of a computer-aided
236  system to enable efficient interaction between the virtual scenario with virtual nodes setting in the
237  Webots automobile simulation tool 8.6 [36] and an external application development for the
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238  computing nodes in the real scenario. The scenario in this particular case, in which the vehicles are
239 represented as nodes, is as follows. A real vehicle (in a real scenario) and three virtual vehicles in the
240  simulated scenario are detecting obstacles. Both kinds of vehicles share the position, object type and
241  size of the obstacles (e.g., pedestrian, trees on the road and another vehicle). This is possible thanks
242 tothe IoT LiDAR network using an IoT obstacle detection application (see section 4.1), created in run
243  time. Figure 4 shows the detailed diagram of the implementation of the LIDAR-based collaborative
244 map using the CPS-based framework approach.

245
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247 Figure 4. Detailed diagram of the implementation of the LiDAR-based collaborative map approached
248 through a CPS-based co-simulation framework.
249 As previously mentioned above, the exchange of information packets between the local nodes

250  with the main or global node is possible; thanks to the use of a communication protocol using a UDP
251  (User Datagram Protocol) as the transport layer and a Wi-Fi 802.11p as the physical layer. The
252  visualization of the co-simulated vehicle (real node) in the 3D virtual scenario in the Webots
253  simulation tool is also possible. An example of the execution of the co-simulation architecture can be
254 seenin Figure 5.

255
P'r - Virtual vehicle 1
(Ibeo Lux LiDAR medel)
Virtual vehicle 2 E
(Ibeo Lux LiDAR model)
Co-simulated vehicle
(Real LiDAR Ibeo Lux)
256
257 Figure 5. Data interchange between LiDAR sensors in (virtual and real) driving assistance scenarios

258 in Webots for automobiles.


https://doi.org/10.20944/preprints201907.0311.v1
https://doi.org/10.3390/rs11192252

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 July 2019 d0i:10.20944/preprints201907.0311.v1

8 of 16

259 In addition, another application implemented in the IoT LiDAR-based collaborative map is the
260  LiDAR self-testing methodology incorporated in each local computing node (autonomous vehicle),
261  in order to evaluate the reliability of each IoT sensor in the network (section 4.2).

262 4.1 Obstacle detection in the IoT application

263 This framework is implemented in an external application; a development in Qt 5.10, that
264  consists of an illustrated map updated in run time (see Figure 6 (a)) and a database with the
265  information on both the virtual and the real objects that are detected (see Figure (b)). The information
266  contains the position, object type, and size of the obstacles, to improve on the security/safety of the
267  object detection process with a single sensor.

Obstacles
9 Id Position X
1 5541 204943 15.7351
& 2 4m 221336 14.5052
3 4821 359522 21,3893
9 % 4 10745 463943 1829
w 5 6301 28.2257 -24.7708
9 6 |6069 37.8135 18.0014
9 9 7 1098 174544 14.2624
e 9 9 8 |5721 203872 10.8831
] 9 5451 36.3505 22.9266
9 9”:;‘:‘-" 104267 32.8216 -23.8485
9% % 11,2405 -23.8963 -3.19317
[] 9 § 125001 43.2373 21.7575
1311312 -35.6864 -12.1652
8 144615 44,3979 3.577%5
153361 184246 13.6389
(a) (b)
IBEO Model (Vehicle 1)
5]
o
£ v ; : R x x x
(c)
269 Figure 6. (a) Collaborative mapping; (b) obstacles detected database; (c¢) LIDAR data for run-time
270 accuracy error detection.
271 Figure 6 depicts the visual interface of the framework that has been developed. Specifically, the

272 collaborative map is globally updated in the main computing node. A partial area of this updated
273  map can also be sent at the request of a local node. A set of computational procedures is in charge of
274  adapting and transferring sensory information from Webots, virtual nodes with the Ibeo Lux sensor
275  model, and the real node, real vehicles with the real Ibeo Lux sensor; and vice versa.

276 4.2. LiDAR selft-testing application

277 The external application also includes a LIDAR data self-testing methodology using the Al-
278  based error-prediction models. Figure 6 (c) shows the graphical interface that represents the
279  estimated error with regard to time on the left-hand side. However, on the right-hand side the
280 admissible error threshold is observed, which if exceeded, must be requested to make decisions over
281  thebest performance of each model at any given time. Specifically, the results are focused on showing
282  the improved performance of the IoT sensor network composed of each CPS element with each
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283  LiDAR sensor plus added IoT capabilities. To do so, a reliability prediction model dedicated to
284  obtaining the accuracy error in obstacle detection is incorporated in each computing node.

