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Abstract: Black hole collision produce gravitational radiation which is generally thought in a quantum
limit to be gravitons. The stretched horizon of a black hole contains quantum information, or a form
of quantum hair, which in a coalescence of black holes participates in the generation of gravitons. This
may be facilitated with a Bohr-like approach to black hole (BH) quantum physics with quasi-normal
mode (QNM) approach to BH quantum mechanics. Quantum gravity and quantum hair on event
horizons is excited to higher energy in BH coalescence. The near horizon condition for two BHs right
before collision is a deformed AdS spacetime. These excited states of BH quantum hair then relax
with the production of gravitons. This is then argued to define RT entropy given by quantum hair on
the horizons. These qubits of information from a BH coalescence should then appear in gravitational
wave (GW) data. This is a form of the standard AdS/CFT correspondence and the Ryu-Takayanagi
(RT) formula[1]. The foundations of physics is proposed to be quantum information and a duality
between spacetime observables and quantum fields.

Keywords: quantum information; quantum hair; black hole quantum physics; quantum
levels; AdS/CF T correspondence; Ryu-Takayanagi formula

1. Introduction

Quantum gravitation suffers primarily from an experimental problem. It is common to read
critiques that it has gone off into mathematical fantasies, but the real problem is the scale at which
such putative physics holds. It is not hard to see that an accelerator with current technology would
be a ring encompassing the Milky Way galaxy. Even if we were to use laser physics to accelerate
particles the energy of the fields proportional to the frequency could potentially reduce this by a factor
of about 10° so a Planck mass accelerator would be far smaller; it would encompass the solar system
including the Oort cloud out to at least .1 light years. It is also easy to see that a proton-proton collision
that produces a quantum BH of a few Planck masses would decay into around a mole of daughter
particles. The detection and track finding work would be daunting. Such experiments are from a
practical perspective nearly impossible. This is independent of whether one is working with string
theory or loop variables and related models.

It is then best to let nature do the heavy lifting for us. Gravitation is a field with a coupling that
scales with the square of mass-energy. Gravitation is only a strong field when lots of mass-energy
is concentrated in a small region, such as a BH. The area of the horizon is a measure of maximum
entropy any quantity of mass-energy may posses, and the change in horizon area with lower and
upper bounds in BH thermodynamic a range for gravitational wave production. Gravitational waves
produced in BH coalescence contains information concerning the BHs configuration, which it is argued
includes quantum hair on the horizons. This information will then appear as gravitational memory,
which is found when test masses are not restored to their initial configuration. This information may
be used to find data on quantum gravitation.

There are three main systems in physics, quantum mechanics (QM), statistical mechanics and
general relativity (GR) along with gauge theory. These three systems connect with each other in certain
ways. There is quantum statistical mechanics in the theory of phase transitions, BH thermodynamics
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connects GR with statistical mechanics, and Hawking-Unruh radiation connects QM to GR as well.
These are connections, but are incomplete and there has yet to be any general unification or reduction
of degrees of freedom. Unification of QM with GR appeared to work well with holography, but now
faces an obstruction called the firewall[2].

Hawking radiation is often thought of as positive and negative energy entangled states where
positive energy escapes and negative energy enters the BH. The state which enters the BH effectively
removes mass from the same BH and increases the entanglement entropy of the BH through its
entanglement with the escaping state. This continues but this entanglement entropy is limited by
the Bekenstein bound. In addition later emitted bosons are entangled with both the black hole and
previously emitted bosons. This means a bipartite entanglement is transformed into a tripartite
entangled state. This is not a unitary process. This will occur once the BH is at about half its mass at
the Page time [3], and it appears the unitary principle (UP) is violated. In order to avoid a violation
of UP the equivalence principle (EP) is assumed to be violated with the imposition of a firewall. The
unification of QM and GR is still not complete. An elementary approach to unitarity of black holes
prior to the Page time is with a Bohr-like approach to BH quantum physics, [4-6], which will be shortly
discussed in next section.

Quantum gravity hair on BHs may be revealed in the collision of two BHs. This quantum gravity
hair on horizons will present itself as gravitational memory in a GW. This is presented according to the
near horizon condition on Reissnor-Nordstrom BHs, which is AdS, x S2, which leads to conformal
structures and complementarity principle between GR and QM.

