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 11 

Abstract: Currently, the most important challenge in any assessment of state-of-the-art sensor 12 
technology and its reliability is to achieve road traffic safety targets. The research reported in this 13 
paper is focused on the design of a procedure for evaluating the reliability of Internet-of-Things 14 
(IoT) sensors and the use of a Cyber-Physical System (CPS) for the implementation of that evaluation 15 
procedure to gauge reliability. An important requirement for the generation of real critical situations 16 
under safety conditions is the capability of managing a co-simulation environment, in which both 17 
real and virtual data sensory information can be processed. An IoT case study that consists of a 18 
LiDAR-based collaborative map is then proposed, in which both real and virtual computing nodes 19 
with their corresponding sensors exchange information. Specifically, the sensor chosen for this 20 
study is a Ibeo Lux 4-layer LiDAR sensor with IoT added capabilities. Implementation is through 21 
an artificial-intelligence-based modeling library for sensor data-prediction error, at a local level, and 22 
a self-learning-based decision-making model supported on a Q-learning method, at a global level. 23 
Its aim is to determine the best model behavior and to trigger the updating procedure, if required. 24 
Finally, an experimental evaluation of this framework is also performed using simulated and real 25 
data. 26 

Keywords: Cyber-Physical Systems; reliability assessment; Internet-of-Things; LiDAR sensor; 27 
driving assistance; obstacle recognition; reinforcement learning; Artificial Intelligence-based 28 
modelling. 29 

 30 

1. Introduction 31 

Nowadays, knowledge of the most appropriate sensor operating conditions and fault detection 32 
systems are among the cornerstones of scientific and technical studies for automated systems [1]. 33 
These are based upon on-line monitoring processes and additional comprehensive interpretation of 34 
sensor data, by assessing sensor reliability. Sensors are driving the rapid growth of Cyber-Physical 35 
Systems (CPSs) and the Internet of Things (IoT). Both paradigms are behind the next generation of 36 
sensor networks and unpredictable future applications, meaning that sensor reliability has become 37 
one of the most important and desirable performance indicators in the design, implementation, and 38 
deployment of future sensor networks [2].  39 
An important reliability-related issue to be detected in autonomous systems is the failure of one 40 
network element, in order to self-correct problems such as lost data packages, and data collision, 41 
among others [3]. One possible solution is to build real-time prediction models that maximize 42 
robustness and lifetime [4]. There are, in fact, several methods for the evaluation of sensor reliability. 43 
Each component that constitutes reliability or that might affect it can be assessed individually and as 44 
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a whole, through a total error band figure. There are important features to be considered such as 45 
sensitivity, range, precision, resolution, accuracy, offset, linearity, dynamic linearity, hysteresis and 46 
response time. Evaluating sensor reliability includes probabilistic and statistical data that increase 47 
estimation reliability [5]. Evidence theory can be used, such as the Dempster-Shafer theory of belief 48 
functions. Quantifying reliability implies predictions concerning sensor lifetime and failure 49 
probability. Reliability can therefore be based on both statistical and Artificial Intelligence (AI) 50 
models. Suitable probability functions must be defined, which will be used to calculate the future 51 
behavior of devices, based either on carefully controlled laboratory experiments or on thorough 52 
failure analysis while in use. A typical product will be liable to various failure modes that change 53 
over time in a characteristic manner, so that the probability functions are themselves time dependent.  54 

The most widely used techniques for modelling predictions concerning product lifetime and 55 
failure probability are probabilistic methods. Probabilistic methods for uncertain reasoning represent 56 
another group of techniques. Probability theory predicts events from a state of partial knowledge, 57 
while Fuzzy-Logic models are applied to situations with intrinsic vagueness and uncertainty.  58 

However, the prediction techniques are hardly limited to those mentioned above. Several 59 
clustering techniques such as nearest neighbor methods have been explored, in order to enable self-60 
detection and self-correction capabilities [6]. Other capabilities to be considered from the perspective 61 
of reliability are self-adaptation and self-organization by embedding artificial neural networks 62 
(ANNs) in CPSs [7]. Efficient performance of multiple sensors and their online monitoring and self-63 
correction procedures, through the application of machine learning (ML) such as Support Vector 64 
Machines (SVM) and ANNs, are very important for the reduction of maintenance costs, risk 65 
minimization associated with uncalibrated and faulty sensors, increased instrument reliability and, 66 
consequently, extended equipment life [8, 9]. 67 

