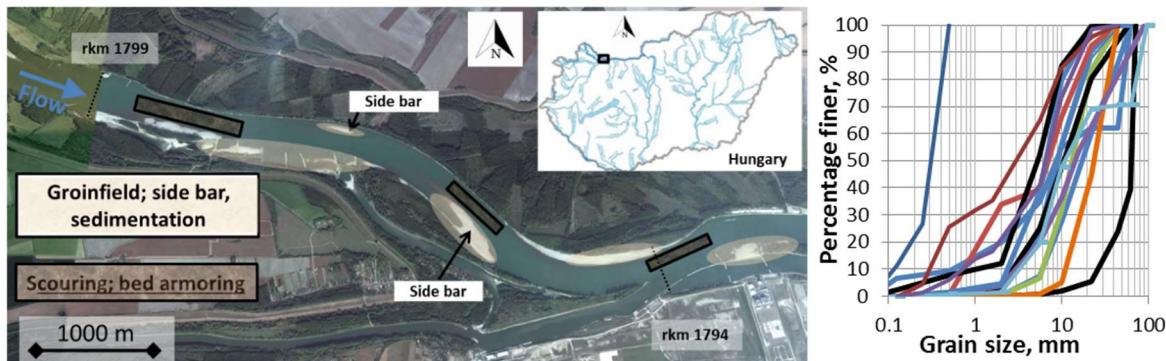


1 Article

2 **Validation of A Novel, Shear Reynolds Number
3 Based Bed Load Transport Calculation Method for
4 Mixed Sediments Against Field Measurements**5 **Gergely T. Török ^{1,2,*}, Sándor Baranya ² and János Józsa ^{1,2}**6 ¹ MTA-BME Water Management Research Group; Hungarian Academy of Science—Budapest University of
7 Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest8 ² Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest
9 University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest


10 * Correspondence: torok.ergely@epito.bme.hu; Tel.: +36-1-463-2248

11 **Abstract:** In this study, the field measurement-based validation of a novel sediment transport
12 calculation method is presented. River sections with complex bed topography and inhomogeneous
13 bed material composition highlight the need for an improved sediment transport calculation
14 method. The complexity of the morphodynamic features can result in the simultaneous appearance
15 of the gravel and finer sand dominated sediment transport (e.g. parallel bed armoring and siltation)
16 at different regions within a shorter river reach. For the improvement purpose of sediment transport
17 calculation in such complex river beds, a novel sediment transport method was elaborated. The base
18 concept of it is the combined use of two already existing empirical sediment transport models. The
19 method was already validated against laboratory measurements. The major goal of this study is the
20 verification of the novel method with a real river case study. The combining of the two sediment
21 transport models is based on the implementation of a recently presented classification method of
22 the locally dominant sediment transport nature (gravel or sand transport dominates). The results
23 are compared with measured bed change maps. The verification clearly refers to the meaningful
24 improvement in the sediment transport calculation by the novel manner in case of spatially varying
25 bed content.26 **Keywords:** bed load transport; shear Reynolds number; bed-armoring; bed-change; Danube; gravel-
27 sand mixture; 3D CFD modeling
2829 **1. Introduction**30 Sediment transport modelling is a recently still developing topic of morphodynamic
31 investigations. Although researchers elaborate increasingly accurate description of the sediment
32 motion, there is still no one generally accurately applicable sediment transport model. The selection
33 of the applied appropriate sediment transport method for a given case with even unique
34 morphodynamic features must be preceded by a careful preliminary examination. There are,
35 however, a large amount of empirically derived bed load transport formulas. A comprehensive
36 collection of the most widely applied formulas can be found in Sedimentation Engineering Handbook
37 [1]. The collection contains the most relevant sediment transport models, such as the ones from
38 Meyer-Peter and Müller [2] from Einstein [3], Ashida and Michiue [4], Parker, Klingeman and
39 McLean [5], surface-based relation of Parker [6], two-fraction relation of Wilcock and Kenworthy [7],
40 surface-based relation of Wilcock and Crowe [8], relation of Wu et al. [9] and of Powell et al. [10]. The
41 summary provides a short description of the hydraulic and sediment conditions of the experiments
42 for which the given bed load formulas were developed. These conditions thus actually define the
43 applicability limits of the formulas.44 Török et al. [11] elaborated a novel calculation method, which does not represent a new sediment
45 transport model. The method says that by the combined and parallel application of the present

46 models the applicability range can be increased. This is a meaningful improvement of the accuracy
 47 of the sediment transport calculation, which was evidenced with laboratory measurements based
 48 validation [11]. However, the novel method was not yet verified with field measurements based
 49 comparative investigation.

50 **2. Case study**

51 A problematic reach of the upper Hungarian Danube reach (rkm 1796 – rkm 1794, **Error!**
 52 **Reference source not found.**) has undergone major morphological changes during the last decades.
 53 Many studies presented [12–18] that because of installations of many river regulation measures (e.g.
 54 groins, riprap and hydropower plant at rkm 1819) in the last decades, intensive gravel
 55 formations [18], important bed level incision [19] and bed armoring processes [15,18] could be
 56 detectable, mainly in the main channel [20]. In contrast, the bed content is much finer in the groin
 57 fields, causing siltation and erosion of the finer sediments during flood waves [18,21].