2. Bohr-like approach to black hole quantum physics

At the present time, there is a large agreement, among researchers in quantum gravity, that
BHs should be highly excited states representing the fundamental bricks of the yet unknown theory
of quantum gravitation [4-6]. This is parallel to quantum mechanics of atoms. In the 1920s the
founding fathers of quantum mechanics considered atoms as being the fundamental bricks of their
new theory. The analogy permits one to argue that BHs could have a discrete mass spectrum [4-6].
In fact, by assuming the BH should be the nucleus the “gravitational atom”, then, a quite natural
question is: What are the electrons? In a recent approach, which involves various papers (see [4—6]
and references within), this important question obtained an intriguing answer. The BH quasi-normal
modes (QNMs) (i.e. the horizon’s oscillations in a semi-classical approach) triggered by captures of
external particles and by emissions of Hawking quanta, represent the electrons of the BH which is
seen as being a gravitational hydrogen atom [4—6]. In [4-0] it has been indeed shown that, in the the
semi-classical approximation, the evaporating Schwarzschild BH can be considered as the gravitational
analogous of the historical, semi-classical hydrogen atom, introduced by Niels Bohr in 1913 [7,8] and
awarded with the Nobel Prize in Physics. The analysis in [4-6] starts from the non-thermal spectrum
of Hawking radiation in [9]. In fact, such a non-thermal spectrum implies the countable character
of subsequent emissions of Hawking quanta [4-6]. Those emitted quanta generate a natural and
important correspondence between Hawking radiation and the BH QNMs [4-6]. Thus, BH QNMs are
interpreted as the BH electron-like states, which can jump from a quantum level to another one. One
can also identify the energy shells of this gravitational hydrogen atom as the absolute values of the
quasi-normal frequencies [4-6].

Within the approximation of this Bohr-like model unitarity holds in BH evaporation. This is
because the time evolution of the Bohr-like BH is governed by a time-dependent Schrodinger equation
[5,6]. In addition, subsequent emissions of Hawking quanta are entangled with the QNMs (the BH
electron states) [5,6]. Various results of BH quantum physics are consistent with the results of [5,6],
starting from the famous result of Bekenstein on the area quantization [10]. Recently, this Bohr-like
approach to BH quantum physics has been also generalized to the Large AdS BHs, see [11]. For the

sake of simplicity, in this Section we will use Planck units (G =c =kp =T = 47360 = 1). For large
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values of the principal quantum number 7 (i.e. for excited BHs), the energy levels of the Schwarzschild
BH are [4-6]

n
Ey = |wy| =M— MZ_E' 1

where M is the initial BH mass. E; is the total energy emitted by the BH when the same BH is excited
at the level n [4-6] in units of Planck mass, where M, = 1. A discrete amount of energy is radiated by
the BH in a quantum jump. A key point is that, for large values of 7, the process does not depend on the
other quantum numbers. This issue is surely consistent with Bohr’s Correspondence Principle [12]. In
fact, the Correspondence Principle states that transition frequencies at large quantum numbers should
equal classical oscillation frequencies [12]. In the analysis of Bohr [7,8], electrons can only lose and
gain energy during quantum jumps among various allowed energy shells. In each jump, the hydrogen
atom can absorb or emit radiation and the energy difference between the two involved quantum levels
is given by the Planck relation (in standard units) E = hv. In the BH case, the BH QNMs can gain or
lose energy by quantum jumps from one allowed energy shell to another by absorbing or emitting
radiation (Hawking quanta). The energy difference between the two quantum levels results [4-6]

AE?I]*}le = Enz - ETl] = Mn] - an =

= m2-g - /2o,

This equation governs the energy transition between two generic, allowed levels 17 and 1, > 17 and
consists in the emission of a particle with a frequency AE;, _y, [4-6]. The quantity M, in Eq. (2),
represents the residual mass of the BH which is now excited at the level n. It is exactly the original BH
mass minus the total energy emitted when the BH is excited at the level n [5,6]. Then, M;, = M — E,,,

@

and one sees that the energy transition between the two generic allowed levels depends only on the
two different values of the BH principal quantum number and on the initial BH mass [4-6]. If one
considers the case of an absorption instead, one uses the equation [4-6]

AEy,—n = Eny —Epy = My, — My, =
3)

_ \/M2 —n_ \/Mz — M = —AEu .

We also recall the following intriguing remark which finalizes the analogy between the current BH
analysis and Bohr’s hydrogen atom. The interpretation of Eq. (1) is of a particle, that is, the electron of
the gravitational atom, which is quantized on a circle of length [4-6]

L—4n(M+,/M2—’21>. 4)

Hence, one really finds the analogous of the electron traveling in circular orbits around the nucleus in
Bohr’s hydrogen atom. One sees that it is also

— 2_1
M, = /M 7 5)

4

Thus the uncertainty in a clock measuring a time t becomes, with the Planck mass is equal to 1 in
planck units,

- = = ’ (6)
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which means that the accuracy of the clock required to record physics at the horizon depends on the
BH excited state, which corresponds to the number of Planck masses it has.

Finally, for the sake of completeness and clarity, we stress the following for what concerns the
coordinates used in this Section. The main point concerns time. Recall time must be considered a
parameter in quantum mechanics instead of a quantum mechanical operator. In particular, time is not a
quantum observable. In other words, in quantum mechanics it is not possible to define a time operator
in the same way that we do, for example for the position operator and for the momentum operator. In
fact, within the framework of quantum mechanics there is no room for a symmetric analysis for both
time and position, even if, from an historical point of view, quantum mechanics has been developed
by De Broglie and Schroedinger following the idea of a covariant analogy between time and energy on
one hand and position and momentum on the other hand. This discussion works from the quantum
mechanical point of view of the analysis. But, in the current analysis, we have to discuss about time
also from the point of view of general relativity. As we the analysis in this Section arises from Hawking
radiation as tunnelling in the framework [9], we recall that in such work the Painlev and Gullstrand
coordinates for the Schwarzschild geometry have been used. On the other hand, the radial an time
coordinates are the same in both the Painlev and Gullstrand and Schwarzschild line elements.