With the aim of guaranteeing certain safety and security conditions in some critical applications, 68 
the verification of sensory data and subsequent data evaluation are described in this paper through 69 
the simulation of virtual and real scenarios, as well as frameworks that properly combine both 70 
scenarios. 71 

A reliability assessment procedure is therefore described in this paper that is applicable to data 72 
captured by IoT LiDAR sensors in automotive applications: LiDAR self-testing methodology. The 73 
reliability analysis is based on the paradigm of cyber-physical systems (CPS) by distributing nodes 74 
locally and globally, as will be explained later on. Each computing node has data-processing methods 75 
and machine-learning models for reliability prediction. In addition, a run-time self-learning and 76 
decision-making model runs within a global node, in order to determine the best model and the 77 
model updating mechanism on request. 78 
The paper will be organized into five sections. Following this introduction, the second section will 79 
present a state-of-art review of the CPS-based reliability concept for sensor system reliability using 80 
AI methods. Subsequently, the specifications and the requirements obtained from the review of CPS 81 
reliability frameworks will be summarized in section 3. A particular implementation of a CPS-based 82 
co-simulation framework will also be proposed in this section. In addition, a case study for the 83 
evaluation of an IoT sensor network using a CPS-based co-simulation framework approach will be 84 
described in section 4. In that section, the experimental results and a discussion relating to a 85 
comparative study will also be addressed. Finally, the conclusions and future research steps will be 86 
presented in section 5. 87 

2. CPS-based reliability approach 88 

The truly challenging aspects of sensor network reliability and its evaluation have yet to prompt 89 
an exhaustive exploration and evaluation of sensory data under critical conditions. A gap that is 90 
addressed in this study through sensors incorporated in a CPS. 91 

 92 
 93 

2.1. Sensor reliability assesment 94 
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One approach to sensor reliability in automotive applications is to design a model-based 95 
relationship between ‘model parameters’. Those parameters can be derived from process monitors 96 
while ‘functional parameters’ refer to both the sensor characteristics and sensor lifetime, as well as 97 
cost aspects due to process yields (see Figure 1).  98 

With the aim of increasing the reliability of data collected by LIDAR, metrological assessment 99 
procedures must also be applied. Linear interpolation of measurements from three detectors 100 
arranged in series is a time-saving procedure for processing and reducing LIDAR data [10]. 101 

 102 

 103 

Figure 1. Procedure for sensor reliability assessment using model-based relationship between sensor 104 
data and key performance indices. 105 

All the major sources of potential error that could influence point positioning accuracy have to 106 
be considered in the analytical derivations, in order to determine the reliability of achievable point 107 
positioning accuracy of LiDAR systems. Csanyi, May and Toth provided some of the random errors 108 
that will be considered [11]. They also provided some formulas for point positioning accuracy that 109 
were derived from the LiDAR equation, via rigorous error propagation: 110 

 111 

𝑟𝑀 = 𝑟𝑀,𝐼𝑁𝑆 + 𝑅𝐼𝑁𝑆
𝑀 (𝑅𝐿

𝐼𝑁𝑆 ∙ 𝑟𝐿 + 𝑏𝐼𝑁𝑆) (1) 

 112 
where, 𝑟𝑀 represents the 3D coordinates of an object point in the mapping frame; 𝑟𝑀,𝐼𝑁𝑆 represents 113 
time dependent 3D INS coordinates in the mapping frame, provided by GPS/INS; 𝑅𝐼𝑁𝑆

𝑀 is the time 114 
dependent rotation matrix between the INS body and the mapping frame; 𝑅𝐿

𝐼𝑁𝑆  is the boresight 115 
matrix between the laser frame and the INS body frame; 𝑟𝐿represents the 3D object coordinates in 116 
the laser frame; and, 𝑏𝐼𝑁𝑆 is the boresight offset vector. 117 

In addition, the calculation of the accuracy of the estimated location for an object using the 118 
LiDAR sensor can be performed by other key performance indices. For example, the use of the 119 
Distance Root Mean Squared (DRMS) measure for the data that are tracked on the x-y plane (2D) and 120 
the Mean Radial Spherical Error (MRSE) measure for the data that are tracked in the x–y–z space (3D) 121 
were reported in [12, 13]. Using derivable error formulas, any given random error and scan angle in 122 
the LiDAR range can be modelled and simulated. By doing so, the factors affecting LiDAR system 123 
accuracy can be analyzed [14]. 124 