58

59 **Figure 1.** The sketch of the investigated Danube study reach (left) and grain size distributions taken
 60 from the investigated reach (right). The characteristic water discharges are $Q_m = 2000 \text{ m}^3/\text{s}$ (mean
 61 flow), $Q_{bf} = 4300 - 4500 \text{ m}^3/\text{s}$ (range of bankfull discharge) $Q_2 = 5950 \text{ m}^3/\text{s}$, $Q_{10} = 7950 \text{ m}^3/\text{s}$ and $Q_{100} =$
 62 $10400 \text{ m}^3/\text{s}$ (2-, 10- and 100-year flood event) [19].

63 The river can be characterized by the following parameters: the channel bed width at mean
 64 water-stage ranges between 150 m and 350 m [18] with the average water surface gradient of 0.0002–
 65 0.00025. As **Error! Reference source not found.** shows, the river section is regulated by conventional
 66 structures, such as groins and the banks are protected against erosion by riprap. Also, side arms,
 67 islands, gravel bars, confluence zone can be observed, which refer to the complex topography of the
 68 river section. Bed material samples were taken from the main stream, groin fields and gravel bars.
 69 Some of the grain size distributions can be seen in **Error! Reference source not found.**, right. The
 70 figures refer to very diverse spatial bed contents ($0.32 \text{ mm} < d_{50} < 70.5 \text{ mm}$). Such a wide dispersion of
 71 the bed content is a unique feature of the Danube River (~rkm 1600 - rkm 1800); at the lower Austrian
 72 Danube, (~rkm 1885, 90 km upstream), the Danube flows through a gravel bed, where d_{50} is 21.1 mm
 73 without any finer fractions [22]. In turn, the middle Hungarian Danube (~200 km downstream) has a
 74 typical sandy bed with $d_{50} < 0.05 \text{ mm}$ [23]. The complexity of the topography and bed content suggest
 75 spatially and temporally varied sediment transport nature [21]. That is in some places the gravel,
 76 elsewhere the sand transport dominates [24]. This kind of individual complexity was presented e.g.
 77 by the field measurements of Török and Baranya [18], or in [25,26].

78 The essential bed changes in the last decades caused important water management related
 79 problems and also difficulties in the navigation. For this reason, the reliable calculation of the
 80 morphological changes is a major interest to researchers and the application of a 3D CFD sediment
 81 transport model became justified. However, the choice of the applied sediment transport model was
 82 not obvious. Many formulas can be found in the literature (e.g. [2–4,27,28]). Most of them are
 83 developed focusing on a given morphodynamic process (e.g. Wilcock and Crowe model: bed
 84 armoring [8]; van Rijn model: sand erosion and deposition [29] etc...). However, in case of the
 85 examined river section, spatially and temporally varied sediment transport nature occur. That is,

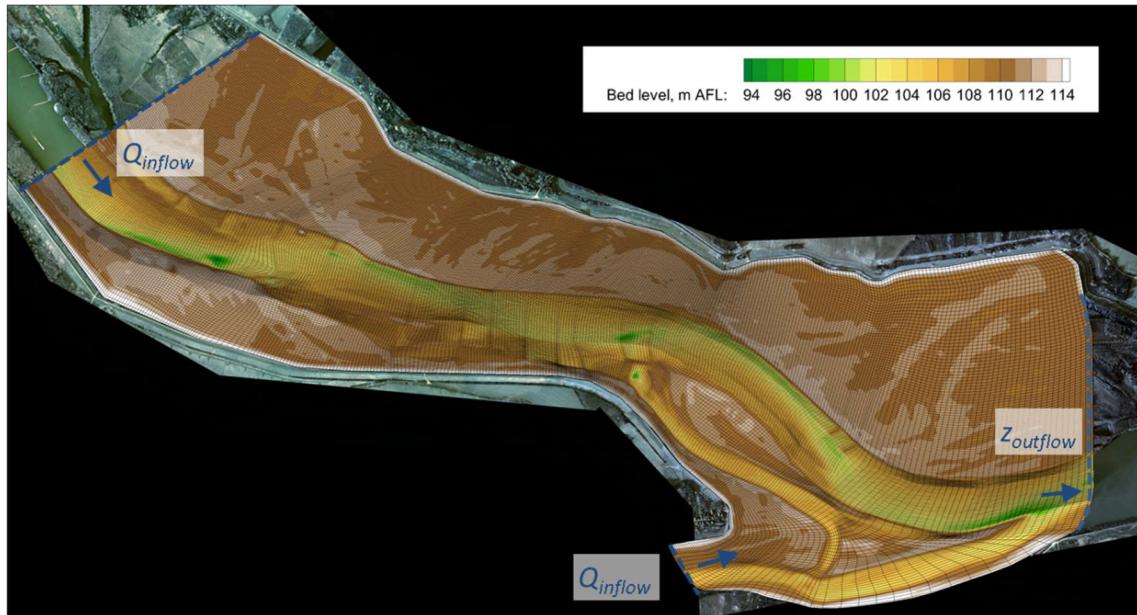
86 none of the existed sediment transport formula is expected to be operating reliably for both the sand
 87 and coarse bed material, within a given river reach.