3. Near Horizon Spacetime and Collision of Black Holes

The quantum basis of black holes may be detected in gravitational radiation. Signatures of
quantum modes may exist in gravitational radiation. Gravitational memory or BMS symmetries
are one way in which quantum hair associated with a black hole may be detected. Conservation of
quantum information suggests that quantum states on the horizon may be emitted or entangled with
gravitational radiation and its quantum numbers and information. In what follows a toy model is
presented where a black hole coalescence excites quantum hair on the stretched horizon in the events
leading up to the merger of the two horizons. The model is the Poincare disk for spatial surface in
time. To motivate this we look at the near horizon condition for a near extremal black hole.

The Reissnor-Nordstrom (RN) metric is

2 2\ —1
a? = —(1-20 e+ (1-22 L ) a2 4 02,
r 7’2 r 7’2

Here Q is an electric or Yang-Mills charge and m is the BH mass. In previous section, considering the
Schwarzschild BH, we labeled the BH mass as M instead. The accelerated observer near the horizon
has a constant radial distance.

For the sake of completeness, we recall that the Bohr-like approach to BH quantum physics has
been also partially developed for the Reissnor-Nordstrom black hole (RNBH) in [13]. In that case,
the expression of the energy levels of the RNBH is a bit more complicated than the expression of the
energy levels of the Schwarzschild BH, being given by (in Planck units and for small values of Q) [13]

2
n:m\/m2+"2Qq’;, )

where g is the total charge that has been loss by the BH excited at the level n.

Now consider
dr

= rd o= '
P /r+ r/8rr /r+ V1 = 2m/r + Q2/r?

with lower integration limit r is some small distance from the horizon and the upper limit r removed
from the black hole. The result is

o = mlog[\/r2 — 2mr + Q% +r — m] + \/r2—2mr+Q2r
T+
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:mlog[\/r2—2mr+Q2+r—m]—1—7@—1\.

Here A is a large number evaluated within an infinitesimal distance from the horizon. One writes the
metric at this position as

2 _ 2m Q? 2 2 2142
ds® = (1r(p)+ r(p)2>dt — dp® — r(p)°dQ”.

With the near horizon condition set 2 — 2mr + Q? ~ 0, so that
p~mlog(r — m) + r\/gu — A.

Since m > Q the divergence of the log cancels the arbitrarily large A

P o
s =~ \/8itt-

Now, one writes the metric as

i — g o _ wac?
= = 0 m
.

+
We observe that dp?> = dr?/g¢?% and replace in p/m for gy for the extremal conditionr; = m + ¢,
obtaining
2
2 _ (P 2.0 _(m 2 212 _
ds® = (m) dt (p) dr r°dQ)* forp =r. 8)

The divergence from the above integration and that due to deviation from the extremal condition

means p/r = /g1 + w for w the subtraction between two divergent quantities. This means there

is a term w?d#? that we can absorbed into ds?>. However since r = (m/p)p the metricin t, p, 6, ¢

coordinates is )

ds? = (£>2dt2 — (m) dp2 — m?dQ?, 9)
m P

107 This is the metric for AdS, x S? for AdS; in the (¢, p) variables tensored with a two-sphere S? of
1s constant radius = m in the angular variables at every point of AdSy. This metric was derived by
19 Carroll, Johnson and Randall[14]. Generalizing this for a nonconstant radius of S? leads to the AdS,
1o metric.
11 Then a near horizon condition for a near extremal black hole is ds> = ds*(AdSy) + dt2. The dt?
1z is then a residual term left over from log(r — m) and —A. An accelerated frame may be chosen so
us  these terms cancel each other or are not a significant contribution. This means the accelerated observer
us  Wwitnesses an AdSy spacetime that is relatively unstable with respect to tuning of the acceleration
us parameter ¢ = c?/(r — m) and the nearness to extremal condition e = /m2 — Q2. Ifg ~ 1/e
us then the AdS, spacetime is relatively stable. Stability is insured then on the stretched horizon of the
uz extremal black hole. The deviation from extremal condition means the black hole will emit Hawking
us radiation, which translates into meaning the accelerated observer will witness positive energy radiation
e emerge from the negative vacuum energy of the AdS, as the vacuum becomes more negative. The
120 metric clearly has the mass of the black hole m serving as the radius of curvature for the AdS; or
121 generally AdS, and the emission of Hawking radiation with m — m — dm means the radius of
122 curvature decreases and the Ricci curvature 1/m? increases.