2.2. Statistical and Artificial Intelligence-based methods 125 

Bayesian and Hidden Markov models are the most widely applied for reliability assessment 126 
under fuzzy environments [15, 16]. A Bayesian network is a directed acyclic graph consisting of a set 127 
of nodes, representing random variables and a set of directed edges, representing their conditional 128 
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dependencies. The dependencies in a Bayesian network can be adaptively determined from a dataset 129 
through a learning process. The objective of this training is to induce the network with the best 130 
description of the probability distribution over the dataset and can be categorized as an unsupervised 131 
learning method, because the attribute values are not supplied in the dataset [17].  132 

In addition to those probabilistic methods, new tools are reported in the literature, highlighting 133 
the use of Artificial Intelligence (AI) techniques and in particular, Machine Learning (ML), to solve 134 
complex situations [18]. AI techniques also provide cognitive abilities, so that performance may be 135 
improved by increasing network life-time and reliability [19]. Some of those techniques are ANN and 136 
fuzzy inference system [20, 21]. Zhang et al. proposed a soft-computing system based on Genetic 137 
Algorithm-Support Vector Regression (GA-SVR), in order to facilitate the reliability and survivability 138 
of the Structural Health Monitoring (SHM) system faced, for example, with an invalid fiber link in 139 
the sensor network [22]. 140 

3. CPS-based co-simulation framework 141 

Some factors that can affect CPS reliability are component failure, environmental effects, task 142 
changes, and network update. A strategy for testing the reliability of CPSs and for their evaluation is 143 
proposed in [23] by analyzing both the internal and the external factors that influence their reliability. 144 
One solution could be to evaluate each element that constitutes the system: testing hardware, 145 
software, and architecture, as well as performance reliability including service reliability, cyber 146 
security reliability, resilience & elasticity reliability, and vulnerability reliability. 147 

Behavioral simulations of CPS and IoT assume importance as a method to analyze reliability, 148 
because the mathematical modeling of those factors is so difficult [24]. Those simulations are based 149 
on addressing four main topics: node localization, energy management, network multi-objective 150 
optimization, and self-capabilities approach [25, 26]. 151 

While the reliability evaluation of physical systems is well-understood and has been extensively 152 
studied, the reliability evaluation of a CPS is of greater complexity, because software systems will not 153 
degrade and follow a well-defined failure model in the same way as physical systems. An evaluation 154 
framework is therefore necessary, in order to assess the CPSs. A framework for CPS reliability 155 
analysis that includes reliability-based runtime reconfiguration is proposed in [27]. This framework 156 
is codified in a domain-specific modelling language that provides details on operational constraints 157 
and dependences.  158 

However, domain-specific modelling-based analysis is, in many cases, unable to compute 159 
reliability functions efficiently (e.g. in terms of failure distributions) for complex systems. To do so, a 160 
frequency-domain reliability analysis framework of transportation CPSs was described in [28]. The 161 
advantage of that method is its capability to capture higher-order moments of the system 162 
characteristics, its scalability for the analysis of the reliability of complex systems, and efficient 163 
calculations. 164 

In addition, it is important to consider the evaluation of other aspects of the CPS, such as safety 165 
and particularly security, different aspects of which have been focused upon over the past few years. 166 
Therefore, the design of the CPS framework must address those aspects at three levels: security 167 
objectives, security approaches and security in specific applications [29]. However, not only must the 168 
cyber part be secured, but also the physical part of possible threats. A multi-cyber (computational 169 
unit) framework was compared with traditional models to improve the availability of the CPS based 170 
on the Markov model. It was efficiently evaluated, in terms of availability, downtime, downtime 171 
costs, and the reliability of the CPS framework [30]. 172 

Finally, another work considered an Internet-based computing platform in the form of a global 173 
computing node. In [31], a new cloud security management framework was introduced, based on 174 
improving collaboration between cloud providers, service providers, and service consumers for the 175 
management of cloud platform security and the hosting services. In addition, although in some 176 
applications this will not be possible, it is important to consider the possibility of introducing the 177 
human factor in the reliability analysis procedure. A human-interactive Hardware-In-the-Loop 178 
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Simulation (HILS) framework for CPS was developed in [32] to support reliability and reusability in 179 
a fully distributed operating environment. 180 