88 **3. Materials and methods**

89 *Introducing the combining sediment transport calculation method*

90 Because of the complex and spatially varied bed material and dominant sediment transport
 91 nature, a novel combined approach [11] of the van Rijn and the Wilcock and Crowe bed load sediment
 92 transport formulas was applied. (From now, the Wilcock and Crowe formula will be indicated with
 93 $W\&C$, while the van Rijn will be with vR). The combined manner was already presented and
 94 validated against laboratory measurements [11]. Török and Baranya [21,24] pointed out a novel
 95 decision criteria, which is a suitable method for indicating whether the sand or rather the sand
 96 transport dominates locally. In this study, the combining of the two models bases on this statement.
 97 Namely, if the shear Reynolds number (Re^*) is below 300, the sand transport is prevalent. Otherwise,
 98 if the Re^* occurs above 400 the gravel transport dominates. Based on these, the combined calculation
 99 method says that the local bed load sediment transport rate is calculated as the followings ($q_{bi,W\&C}$ is
 100 the sediment transport rate calculated by $W\&C$ and $q_{bi,vR}$ is the rate by vR):

$$q_{bi} = \begin{cases} q_{bi,W\&C} & \text{if } Re^* > 400 \\ q_{bi,vR} & \text{if } Re^* \leq 300 \\ \text{else} \\ f \cdot q_{bi,W\&C} + (1 - f) \cdot q_{bi,vR} \end{cases}, \quad (1)$$


101 where

$$= \frac{1}{100} (Re^* - 300). \quad (2)$$

102 Besides the bed load transport estimation, the suspended sediment transport is calculated in
 103 each computational grid according to the suspended vR formula [30]. Thus, the bed load is calculated
 104 according to Eq. 1 and 2, while the suspended load is estimated by the van Rijn equation.

105 *Applied 3D flow model*

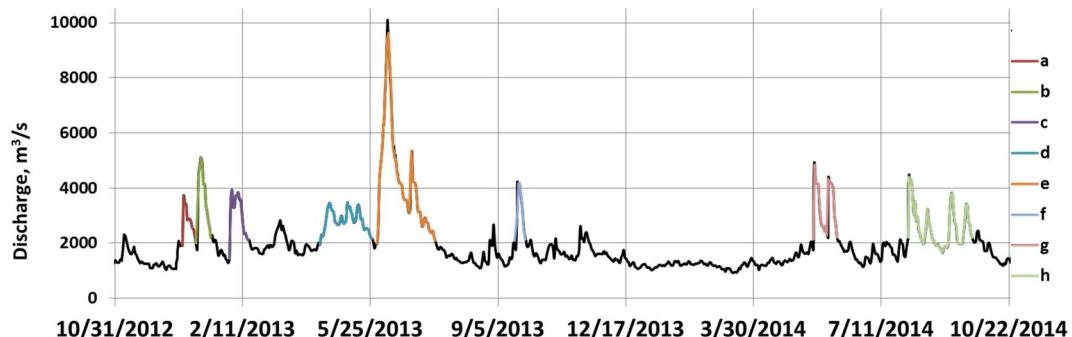
106 The numerical model used in this study [31,32] solves the 3D Reynolds-averaged Navier-Stokes
 107 (RANS) equations with the $k-\varepsilon$ turbulence closure (see e.g. [33]) by using a finite-volume method and
 108 the SIMPLE algorithm [34] on a 3D non-orthogonal grid. At the boundaries, where the fluid flow
 109 cannot be considered as a free turbulence zone, the wall law is applied for the velocity profile
 110 calculation [35]. The momentum equations are in the complete form, describing the hydrodynamic
 111 effects in all directions. The roughening impact of the vegetation in the flood plain area is described
 112 as an energy loss term in the Navier-Stokes equations [36], can be specified for each cell. Using this
 113 option, the effect of the vegetation was taken into account as a drag-effect.

114

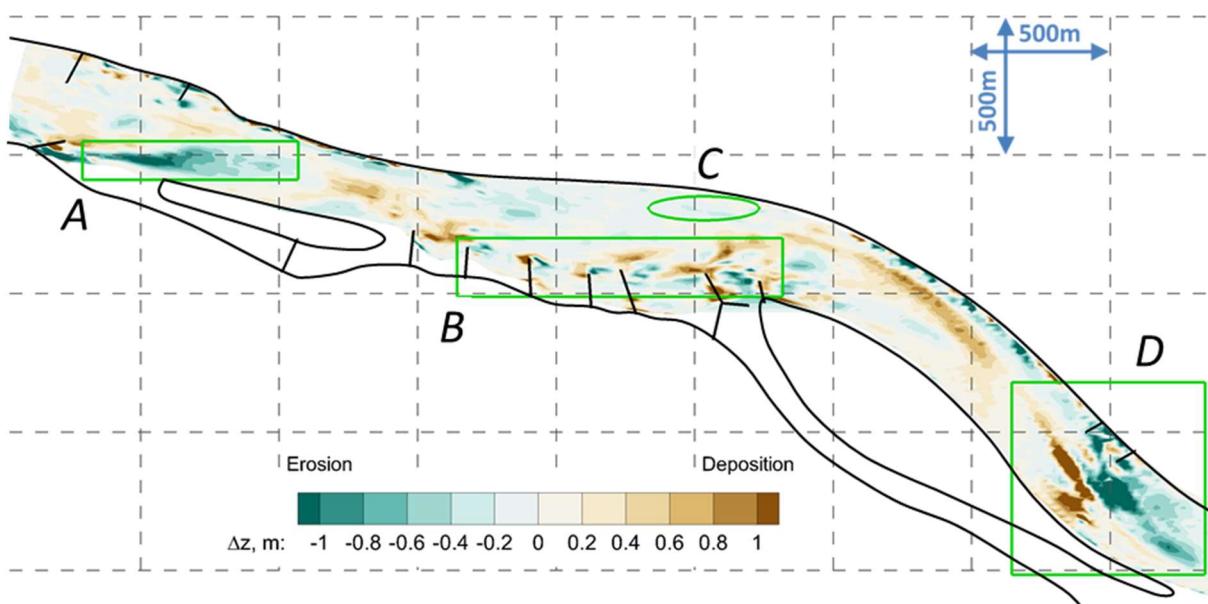
115

Figure 2. The computational grid of the investigated Danube study reach.