The accelerated observer witnesses a spacetime with a negative average curvature, which emits an
abundance of radiation. This is from the quantum hair on the horizon, which is designated in the RN
metric by the charge Q. This information is held close to the event horizon if the Yang-Mills (YM) field
is confined such as quantum chromodynamics (QCD). This is in the extreme UV limit accessed by the
accelerated observe close enough to witness this as high temperature radiation. This GW information
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produced by BH collisions will reach the outside world highly red shifted by the tortoise coordinate
r* =+ —r — 2miIn|1 — 2m/r|. For a 30 solar mass BH, which is mass of some of the BHs which
produce gravitational waves detected by LIGO, the frequency of this ripple, as measured from the
horizonto ér ~ A

of = A = 2mln <A> ~ 2 x 10%m.
2m

A ripple in spacetime originating an atomic distance 107'°m from the horizon givesa v = 150Hz
signal, detectable by LIGO[15]. Similarly, a ripple 10713 to 10717 cm from the horizon will give a
10~ 'Hz signal detectable by the eLISA interferometer system[18]. Thus, quantum hair associated with
QCD and electroweak interactions that produce GWs could be detected. More exact calculations are
obviously required.

Following [16], one can use Hawking’s periodicity argument from the RN metric in order to obtain
an "effective" RN metric which takes into account the BH dynamical geometry due to the subsequent
emissions of Hawking quanta as

-1
ds? = — <1 Gt ) Q;q> ar + (1 Ut ) (Q_zq}2> dr® + rd0?,
r r r r
(10)
which permits to write a dynamical expression for the frequency of the ripple as
o' = A —2m—E,In (A) (11)
2(m—Ey)

These weak gravitons produced by BH hair would manifest themselves in gravitational memory.
The Bondi-Metzner-Sachs (BMS) symmetry of gravitational radiation results in the displacement of
test masses[19]. This displacement requires an interferometer with free floating mirrors, such as what
will be available with the eLISA system. The BMS symmetry is a record of YM charges or potentials
on the horizon converted into gravitational information. The BMS metric provide phenomenology
for YM gauge fields, entanglements of states on horizons and gravitational radiation. The physics is
correspondence between YM gauge fields and gravitation. The BHs coalescence is a process which
converts qubits on the BHs horizons into gravitons.

Two BHs close to coalescence define a region between their horizons with a vacuum similar to
that in a Casimir experiment. The two horizons have quantum hair that forms a type of holographic
"charge" that performs work on spacetime as the region contracts. The quantum hair on the stretched
horizon is raised into excited states. The AdS; is mapped into the corresponding AdSs. Thus, the
spatial region is a Poincare disk with the same SL(2,R) symmetry. The manifold with genus g for
charges has Euler characteristic y = 2¢ — 2 and with the 3 dimensions of SL(2, R) this is the index
69 — 6 for Teichmuller space[19]. The SL(2, R) is the symmetry of the spatial region with local charges
modeled as a U(1) field theory on an AdSs. The Poincare disk is then transformed into Hf, thatis a
strip. The H%, C AdS3 is simply a Poincare disk in complex variables then mapped into a strip with
two boundaries that define the region between the two event horizons.

4. AdS geometry in BH Coalescence

The near horizon condition for a near extremal black hole approximates an anti-de Sitter spacetime.
In general this is AdS,. In [14] the extremal blackhole replaces the spacelike region in (r4, r—) with
AdSy x S?. The result above suggests an accelerated observer on the stretched horizon of a near
extremal black hole with r, — r_ ~ [, witnesses a near AdS, spacetime. This AdS, is however
perturbed, as seen with the above 1/e — A cancellation, and so is not zero temperature and thus
generates radiation. In a perfect balance the acceleration of the observers isby T ~ g zero, the black
hole emits no Hawking radiation and the spacetime observed is AdSy.
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Now reduce the dimensions and consider AdSs in 2 plus 1 spacetime. The near horizon condition
for a near extremal black hole in 4 dimensions is considered for the BTZ black hole. This AdSj
spacetime is then a foliations of hyperbolic spatial surfaces in time. These surfaces under conformal
mapping are a Poincare disk. The motion of a particle on this disk are arcs that reach the conformal
boundary ast — oc. This is then the spatial region we consider the dynamics of a quantum particle.
This particle we start out treating as a Dirac particle, but the spinor field we then largely ignore by
taking the square of the Dirac equation to get a Klein-Gordon wave.

Define the z and Z of the Poincare disk with the metric

dzdz
2 _ p2 = _ p2
dsy,_gisk = R°gzzdzdz = R 1 -
with constant negative Gaussian curvature R = —4/ R?. This metric Sz = R%/ (1 — zz) is invariant

under the SL(2, R) ~ SU(1, 1) group action, which, for ¢ € SU(1, 1), takes the form

z—)gz:az+bg:< ﬁ). (12)

bz + a’
The Dirac equation iy*Dyp + myp = 0,D, = 9y + iAy, on the Poincare disk has the Hamiltonian