3.1. CPS-based co-simulation framework proposed  181 

Based on the above contributions and considering the initial list of requirements from the 182 
previous section for the deployment of an IoT sensor network, a CPS-based co-simulation framework 183 
is proposed where an IoT sensor network will supply physical data and (local and global) computing 184 
nodes for processing the sensory data. 185 

3.1.1. Conceptual Scheme 186 

In addition, the IoT sensor network has a global or main node composed of a knowledge 187 
database, a Q-learning method for decision-making and an AI-based model library. During the 188 
simulation and the real running, a decision-making module will decide which specific model is the 189 
best in the current instant, taking into account the data received by all nodes that make up the 190 
network. 191 

The functionalities are distributed in different nodes, both virtual and real, according to their 192 
functions. The distributed virtual or real nodes manage the capture of sensory data and run the error 193 
prediction calculation with the required accuracy, while the global or main node incorporates the 194 
runtime model that is generated, the library, and the knowledge database (see Figure 2). 195 

 196 

 197 

Figure 2. General scheme of the CPS-based co-simulation framework with virtual and real computing 198 
nodes and IoT sensor network. 199 

The IoT sensors should be able to establish reliable and accurate wireless communications, 200 
ensuring that all the intrinsic challenges in an IoT network and in the different CPSs can be solved. It 201 
is achieved through the implementation of the architecture that is represented in Figure 2: a network 202 
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of n nodes, each node having n IoT sensors. In addition, the computing nodes must communicate 203 
with each other and with their corresponding global node. 204 

3.1.2. Procedure description 205 

The framework is designed with the condition that both the real and the virtual (local) 206 
computing nodes must operate in parallel with the global computing node [33]. Data exchange 207 
between the different nodes takes place in two different ways. On the one hand, data exchange 208 
between local nodes is produced in both the virtual (3D model simulation tool) and the real scenario. 209 
On the other hand, there is the data exchange between different local nodes and the global node using 210 
the 802.11p wireless communication protocol.  211 

There is therefore interaction between the software for both the simulated and the real 212 
environments, and external applications that are running in the main node. Figure 3 shows the 213 
schematic diagram of the exchange of information or messages within the co-simulation framework. 214 

 215 

 216 

Figure 3. Conceptual flowchart showing the operation of a reliability co-simulation framework with 217 
CPS computing nodes and IoT sensors. 218 

In the particular implementation that is described more accurately in the following section, there 219 
is a wireless exchange of messages between different nodes using the 802.11p communication 220 
protocol in the following way. First, the local nodes with their IoT sensors detect different objects and 221 
their respective properties. Secondly, this information is shared on the network through a broadcast 222 
process. 223 

4. IoT LiDAR-based collaborative mapping – A case study 224 

The IoT sensor network chosen to evaluate the CPS-based co-simulation framework is composed 225 
of virtual and real LiDAR sensors [34]. An Ibeo Lux LiDAR 4-layer sensor was used with the 226 
following specifications: horizontal field of 120 deg, horizontal step of 0.125 deg., vertical field of 3.2 227 
deg., vertical step of 0.8 deg., range of 200 m, and an update frequency of 12.5 Hz. As previously 228 
mentioned, the sensor network to be evaluated is composed of IoT sensors. The sensor network 229 
therefore has IoT capabilities connected to its computing nodes. These nodes are on-board computers 230 
integrated in an autonomous vehicle with a wireless communication interface between them. 231 

The particular implementation of the CPS-based co-simulation framework, the LiDAR-based 232 
collaborative map, is based on a co-simulation framework between two different software systems, 233 
both for the simulated part, designed in [35]. However, the contribution of this study is to include the 234 
real part in the co-simulation framework. This framework consists mainly of a computer-aided 235 
system to enable efficient interaction between the virtual scenario with virtual nodes setting in the 236 
Webots automobile simulation tool 8.6 [36] and an external application development for the 237 
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computing nodes in the real scenario. The scenario in this particular case, in which the vehicles are 238 
represented as nodes, is as follows. A real vehicle (in a real scenario) and three virtual vehicles in the 239 
simulated scenario are detecting obstacles. Both kinds of vehicles share the position, object type and 240 
size of the obstacles (e.g., pedestrian, trees on the road and another vehicle). This is possible thanks 241 
to the IoT LiDAR network using an IoT obstacle detection application (see section 4.1), created in run 242 
time. Figure 4 shows the detailed diagram of the implementation of the LiDAR-based collaborative 243 
map using the CPS-based framework approach. 244 