116 In order to eliminate the boundary effect, the computational grid was longer in both upstream
 117 (rkm 1801) and downstream (rkm 1793.5) direction than the investigated ~ rkm 1795 and rkm 1799
 118 river reach. The applied grid can be seen in 0. The study side was discretized with 355 cells in the
 119 streamwise direction and 150 cells in the lateral direction, respectively, resulting in the streamwise
 120 direction in an average resolution of 18 m and transversely 5 m in the main channel, while 13 m in
 121 the floodplain area. Vertically 11 layers were defined.


122 The bed material was discretized by five fractions, which are: $d_1 = 0.3125$ mm, $d_2 = 1.25$ mm,
 123 $d_3 = 5.7$ mm, $d_4 = 16.2$ mm and $d_5 = 56.57$ mm. The riprap and groins were characterized by
 124 $d = 300$ mm. According to field measurement based considerations the active layer thickness was set
 125 to 0.5 m.

126


Parameterization

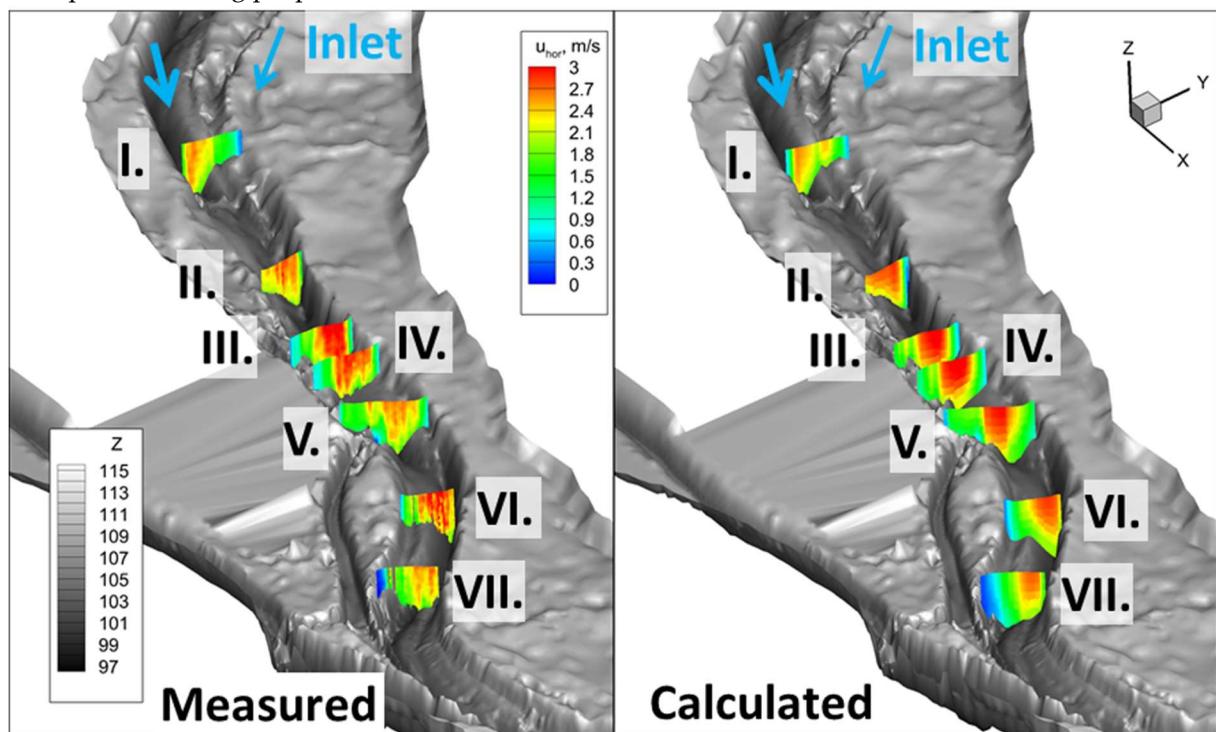
127 As e.g. [1] mentioned, the bed material of the most river reaches are less complex and the grain
 128 sizes happen in a narrow range. In turn, in rare cases - e.g. the herein studied river section - the
 129 occurring grain sizes cover a significantly wider range (silt - gravel), resulting in a very complex
 130 spatial distribution. Because of this, the bed material cannot be supposed as spatially uniform (as
 131 many study does at most river sections [37,38]), which makes the allocation of the bed material less
 132 obvious method. According to Baranya [39] a relation can be stated between the calculated local bed
 133 shear stress value by 3D flow model at the mean-water stage and the local d_{50} . Thus, based on the
 134 fitted function, a transitional and continuous d_{50} map can be estimated based on the calculated bed
 135 shear stress distributions. This methods was used, using 33 bed material samples [18,24]. The
 136 standard deviation of the calculated d_{50} to the measured d_{50} is 3.2 mm.

137 As the boundary conditions for the RANS equations, at the inflow boundaries the water
 138 discharge, at the outflow boundary the water level was set. The discharge time series (0) and the
 139 water levels of the Danube were defined based on the measured time series. Additionally, the flow
 140 discharge time series of the Mosoni-Danube was set based on a 1D numerical Danube model [40].