285  4.2.1. Reliability prediction models

286 A reliability model was generated for each IoT LiDAR sensor, both virtual and real, that
287  predicted the accuracy error for obstacle detection. The steps to follow for the determination of those
288  models were extracted from the methodology described in [37, 38], with a set of different training
289  data. In this study, a model-based procedure was used with a point-cloud clustering technique, in
290 this case Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [39]. In addition,
291  an error-based prediction model library was described, highlighting Al-based model techniques,
292  such as, Multilayer Perceptron Neural Network (MLP), k-Nearest Neighbors (k-NN), and Linear
293  Regression (LR). A difference in the particular implementation described in this paper is that, while
294  Kk-NN, MLP and LR were maintained, SVM was added as a new technique to the Al-based library
295  [40-42].

296  4.2.2. Model parametrization and validation

297 With the aim of determining which model training strategy based on Al provides the best
298  reliability prediction model, an experimental validation was performed. The training dataset was
299  composed of 998 scenes for the model training and 250 scenes for the model validation. All of them
300  were obtained from a simulation procedure. The data input consisted of geospatial statistics [13, 43]
301  which were extracted from the point cloud supplied by the LiDAR sensor, so that the models could
302  generate the figures of merit in terms of accuracy error: DRMS and MRSE.

303 The four Al-based strategies that were considered are as follows. First, a multilayer perceptron
304  neural network with backpropagation (MLP) with two hidden layers, each with five neurons and
305  sigmoid activation functions, and an output layer with a lineal activation function, two neurons, and
306 5000 epochs. The initial value of the learning rate () was 10-3 with a decrease factor ratio of 10-1, an
307  increase factor ratio of 10, and a maximum p value of 1010. The minimum performance gradient was
308  10-7. The training process stop criteria were as follows: the maximum number of epochs (repetitions);
309  goal performance minimization; the performance gradient below a minimum gradient; or, a 4 value
310  in excess of the maximum value. The second modeling technique was k-nearest neighbors (k-NN),
311  with k = 5 and using Euclidean distance as the distance function. The third was a lineal regression
312  that was also obtained by minimizing the sum of squared differences between the predicted and the
313  observed values. Finally, a support vector machine model was fitted by means of data
314  standardization and the radial basis function kernel.

315  4.2.3.Self-learning-based decision-making. Q-learning algorithm

316 The global or main computing node executes several parallel procedures in a specific self-
317  learning module that uses a Q-learning algorithm. On the one hand, a dataset for training by default
318  is present in the global node. On the other hand, a knowledge database (warehouse) is also included,
319  which can be updated in run time with the data provided by each local node. It sets up the self-
320  learning strategy that is run, in order to analyze the best model behavior, when new traffic situations
321  are generated providing new point clouds (environment information).

322 The local node, also in parallel, simulates the reliability model and when an error is admissible
323  the threshold will exceed 20% in one the figures of merits (DRMS or MRSE), which will mean that
324 the current model is failing. A request is therefore made to the global module to establish whether
325  there is a model that is working better. The decision to select the best prediction model included in
326  the library is taken by the self-learning decision-making at each instant, according to the
327  generalization capability and the accuracy of the model. The particular performance metrics for each
328  are R? and RAE, respectively. In summary, based on this continuous information flow and the
329  previous prediction results (knowledge database), when a request from one of the local nodes is
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330  received and a new best model behavior is detected, the current error prediction model is then
331  commuted, between MLP and k-NN, and vice versa.

332
Self-learning Module
(g-Learning)

Reliability Models —

-MLP Warehouse

-kNN

Central Node
(—
Actual Failure Actual Failure : .
Detection Model Detection Model Actual Failure Actual Failure
Local Node 2

333 Local Node 1 Local Node 3 Local Node N
334 Figure 9. Flow diagram between the global node (self-learning module), IoT network, and local

335  nodes (actual failure detection model).
336 5. Experimental results

337 5.1. Reliability model-based validation

338 Table 1. Key performance indices based on plane (DMRS) & space (MRSE) figure of merits.

MAE RMSE RAE RRSE R?
DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE
MLP  0.0046 0.0035 1.275 1.270 0.187 0.188 0.395 0.392 0.933 0.933
kNN 0.002 0.0002 1.014 1.010 0.114 0.114 0.371 0.365 0.963 0.961

LR 0.6781 0.6530  2.305 2.285 0.701 0.695 0.782 0.788 0.434 0.435
SVM 04735 04740 2.072 2.065 0.442 0.447 0.773 0.773 0.692 0.684

Model

339

340 Table 1 shows the evaluation results obtained during the initial validation of each reliability
341  model. Five error-based performance indices and two classification criteria were considered in the
342  validation process: Mean Absolute Error (MAE); Root Mean Squared Error (RMSE); Relative
343  Absolute Error (RAE); Root Relative Squared Error (RRSE); and, the coefficient of determination (R?).
344 Only, the models generated with k-NN and MLP returned R? results higher than 90%.

345
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Figure 7. Behavior representation of LiDAR error on the plane for each model with regard to the

validation data.