 245 

 246 

Figure 4. Detailed diagram of the implementation of the LiDAR-based collaborative map approached 247 
through a CPS-based co-simulation framework. 248 

As previously mentioned above, the exchange of information packets between the local nodes 249 
with the main or global node is possible; thanks to the use of a communication protocol using a UDP 250 
(User Datagram Protocol) as the transport layer and a Wi-Fi 802.11p as the physical layer. The 251 
visualization of the co-simulated vehicle (real node) in the 3D virtual scenario in the Webots 252 
simulation tool is also possible. An example of the execution of the co-simulation architecture can be 253 
seen in Figure 5. 254 

 255 

 256 

Figure 5. Data interchange between LiDAR sensors in (virtual and real) driving assistance scenarios 257 
in Webots for automobiles. 258 
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In addition, another application implemented in the IoT LiDAR-based collaborative map is the 259 
LiDAR self-testing methodology incorporated in each local computing node (autonomous vehicle), 260 
in order to evaluate the reliability of each IoT sensor in the network (section 4.2). 261 

4.1 Obstacle detection in the IoT application 262 

This framework is implemented in an external application; a development in Qt 5.10, that 263 
consists of an illustrated map updated in run time (see Figure 6 (a)) and a database with the 264 
information on both the virtual and the real objects that are detected (see Figure (b)). The information 265 
contains the position, object type, and size of the obstacles, to improve on the security/safety of the 266 
object detection process with a single sensor.  267 

 268 

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Collaborative mapping; (b) obstacles detected database; (c) LiDAR data for run-time 269 
accuracy error detection. 270 

Figure 6 depicts the visual interface of the framework that has been developed. Specifically, the 271 
collaborative map is globally updated in the main computing node. A partial area of this updated 272 
map can also be sent at the request of a local node. A set of computational procedures is in charge of 273 
adapting and transferring sensory information from Webots, virtual nodes with the Ibeo Lux sensor 274 
model, and the real node, real vehicles with the real Ibeo Lux sensor; and vice versa. 275 

4.2. LiDAR selft-testing application 276 

The external application also includes a LiDAR data self-testing methodology using the AI-277 
based error-prediction models. Figure 6 (c) shows the graphical interface that represents the 278 
estimated error with regard to time on the left-hand side. However, on the right-hand side the 279 
admissible error threshold is observed, which if exceeded, must be requested to make decisions over 280 
the best performance of each model at any given time. Specifically, the results are focused on showing 281 
the improved performance of the IoT sensor network composed of each CPS element with each 282 
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LiDAR sensor plus added IoT capabilities. To do so, a reliability prediction model dedicated to 283 
obtaining the accuracy error in obstacle detection is incorporated in each computing node. 284 

4.2.1. Reliability prediction models 285 

A reliability model was generated for each IoT LiDAR sensor, both virtual and real, that 286 
predicted the accuracy error for obstacle detection. The steps to follow for the determination of those 287 
models were extracted from the methodology described in [37, 38], with a set of different training 288 
data. In this study, a model-based procedure was used with a point-cloud clustering technique, in 289 
this case Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [39]. In addition, 290 
an error-based prediction model library was described, highlighting AI-based model techniques, 291 
such as, Multilayer Perceptron Neural Network (MLP), k-Nearest Neighbors (k-NN), and Linear 292 
Regression (LR). A difference in the particular implementation described in this paper is that, while 293 
k-NN, MLP and LR were maintained, SVM was added as a new technique to the AI-based library 294 
[40-42]. 295 

4.2.2. Model parametrization and validation 296 

With the aim of determining which model training strategy based on AI provides the best 297 
reliability prediction model, an experimental validation was performed. The training dataset was 298 
composed of 998 scenes for the model training and 250 scenes for the model validation. All of them 299 
were obtained from a simulation procedure. The data input consisted of geospatial statistics [13, 43] 300 
which were extracted from the point cloud supplied by the LiDAR sensor, so that the models could 301 
generate the figures of merit in terms of accuracy error: DRMS and MRSE.  302 