141

142 **Figure 3.** Discharge time series at rkm 1801 for the period 2012 October – 2014 October.143 An essential part of the model setup is the correct set of the inflow sediment rate. For this
144 purpose, the flow discharge dependence of the suspended load [41] and the bed load [18] functions
145 were used.146 The riverbed topography of the main river channel was available from 2012 and 2014. The initial
147 bed geometry was set according to the map from 2012. The calculated bed change map could be
148 prepared for this 2 years long period, which includes the historical flood wave from 2013 (0). This
149 bed change map was used as benchmark for the validation purpose (0).150 Four regions in the river reach were highlighted by green rectangles and an ellipse, marked by
151 A, B, C and D. In these places, the following bed forms and morphodynamic processes were detected
152 by field measurements [15,18]. At region A and D, the blue spots refers to a pronounced scouring
153 downstream of the groins. At region B a groin field can be found. Here, local bed changes took place,
154 both scouring processes (blue spots) and sediment depositions (brown spots). The ellipse (C) and the
155 brown spot in region D shows the places where gravel bars are located. As these phenomena basically
156 determine the reach-scale morphodynamic processes, a key question is whether the novel sediment
157 transport calculation manner introduces a more reliably estimation of them.

158


159 **Figure 4.** Measured bed changes for the period 2012 October – 2014 October.160 The numerical simulation of the 2 years, 722 days long period demands very large
161 computational capacity. According to the preliminary estimation calculations, the simulation of one
162 model variant for such a long time period would take around half a year. Therefore, to reduce the
163 duration of the simulation, only the periods which excess the bed-forming flow discharge ($Q > 2100$

164 m^3/s) [18,22] were simulated. In this range, 66% of the annual bed load amount passes [42]. Therefore,
 165 the major bed changes are expected during these periods. Accordingly, the bed changes caused by
 166 eight flood waves were calculated, which means a total of 211 days. In turn, it is emphasized that the
 167 ignored 34% of the annual bed load yield is significant. That is, the numerical model neglects the
 168 simulation of bed changes which take place during the lower water regime, so the results cannot be
 169 compared directly to the measured changes.

170 3D flow model validation

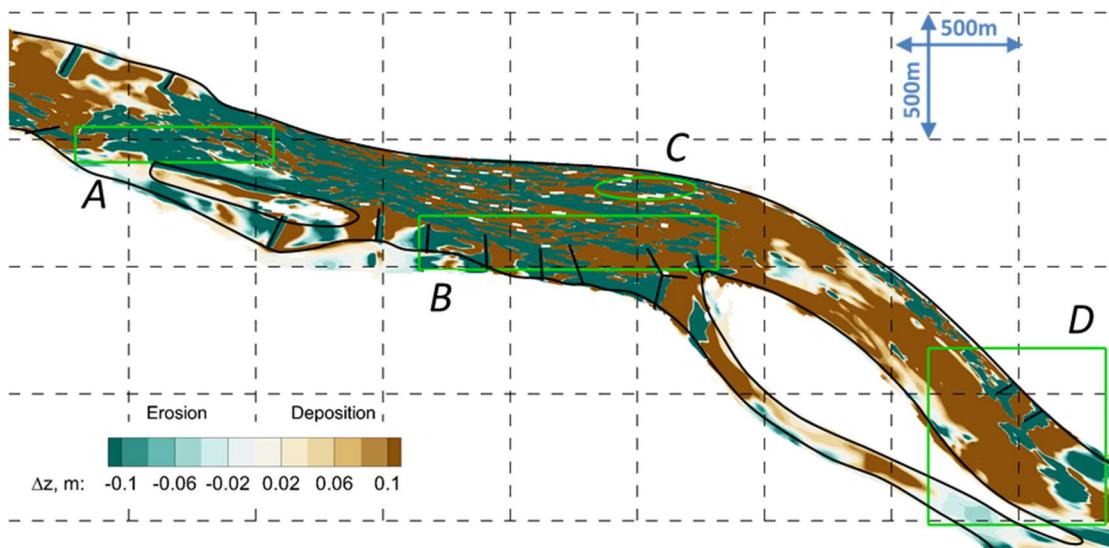
171 The herein applied 3D CFD model was already adapted and validated for the investigated
 172 Hungarian reach of River Danube, which were published in previous research works, e.g. [37,43–45].
 173 Those studies have already demonstrated the reliable application of the 3D flow model. Regardless
 174 of these, the flow model validation was elaborated for the peak of the historical flood wave in 2013.
 175 The cross-sectional ADCP flow measurements by the North-Transdanubian Water Directorate
 176 regarding to the peak stage of the flood wave were used as benchmark flow values. 0 shows the
 177 measured (left) and the calculated (right) cross-sectional velocity distributions. Compared the
 178 measured and calculated cross-sections, a satisfactory match can be seen.

179 That is, the velocity values are in the same ranges (0–3 m/s). The highest velocities (yellow and
 180 red spots) are calculated at the same place of the cross-sections than in the real case, which underlines
 181 the reliable estimation of the main stream. The locations of the lower velocities (blue and light green
 182 spots) are calculated trustworthy also. That is the calculated flow pattern can be realised reliable at
 183 the groin fields (e.g. at the right-bank sides of cross-section III, IV and V, 0) and gravel bars also (e.g.
 184 at the right-bank sides of cross-section VII). Accordingly, the applied numerical flow model is
 185 considered to be validated for higher flood waves too, thus it is believed applicable for sediment
 186 transport modelling purpose.

187
 188 Figure 5. Measured and calculated cross-sectional horizontal velocity distributions.