(Sl RSY
foy

matrix
m Hy
H = . (13)
( Hw —m )
for the Weyl Hamiltonians
Hy = —a <2D + Yo an -))
w \/g; z z 592 8zz) |,
N 1 1
Hw = Kz ZDZ_ + 782(171 gZZ) 7
2z 2

with D, = 9d; + iA;and D; = 9; + iAz. here a; and &, are the 2 x 2 Weyl matrices.
Now consider gauge fields, in this case magnetic fields, in the disk. These magnetic fields are
topological in the sense of the Dirac monopole with vanishing Ahranov-Bohm phase. The vector

potential for this field is
AP = _if (dz — dZ)

the magnetic field is evaluated as a line integral around the solenoid opening, which is zero, but the
Stokes’ rule indicates this field will be ¢(z — z) /72, for > = Zz. A constant magnetic field dependent

upon the volume V = %dz A dz in the space with constant Gaussian curvature R = —4/ R?
AY — l_BRz zdz — _Zdz .
4 1 — zz

The Weyl Hamiltonians are then

— 2 . ]
szl rele<ucz(8,—;89— €(€+1)+¢+i kr ))

r 1 — 72

2 : AT
Hy = L re19<az(ar—;ag+ W+ +¢  ; k )) (14)

r 1 — 72
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for k = BR?/4. With the approximation that ¥ << 1 or small orbits the product gives the
Klein-Gordon equation

7y = R? (a% R rlz) Lk AR (06 +1) + ¢2)k>.

For (({ + 1) + ¢*> = O this gives the Weber equation with parabolic cylinder functions
for solutions. The last term (£(¢ + 1) + ¢*)k can be absorbed into the constant phase
Pt = p(r)e VB HUEED 92,

This dynamics for a particle in a Poincare disk is used to model the same dynamics for a particle
in a region bounded by the event horizons of a black hole. With AdS black hole correspondence the
field content of the AdS boundary is the same as the horizon of a black hole. An elementary way to
accomplish this is to map the Poincare disk into a strip. The boundaries of the strip then play the
role of the event horizons. The fields of interest between the horizons are assumed to have orbits or
dynamics not close to the horizons. The maps isz = tanh(&). The Klein-Gordon equation is then

00+ 1) + ¢?

*p = R? ((1 + 28%)0:0; + e

- k|€|2> ¥, (15)

where the &2 is set to zero under this approximation. The Klein-Gordon equation is identical to the
above.

hair image.PNG

,/ ¥,
| /

I
/ / \ [
VAT 5
F—y / a____;_-_.ﬁ. |
. 3 Y 0 25 30 !
1 e |
. 14 a2 o L ) 14 % g 5
Solution of the form = & H (x") given by parabolic cylinder Laguerre wave function = & L") for hydrogen
function for n=1, 2, .. 4 represented as a Hermite polynomial atomic-like states forn=1,2, 3,4 .

These are the wave fanction components contributed by the parabolic cylinder functions,
or Hermite polynomials and the Laguerre polynomials. These depend on x™= kE“sothe

wave function 1s radial. These are not normalized.

The solution to this differential equation for ® = ¢(¢ + 1) + ¢?is

p = (25)1/4(\/1 — 4P + 1,3k

2R2 1
[clu (i <E kR + V1 - 49 + 1) , %(\/1 4D + 1), ng> + C2L§27:R§ 1@1,@("52)] .

The first of these is the confluent hypergeometric function of the second kind. For & = 0 this reduces
to the parabolic cylinder function. The second term is the associated Laguerre polynomial. The wave
determined by the parabolic cylinder function and the radial hydrogen-like function have eigenmodes
of the form in the diagram above.

The parabolic cylinder function D, = 2"/ 20-x*/4H, (x/+/2) with integer n gives the Hermite
polynomial. The recursion formula then gives the modes for the quantum harmonic oscillator. The
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generalized Laguerre polynomial Lie_*ﬁl_l(r) of degree n — ¢ — 1 gives the radial solutions to the
hydrogen atom. The associated Laguerre polynomial with general non-integer indices has degree
associated with angular momentum and the magnetic fields. This means a part of this function is
similar to the quantum harmonic oscillator and the hydrogen atom. The two parts in a general solution
have amplitudes c; and ¢, and quantum states in between the close horizons of coalescing black holes
are then in some superposition of these types of quantum states.

To transition from the BTZ black hole to the 4-spacetime black hole we think of the AdS, x S?
restricted as well to AdS, x P, for P a 1-dimensional principal bundle for a U(1) gauge field. This
gauge action is a lift on the AdS, a 3 dimensional total space. If we take the circle group U(1) and map
it to R! with SO(2) = R'/Z, then the R as the internal space constructs a hyperbolic 2-space that is
the Poincare disk foliated in time. This spacetime is AdSs3.

We introduce a gauge field into the AdS; with the introduction of an additional dimension. The
total metric is

dsy = ds*(AdSy) — (dy + Audxt)?,

for xX = tand x! = x and the AdS, metric is
ds2(AdS,) = (l)zdtz _(RY 42
R T '

For a static monopole field we have Aydx# = (R/r)dt. Thedy = V,ydx". This defines the gauge
space of the field. We then have with the introduction of a gauge field extended this into one additional
dimension. With the replacement t = rt/Randy’ = y + Rt/r this metric is

ds* = dt’” — dy”.