The four AI-based strategies that were considered are as follows. First, a multilayer perceptron 303 
neural network with backpropagation (MLP) with two hidden layers, each with five neurons and 304 
sigmoid activation functions, and an output layer with a lineal activation function, two neurons, and 305 
5000 epochs. The initial value of the learning rate (μ) was 10-3 with a decrease factor ratio of 10-1, an 306 
increase factor ratio of 10, and a maximum μ value of 1010. The minimum performance gradient was 307 
10-7. The training process stop criteria were as follows: the maximum number of epochs (repetitions); 308 

goal performance minimization; the performance gradient below a minimum gradient; or, a  value 309 
in excess of the maximum value. The second modeling technique was k-nearest neighbors (k-NN), 310 
with k = 5 and using Euclidean distance as the distance function. The third was a lineal regression 311 
that was also obtained by minimizing the sum of squared differences between the predicted and the 312 
observed values. Finally, a support vector machine model was fitted by means of data 313 
standardization and the radial basis function kernel. 314 

4.2.3. Self-learning-based decision-making. Q-learning algorithm 315 

The global or main computing node executes several parallel procedures in a specific self-316 
learning module that uses a Q-learning algorithm. On the one hand, a dataset for training by default 317 
is present in the global node. On the other hand, a knowledge database (warehouse) is also included, 318 
which can be updated in run time with the data provided by each local node. It sets up the self-319 
learning strategy that is run, in order to analyze the best model behavior, when new traffic situations 320 
are generated providing new point clouds (environment information).  321 

The local node, also in parallel, simulates the reliability model and when an error is admissible 322 
the threshold will exceed 20% in one the figures of merits (DRMS or MRSE), which will mean that 323 
the current model is failing. A request is therefore made to the global module to establish whether 324 
there is a model that is working better. The decision to select the best prediction model included in 325 
the library is taken by the self-learning decision-making at each instant, according to the 326 
generalization capability and the accuracy of the model. The particular performance metrics for each 327 
are R2 and RAE, respectively. In summary, based on this continuous information flow and the 328 
previous prediction results (knowledge database), when a request from one of the local nodes is 329 
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received and a new best model behavior is detected, the current error prediction model is then 330 
commuted, between MLP and k-NN, and vice versa. 331 

 332 

 333 
Figure 9. Flow diagram between the global node (self-learning module), IoT network, and local 334 

nodes (actual failure detection model). 335 

5. Experimental results 336 

5.1. Reliability model-based validation 337 

Table 1. Key performance indices based on plane (DMRS) & space (MRSE) figure of merits. 338 

Model 
MAE RMSE RAE RRSE R2 

DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE 

MLP 0.0046 0.0035 1.275 1.270 0.187 0.188 0.395 0.392 0.933 0.933 

kNN 0.002 0.0002 1.014 1.010 0.114 0.114 0.371 0.365 0.963 0.961 

LR 0.6781 0.6530 2.305 2.285 0.701 0.695 0.782 0.788 0.434 0.435 

SVM 0.4735 0.4740 2.072 2.065 0.442 0.447 0.773 0.773 0.692 0.684 

 339 
Table 1 shows the evaluation results obtained during the initial validation of each reliability 340 

model. Five error-based performance indices and two classification criteria were considered in the 341 
validation process: Mean Absolute Error (MAE); Root Mean Squared Error (RMSE); Relative 342 
Absolute Error (RAE); Root Relative Squared Error (RRSE); and, the coefficient of determination (R2). 343 
Only, the models generated with k-NN and MLP returned R2 results higher than 90%. 344 

 345 
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(a) 

 
(b) 

Figure 7. Behavior representation of LiDAR error on the plane for each model with regard to the 346 
validation data. 347 

Figure 7 illustrates the behavior representation of the LiDAR error on the plane (DRMS) for each 348 
model (MLP, LN, KNN and SVM) with regard to the validation data. The AI-based modeling 349 
techniques that showed the best performing were MLP and KNN, according to the comparative study 350 
of the four modelling strategies, with a percentage improved performance comparable to the other 351 
two models of around 30%. Those model types will be chosen for the validation of the decision-352 
making module. 353 

5.1. Self-learning for decision-making evaluation 354 

Finally, a simulation in order to determine the quality of the Q-learning method in the automatic 355 
selection of the best prediction model was performed. The reward function is chosen for setting the 356 
best possible Q-value in 100 different scenes. Therefore, the function to update the Q-values is [44]: 357 

 358 

( ) ( ) ( )1 1 1,    ,  ( ,  )( max , ( ,  ))t t t t t t t t t t t t t t t
a A

Q s a Q s a s a R Q s a Q s a + + +


= + + −  (2) 

where, st is the state in time t; at is the action taken in time t; R(t+1) is the reward received after 359 
performing action at; t is the learning rate; and,  is the discount factor which trades off the 360 
importance of sooner-versus-later rewards. Table 2 lists the error reward matrix based on knowledge 361 
of the behavior of those prediction models.  362 