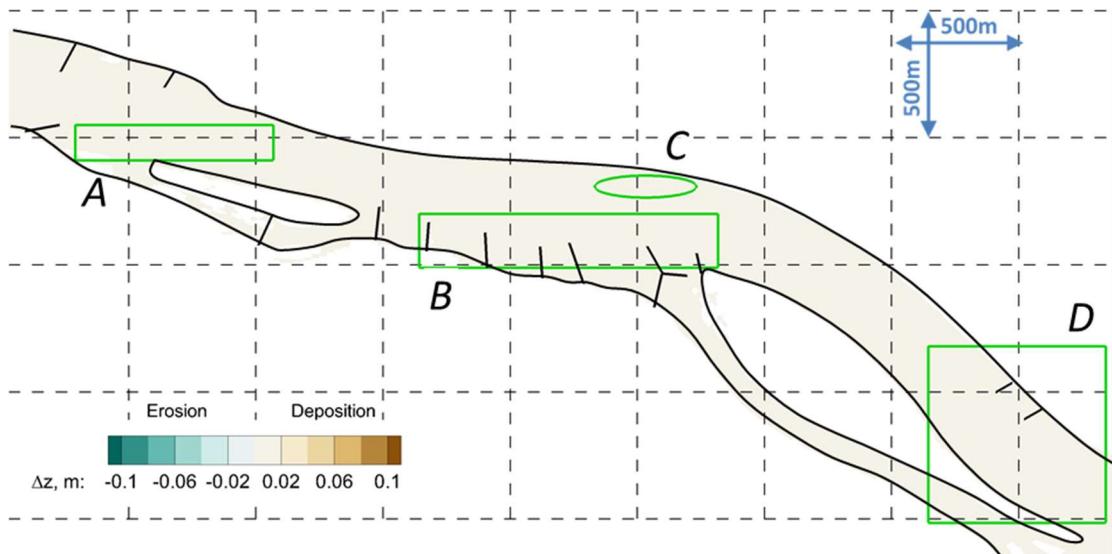
189 Results

190 Comparison of the calculation methods


191 In order to confirm the better operation of the novel Re^* dependent combined method, the bed
 192 change calculation by the van Rijn, Wilcock and Crowe and the combined method were compared.

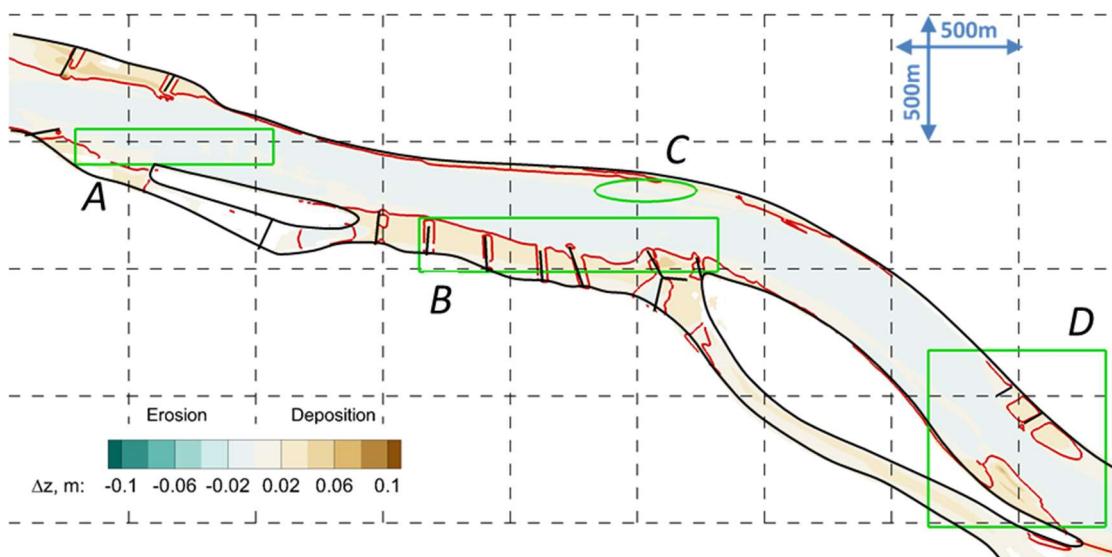
193 Because of the significant computational time, the simulations were performed only for the d and e
 194 flood waves (see. 0 d and e). The initial model setup (the flow field, water levels and the bed material)
 195 was given for each run from the results of the model run for the first three flood waves by the Re^*
 196 dependent combined method. The flood wave d is a relatively low (peak is around 3460 m³/s), but
 197 durable (~2 months long) flood wave, while the e is the historical one with a peak higher than 10000
 198 m³/s. Thus, the comparative analysis presents the operational characteristics of the sediment
 199 transport models for both the durable lower and also for the extreme water regimes. As a benchmark
 200 the measured bed change map indicates the extent of the possible bed changes. However, the
 201 measured and calculated maps cannot be compared directly, because the measured belongs to the
 202 whole two year long period (0).

203 The bed change maps calculated for the flood wave d (0) by the vR model (0), by the $W\&C$ model
 204 (0) and also by the combined method (0) is presented. As the results show, the vR model estimates
 205 unrealistic changes both spatially and in magnitude. The unrealistically huge bed changes suggest
 206 that the vR model does not seem to be an appropriate model for the given Danube reach, particularly
 207 not for bed change calculation in the main channel.