On this two dimensional space there are the generators of motion idy and id,,, which are defined
according to their respective differential forms dt', dy’. This is extended into AdS; with ¥’ = r%/R.
This Hamiltonian .
H = §|7'[|2 - ;%, T = —1i0,

which contains the monopole field, describes the motion of a gauge particle in the hyperbolic space.
In addition there is a contribution from the constant magnetic field U = — kr? /2. Now convert this
theory to a scalar field theory withr — ¢ and m = —id,¢. Finally introduce the dilaton operator D
and the scalar theory consists of the operators

_ L0 _ 8 _ ¢> 5 _ 1
where Hy + U is the field theoretic form of the potential in equation16. These potentials then lead to
the algebra

(¢ + 79),

|

[Ho, U] = —2iD.[Hy, D] = —iHy, [U, D] = iM.

This may be written in a more compact form with Ly = 271/2(Hy + U), which is the total Hamiltonian,
and Ly = 27Y2(U — Hy + iD). This leaves the SL(2, R) algebra

[Lo, L+] = +iLo, [Ly, L-] = Lo. (16)

This is the standard algebra ~ su(2).

Given the presence of the dilaton operator this indicates conformal structure. The space and time
scale as (t, x) — A(t, x) and the field transforms as ¢ — A%¢. The measure of the integral d*x,/g is
invariant, where A = 0x’/dx gives the Jacobian | = det| %—’i| that cancels the /g and the measure is
independent of scale. In doing this we are anticipating this theory in four dimensions. We then simply
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have the scaling ¢ — A~!¢ and m — 7, . For the potential term —g/2¢? invariance of the action

requires ¢ — A~2¢and forU = — k%z clearly k — AZk. This means we can consider this theory for
2 space plus 1 time and its gauge-like group SL(2, R) as one part of an SL(2, C) ~ SL(2, R)2.

The differential equation number 15 is a modified form of the Weber equation
Pyx — (}Ixz + ¢) = =0 The solution in Abramowit and Stegun are parabolic cylinder functions
D_,_1/2(x), written according to hypergeometric functions. The ¢! part of the differential equation
contributes the Laguerre polynomial solution. If we let { = e* and expand to quadratic powers we
then have the potential in the variable x.

Vix) = (g + k(1 + 2x?) + 2(k — g)x

The Schrodinger equation for this potential with a a stationary phase in time has the parabolic cylinder
function solution

B+ 4ax + oD i(B+4ax)
V2(20)3/4 2 % V2(20)3/4 )

P(x) = 1D g2 yainy3/2)
16v/243/2
wherea = ¢ + kand =k — g
The field theory form of this will also have parabolic cylinder function solutions. The field theory
with the field expanded as ¢ = eX is expanded around unityso ¢ ~1 + x + % X?. A constant C
such that Cy is unitless is assumed or implied. The Lagrangian for this theory is

1 1
L = anxa“x + a + Eyzxz + 2Bux.

The constant y, standing for mass and absorbing «, is written for dimensional purposes. We then
consider the path integral Z = D[x]e~"*~*/. Consider the functional differentials acting on the path

integral
) no . __./dS
<(p + m )5] 2iB)Z = —i 5]

where d,x = pux. The Dyson-Schwinger theorem tells us that <§—)S(> = (J) mean we have a
polynomial expression (3(p?> + m?)x —ip — J) = 0, where we can trivially let ] — i — J.
This does not lead to parabolic cylinder functions. There has been a disconnect between the ordinary
quantum mechanical theory and the QFT. We may however, continue the expansion to quartic terms.
This will also mean there is a cubic term, we may impose that only the real functional variation terms
contribute and so only even power of the field define the Lagrangian

1 1 1
L= S0uxd"x + o + Eyzxz + ZAX4’

where %zx — %/\. The functional derivatives are then

N &N, /S
(<P +’”’”af“m)z— _<5x>

This cubic form has three parabolic cylinder solutions. We may think of this as ap + bp> = Jandisa
cubic equation for the source | that is annulled at three points. The correspond to distinct solutions
with distinct paths. These three solutions correspond to three contours and define three distinct vacua.
The over all action is a quartic function, which will have three distinct vacua, where one of these is the
low energy physical vacua. It is worth noting this transformation of the problem has converted it into
a system similar to the Higgs field.
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This system with both harmonic oscillator and a Coulomb potentials is conformal and it
maps into a system with parabolic cylinder functions solutions. In effect there is a transformation
harmonic oscillator states <+ hydrogen — like states. The three solutions would correspond to the
continuance of conformal symmetry, but where the low energy vacuum for one of these may not
appear to be conformally invariant.