Figure 7 illustrates the behavior representation of the LIDAR error on the plane (DRMS) for each
model (MLP, LN, KNN and SVM) with regard to the validation data. The Al-based modeling
techniques that showed the best performing were MLP and KNN, according to the comparative study
of the four modelling strategies, with a percentage improved performance comparable to the other
two models of around 30%. Those model types will be chosen for the validation of the decision-
making module.

5.1. Self-learning for decision-making evaluation

Finally, a simulation in order to determine the quality of the Q-learning method in the automatic
selection of the best prediction model was performed. The reward function is chosen for setting the
best possible Q-value in 100 different scenes. Therefore, the function to update the Q-values is [44]:

Qs (st’a‘t) =Q (st & )+at (s.a)(R.. + 7T3AXQt (st+1’a)_Qt (s.a)) (2)

where, s: is the state in time t; a: is the action taken in time f; R+ is the reward received after
performing action a:; a is the learning rate; and, y is the discount factor which trades off the
importance of sooner-versus-later rewards. Table 2 lists the error reward matrix based on knowledge
of the behavior of those prediction models.

Table 2. Q-learning reward matrix for error admissible threshold.

R RAE
0-10% 10-20% 20-40% 40-70% > 70%
90 — 100% 1 0.9 0.8 0.5 0.2
80 - 90% 0.85 0.8 0.65 0.4 0.15
70 — 80% 0.7 0.6 0.5 0.3 0.1
30 - 60% 0.5 0.4 0.3 0.2 0.05
0-30% 0.3 0.2 0.15 0.1 0.01

The decision-making was based on two of the main performance indexes of model quality. First,
the coefficient of determination (R?) was taken into consideration, as it provides a measure of the
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369  generalization capacity of the model. The Relative Absolute Error (RAE), which is a measure of model
370  accuracy, was the second parameter.

371 Figure 9 shows the Q-learning classification error matrix. As previously shown, the best model
372  had a RAE between 0 and 20% and a R? above 80% in 61% of the scenarios. The system was able to
373  guarantee models with a greater capability of generalization in 71% of the scenarios, based on a
374 coefficient of determination that was over 80%. In total, reliability can be predicted with an RAE of
375  less than 40% and an R? of over 70% in 90% of the scenarios, which demonstrates the quality of the
376  models. The models presented a low generalization, with a coefficient of determination of less than
377  70% in only 9% of the scenarios and a RAE greater than 40% in only 1%. Therefore, the Q-learning
378  method that evaluates reliability on the basis of the prediction error model at each instant worked
379  appropriately when determining the best model that represented the LiDAR performance to a high
380  degree of accuracy and that guaranteed the required levels of safety and reliability for automotive
381  applications.

382
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383
384 Figure 9. Q-learning classification error matrix.
385 5. Conclusions
386 A method and an accompanying procedure have been presented in this paper for evaluating the

387  reliability of IoT sensors in a CPS. A co-simulation platform has been designed for that purpose where
388  virtual and real sensors can interact during run time through different simulations under appropriate
389  safety conditions. The co-simulation framework was composed of distributed computing nodes
390  within an IoT network, at both global and local levels.

391 A case study that consists of a LIDAR-based collaborative map has been proposed, in order to
392  validate the CPS-based co-simulation framework. Real and virtual computing nodes with the
393  corresponding sensors shared the position, object type, and size of the obstacles, to improve the
394  security and safety of the autonomous driving when detecting objects with this framework in run
395  time. The assessment of the proposed method was divided into two parallel procedures. First, at local
396  level, each reliability model evaluated the condition of the IoT LiDAR sensor. Secondly, at a global
397  level, a self-learning strategy for decision-making determined the most appropriate behavior of
398  models in the reliability model library, also in run time. The Q-learning method was selected for this
399  unsupervised self-learning strategy.

400 The comparative study of four strategies (MLP. SVM, k-NN and linear regression) in the
401  reliability modelling library was then performed. In summary, the MLP and the k-NN methods
402  outperformed the other two strategies considered in this study. Based on the previous results, a final
403  experimental evaluation was presented, in order to determine the quality of the Q-learning method
404  for automatically selecting the best reliability model. A Q-learning method evaluated the reliability
405  models, in order to perform the analysis, in a simulation study with 100 different scenarios. Based on
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406  this procedure and the prediction results of the Q-learning method, when a request from one of the
407 local nodes is received, a new model behavior is detected, and the current error prediction model is
408  then commuted. Overall, all the reliability models performed very well, according to their
409  generalization capability.

410 Therefore, the proposed CPS-based co-simulation framework has served to assess the
411  performance of the IoT LiDAR network very accurately, guaranteeing safety and reliability in this
412  autonomous driving case study. These promising results pave the way for future work that will
413  validate the proposed method under real autonomous driving conditions.
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