208 The $W\&C$ sediment transport model estimates more stable bed surface than the vR (0). In this
 209 particular case the bed surface seems so resistant that the mean flow field is too weak to cause any
 210 significant bed changes. The motion of the very fine, basically suspended inlet load is calculated by
 211 the $W\&C$ model as bed load. Therefore, that part of the inlet sediments settled progressively along
 212 the channel. However, because of the quite low suspended load [41], the bed level rise caused by
 213 sedimentation is negligible (< 0.005 m).

214 0 shows the bed changes calculated by the combined method. The red lines illustrate the border
 215 line which separates the areas where the vR or the $W\&C$ model is activated in the initial moment of
 216 the model run. Accordingly it can be seen that the vR formula is invoked at the near-bank areas, at
 217 the groin fields and also at a smaller part of the Vének lower gravel bar. At these regions, more
 218 significant (~0.05 m) sedimentation is estimated. That is, at these less hydraulically rough parts of the
 219 river bed, the deposition of both the finer bed load and suspended load are expected, which areas
 220 can be detected by the Re^* [21]. In turn, in the navigation channel, no considerable bed change
 221 happened. According to the suspended form of the vR formula, the finer suspended load passes over
 222 the calculation domain, while the bed surface remains still, calculated by the $W\&C$ formula. This
 223 assumption is consistent with the conclusions of the field measurements [18]; the main channel seems
 224 to be armored enough to be resistant at mean water regime.

225
 226


Figure 6. Calculated bed changes by the vR formula for a 2.5 month long period (0).

227

228

Figure 7. Calculated bed changes by the W&C formula for a 2.5 month long period (0).

229

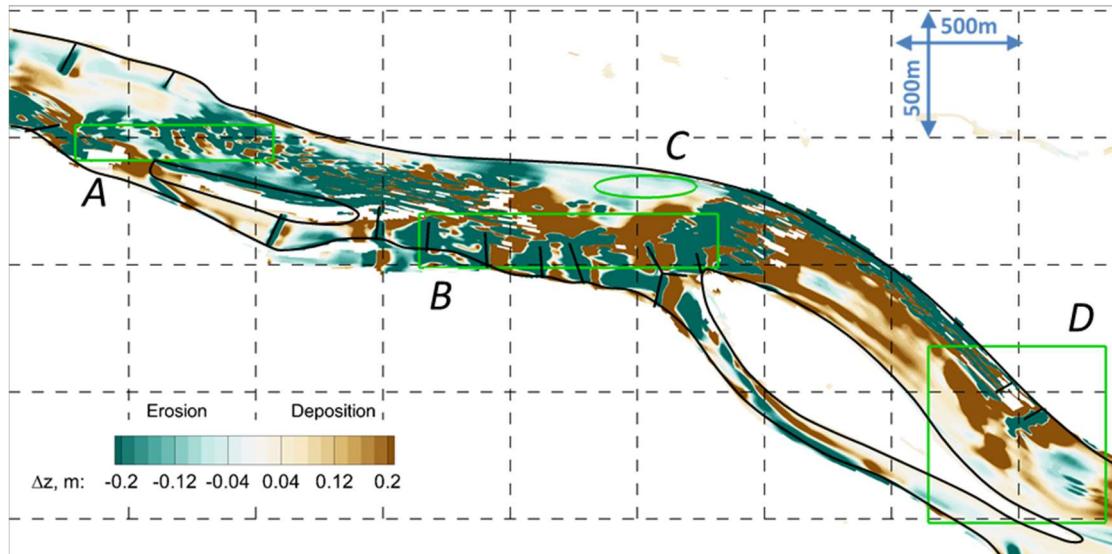
230

Figure 8. Calculated bed changes by the combined method for a 2.5 month long period (0).

231

The other flood wave, for which the comparative analysis were established is the historical flood wave from 2013 (0). Regarding to this hydrological case, the *vR* model estimates also an unrealistic bed change map (0). This is mainly true for the main channel. There, the motion of the coarser grains is probably overestimated, resulting in huge erosions and depositions. In turn, at the near-bank regions, at gravel bars and at the groin fields, the changes seem to be partly in the expectable order of magnitude. But it is clearly visible that the *vR* formula is not an appropriate choice for the morphological change calculation of such a complex river reach.