This scale transformation above is easily seen to be the conformal transformation with A = Q.
The scalar tensor theory of gravity for coupling constant x = 167tG

g 1 1
Slg, ¢ = /d4x\/§ <KR + angba”qb + V(4>)>. 17)
This then has the conformal transformations
Suw = Dgu, ¢ = Q7'p, O =1 + x¢”.

with the transformed action
1 1 1
Slg’, ¢'] = / dtx /¢ <KR’ + Eg’P“’a;44>’aV4>’ + V(¢') + 12R4>’2). (18)

There is then a hidden SO(3, 1) ~ SL(2, C) symmetry. Given an internal index on the scalar field
¢' there is a linear SO(n) transformation d¢' = Cijkqujéfk for 7 a parameter. There is also a nonlinear
transformation from equation 19 as 6¢' = (1 + x¢?)/2xdx’ for x' a parameterization. In the primed
coordinates the scalar field and metric transform as

o = 6T — k¢"'pioy

2819/ Sx!

T (19)

O0guy =
The gauge-like dynamics have been buried into the scalar field. With this semi-classical model the scalar
field adds some renormalizability. Further this model is conformal. The conformal transformation
mixes the scalar field, which is by itself renormalizable, with the spacetime metric. Quantum
gravitation is however difficult to renormalize. Yet we see the linear group theoretic transformation of
the scalar field in SO(#n) is nonlinear in SO(#n, 1).

Conformal symmetry is manifested in sourceless spacetime, or spatial regions without matter
or fields. The two dimensional spatial surface in AdS; is the Poincare disk that with complexified
coordinates has metric with SL(2, R) algebraic structure. This may of course be easily extended into
SL(2, C)as SL(2, R) x SL(2, R). In this conformal setting quantum states share features similar to
the emission of photons by a harmonic oscillator or an atom. The orbits of these paths are contained in
regions bounded by hyperbolic surfaces, or arcs for the two dimensional Poincare disk. The entropy
associated with these arcs is a measure of the area contained within these curves. This is in a nutshell
the Mirzakhani result on entropy for hyperbolic curves.

This development is meant to illustrate how radiation from black holes is produced by quantum
mechanical means not that different from bosons produced by a harmonic oscillator or atom. Hawking
radiation in principle is detected with a wavelength not different from the size of the black hole. The
wavelength approximately equal to the Schwarzschild radius has energy E = hv corresponding to a
unit mass emitted. The mass of the black hole is 7 of these units and it is easy to find m, = /fic/G.
These modes emitted are Planck units of mass-energy that reach Z%. In the case of gravitons, these
carry gravitational memory. For the coalescence of black holes gravitational waves are ultimately
gravitons. For Hawking radiation there is the metric back reaction, which in a quantum mechanical
setting is an adjustment of the black hole with the emission of gravitons. The emission of Hawking
radiation might then be compared to a black hole quantum emitting a Planck unit of black hole that
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then decays into bosons. The quantum induced change in the metric is a mechanism for producing
gravitons.

In the coalescence of black holes the quantum hair on the stretched horizons interacts with the
vacuum and generates quanta. In general these are gravitons. We might see this as not that different
from a scattering experiment with two Planck mass black holes. These will coalesce, form a larger black
hole, produce gravitons, and then quantum states excited by this process will decay. The production of
gravitons by this mechanism is affiliated with normal modes in the production of gravitons, which
in principle is not different from the production of photons and other particles by other quantum
mechanical processes. I fact quantum mechanical processes underlying black hole coalescence might
well be compared to nuclear fusion.

The 2 LIGOs plus now the VIRGO detector are recording and triangulating the positions of distant
black hole collisions almost weekly. This information may contain quantum mechanical information
associated with quantum gravitation. This information is argued below to contain BMS symmetries or
information. This will be most easily detected with a space based system such as eLISA, where the
shift in metric positions of test masses is most readily detectable. However, preliminary data with the
gross displacement of the LIGO mass may give preliminary information as well.

5. Foundation Issues

Quantum hair is a set of quantum fields that build up quantum gravitation, in the manner of
gauge-gravity duality and BMS symmetry. This is holography, with the fields on the horizons of two
BHs that determine the graviton/GW content of the BH coalescence. A detailed analysis of this may
reveal BMS charges that reach 7" are entangled with Hawking radiation by a form of entanglement
swap. In this way Hawking radiation may not be entangled with the black hole and thus not with
previously emitted Hawking radiation. This will be addressed later, but a preliminary to this idea
is seen in[22], for disentanglement between Hawking radiation and a black hole. The authors are
working on current calculations where this is an entanglement swap with gravitons. The black hole
production of gravitons in general is then a manifestation of quantum hair entanglement.

Small deviations from the classical result may occur at the peak of the received signal. It will also
manifest itself in the gravitational memory observed in the post detection position of test masses. The
construction of spacetime from entangled quantum fields will manifest itself in the adjusted position
of test masses as a signature of how quantum entangled fields have restitched the fabric of spacetime
according to vacuum states within it. These quantum states are holographic projections from quantum
hair on stretched horizons. Gravitons g ~ b bf e/** are produced with interactions from black hole
hair, say from two gluons that form a colorless entanglement or bound state, with maybe some STU
transformation of their opposite color charges, which are signatures of metric back reaction. These
gravitons will have properties, as yet not fully understood, which may be measured by a gravitational
wave antenna capable of detecting memory or metric change.