 363 
Table 2. Q-learning reward matrix for error admissible threshold. 364 

R2 
RAE 

0 – 10% 10 -20% 20 – 40% 40 – 70% > 70% 

90 – 100% 1 0.9 0.8 0.5 0.2 

80 – 90% 0.85 0.8 0.65 0.4 0.15 

70 – 80% 0.7 0.6 0.5 0.3 0.1 

30 – 60% 0.5 0.4 0.3 0.2 0.05 

0 – 30% 0.3 0.2 0.15 0.1 0.01 

 365 
 366 
The decision-making was based on two of the main performance indexes of model quality. First, 367 

the coefficient of determination (R2) was taken into consideration, as it provides a measure of the 368 
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generalization capacity of the model. The Relative Absolute Error (RAE), which is a measure of model 369 
accuracy, was the second parameter. 370 

Figure 9 shows the Q-learning classification error matrix. As previously shown, the best model 371 
had a RAE between 0 and 20% and a R2 above 80% in 61% of the scenarios. The system was able to 372 
guarantee models with a greater capability of generalization in 71% of the scenarios, based on a 373 
coefficient of determination that was over 80%. In total, reliability can be predicted with an RAE of 374 
less than 40% and an R2 of over 70% in 90% of the scenarios, which demonstrates the quality of the 375 
models. The models presented a low generalization, with a coefficient of determination of less than 376 
70% in only 9% of the scenarios and a RAE greater than 40% in only 1%. Therefore, the Q-learning 377 
method that evaluates reliability on the basis of the prediction error model at each instant worked 378 
appropriately when determining the best model that represented the LiDAR performance to a high 379 
degree of accuracy and that guaranteed the required levels of safety and reliability for automotive 380 
applications. 381 

 382 

 383 

Figure 9. Q-learning classification error matrix. 384 

5. Conclusions 385 

A method and an accompanying procedure have been presented in this paper for evaluating the 386 
reliability of IoT sensors in a CPS. A co-simulation platform has been designed for that purpose where 387 
virtual and real sensors can interact during run time through different simulations under appropriate 388 
safety conditions. The co-simulation framework was composed of distributed computing nodes 389 
within an IoT network, at both global and local levels.  390 

A case study that consists of a LiDAR-based collaborative map has been proposed, in order to 391 
validate the CPS-based co-simulation framework. Real and virtual computing nodes with the 392 
corresponding sensors shared the position, object type, and size of the obstacles, to improve the 393 
security and safety of the autonomous driving when detecting objects with this framework in run 394 
time. The assessment of the proposed method was divided into two parallel procedures. First, at local 395 
level, each reliability model evaluated the condition of the IoT LiDAR sensor. Secondly, at a global 396 
level, a self-learning strategy for decision-making determined the most appropriate behavior of 397 
models in the reliability model library, also in run time. The Q-learning method was selected for this 398 
unsupervised self-learning strategy.  399 

The comparative study of four strategies (MLP. SVM, k-NN and linear regression) in the 400 
reliability modelling library was then performed. In summary, the MLP and the k-NN methods 401 
outperformed the other two strategies considered in this study. Based on the previous results, a final 402 
experimental evaluation was presented, in order to determine the quality of the Q-learning method 403 
for automatically selecting the best reliability model. A Q-learning method evaluated the reliability 404 
models, in order to perform the analysis, in a simulation study with 100 different scenarios. Based on 405 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2019                   doi:10.20944/preprints201907.0311.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 2252; doi:10.3390/rs11192252

https://doi.org/10.20944/preprints201907.0311.v1
https://doi.org/10.3390/rs11192252


 13 of 16 

 

this procedure and the prediction results of the Q-learning method, when a request from one of the 406 
local nodes is received, a new model behavior is detected, and the current error prediction model is 407 
then commuted. Overall, all the reliability models performed very well, according to their 408 
generalization capability. 409 

Therefore, the proposed CPS-based co-simulation framework has served to assess the 410 
performance of the IoT LiDAR network very accurately, guaranteeing safety and reliability in this 411 
autonomous driving case study. These promising results pave the way for future work that will 412 
validate the proposed method under real autonomous driving conditions. 413 
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