It is illustrative for physical understanding to consider a linearized form of gravitational memory.
Gravitational memory from a physical perspective is the change in the spatial metric of a surface
according to[23]

Ahy x = tlggo hy < (t) — tgl;noo hix (t).

Here + and x refer to the two polarization directions of the GW. See [24] for more on this. Consider
the GW as being a linear form of diphotons or colorless state of two gluons, where each photon (or
gluon) has a generic state,

l
Y Yul@@) (I D)+ + [ D) —i0,¢) (I 1) + [ 1)),

2m=—1

Mz

[Yix) = [k (t) + ihx
i
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where the arrows indicate the polarization directions according to their respective axes. The matrix
element Hi » = [¥4 x)(¥4 x| describes the interaction of the GW with a quantum particle. This
expanded out is

l/

oo 1
Hix = Y, Y Y Ym0 0)Yrw(0,0) [(| 1) +x + [1)+x) + il 1) +x — [I1)4x)]

LI=2m=—Im/=—1

This tensor operation sets to zero terms like |) 4 and |}« x as unphysical states. This matrix contains a
GWterm | 1)1« + | {d)4+x plusascalar term | 1))+« — | 1)+« that again we set to zero. This is a
linearized model for how a gravitational wave can change the isotropy of a distribution of test masses.
This change defines entropy S = —H «log(H x ) that with correspondence between black holes and
AdS is related to Mirzakhani’s entropy measure in hyperbolic spaces.

The entanglement entropy of CFT, entropy with AdS3 lattice spacing a is

R R, [¢ o, . (nf
~ — _ Oc -
S ~ Gll’l(|’)/|) = In |: + ecsin < >:| .

where the small lattice cut off avoids the singular condition for / = 0or L for p. = 0. For the
metric in the form ds? = (R/r)?(—dt* + dr? + dz?) the geodesic line determines the entropy as the
Ryu-Takayanagi (RT) result[1]

R (7/2 gs /2

R
S = 3G Joosn sins —ﬁln[cot(s) + csc(s)]‘

~26'\L)’

which is the small ¢ limit of the above entropy.

The RT result specifies entropy, which is connected to action S, +> S.[25]. Complexity, a form
of Kolmogoroff entropy [26] is S,/ 7th which can also assume the form of the entropy of a system
S ~ klog(dim H) for H the Hilbert space and the dimension over the number of states occupied in the
Hilbert space. We may also see complexity as the volume of the Einstein-Rosen bridge [27] vol / GR 44
or equivalently the RT area ~ vol/R4,5. We have an equivalency of such entropy or complexity
according to the geodesic paths in hyperbolic H? by geometric means [19]. The near horizon condition
for coalescing black holes, in particular with the final 10~2%sec to the Planck time unit, is similar to the
AdS spacetime, and the physics of field therein is determined by entropy defined in hyperbolic arcs or
sections, and this is for quantum hair a holographic realization of quantum entropy. The interaction of
this hair in the merging of horizons then produces gravitons.

The detection of quantum hair in gravitational radiation may then put quantum gravity theories
to a test. The coalescence of black holes in the universe as potential Planck scale colliders means there is
some prospect for testing aspect of quantum gravitation. BH coalescence is a way of probing the event
horizon or holographic screen. Such measurements might give information on the firewall problem. It
may be the occurrence of BMS charges at Z* is a nonlocal physics that removes the firewall.

2(/L

6. Conclusion

The generation of gravitational waves should have an underlying quantum mechanical basis. It is
sometimes argued that spacetime physics may not be at all quantum mechanical. This is probably a
good approximation for energy sufficient orders of magnitude lower than the Planck scale. However,
if we have a scalar field that define the metric ¢ = ¢/(g, ¢) with action S[g, ¢] then a quantum
field ¢ and a purely classical g means the transformation of g by this field has no quantum physics.
In particular for a conformal theory 0} = 1 + x¢“?¢*, here a an internal index, the conformal
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transformation g;“, = 2g;,, has no quantum content. This is an apparent inconsistency. For the
inflationary universe the line element

ds”? = Sudxtdx’ = Q2 (du? — dz))

with dt/du = Q2 gives a de Sitter-like line element that expands space with O = VA3 The
current slow accelerated universe we observe is approximately of this nature. The inflaton scalars
are then fields that stretch space as a time dependent conformal transformation and are quantum
mechanical.

The generation of gravitational waves will then ultimately be the generation of gravitons.
Signatures of these quantum effects in black hole coalescence will enatail the measurement of quantum
information. Gravitons carry BMS charges and these may be detected with a gravitational wave
interferometer capable of measuring the net displacement of a test mass. The black hole hair on the
stretched horizon is excited by the merger and these results in the generation of gravitons. The Weyl
Hamiltonians in equation 14 depend on the curvature as « +/R. For the curvature extreme during
the merging of black holes this means many modes are excited. The two black holes are pumped
with energy by the collision, this generates or excites more modes on the horizons, where this results
in a black hole with a net larger horizon area. This results in a metric response, or equivalently the
generation of gravitons.
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