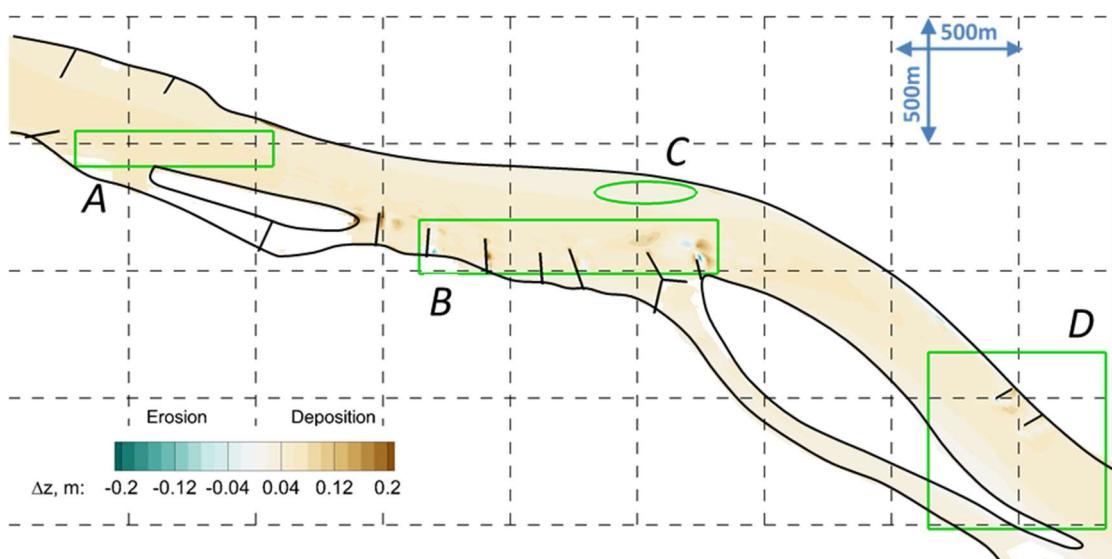
232


233

234

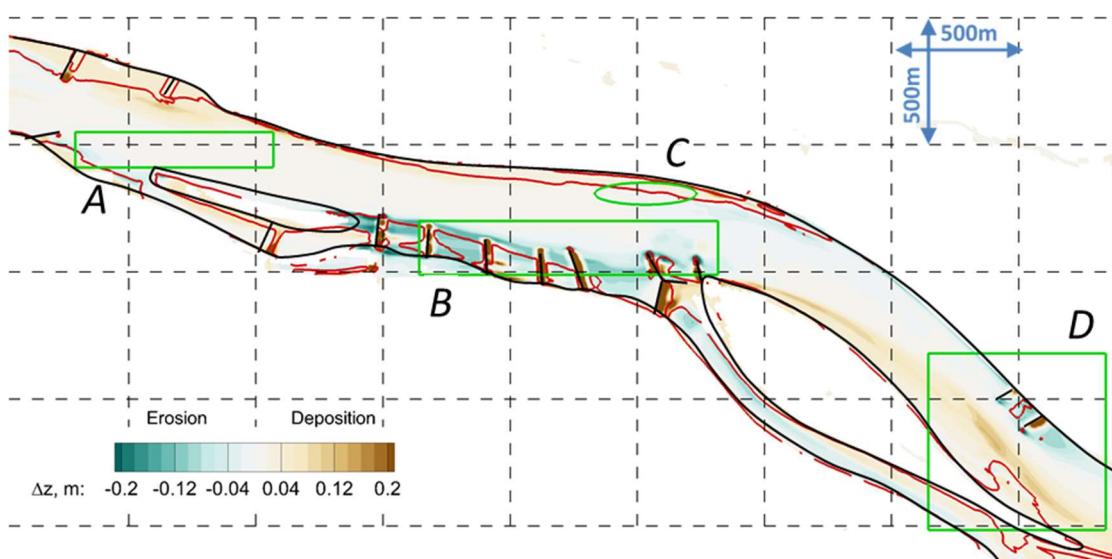
235

236


237

238

239


Figure 9. Calculated bed changes by the vR formula for the historical flood wave (0).

240

241

Figure 10. Calculated bed changes by the W&C formula for the historical flood wave (0).

242

243

Figure 11. Calculated bed changes by the combined method for the historical flood wave (0).

244

The *W&C* model calculates more realistic bed changes (0), especially in the main channel. However, the measurements at the lower gravel bar and also at the whole main channel show significant ($\Delta z > \pm 0.2$ m) changes. Based on these, the *W&C* formula likely overestimates the stability of the channel. Remarkable bed level increase can be pointed out, which moderates towards the downstream direction. These bed level changes can be explained by the settling of the inlet finer load, which cannot be taken into account as suspended load. The publication of Török et al. [46] pointed out that in case of mixed bed content, the Shields diagram predicts lower critical bed shear stress for the bed load of the finer, sand particles, than the reference shear stress of the *W&C* model. Accordingly, the *W&C* model estimates respectively higher stability for the sand particles, than the Shields diagram and thus the *vR* model. This leads to the unrealistic deposition in the main stream.

254

The combined method predicts (0) more significant bed changes, compared to the one resulted by the *W&C* model. The red border line suggests that as at the flood wave *d*, the combined method calculates the sediment transport by the *vR* formula at the near-bank regions. During the flood wave *e*, the remarkable erosion at the groin field *B* means that the groin field got flushed and the earlier deposited finer sands got eroded. Also notable changes took place at the vicinity of the gravel bar at region *D*. Here, the widening of the downstream sides of the gravel bar can be seen, in accordance with the measured bed change map in 0. Around the groin pair at the left bank, on the opposite side of the gravel bar, the blue spots refer to erosion. This process is probably the result of a similar, flushing process as the one which happened at the upstream groin field. In turn, in the main and navigation channel, no considerable bed change happened. According to the suspended form of the *vR* formula, the finer suspended load passes over the calculation domain, while the bed surface remains still, calculated by the *W&C* formula. The conclusions of the field measurements [18] referred also to resistant main channel.

267

The results indicate that the interactions between the sediment transport at different channel sections (groin fields, gravel bars and main channel) cannot be estimated by the *vR* or *W&C* formulas. But the expedient combination of them gives an opportunity to deal with the interaction-mechanism between the local- and reach-scale processes.

272

Analysing the calculated bed changes in the marked boxes, the following assumptions can be stated. In this part, the results of the *vR* model were skipped because of the unrealistic bed change calculations. At region *A*, the real bed level deepening (0) could not be reproduced by any method. At region *B*, only the combining method was able to predict significant depositions and erosions. Accordingly, the depositions probably take place during lower water regime, while the bed level incision occurs during the flood waves. Thus, the measured bed level changes during two years were formed most likely indeed during the whole two year long period. At region *C*, all two model results suggest that the gravel bar is in a stable state. Beside region *A*, the bed level increase in the main channel between region *C* and *D* (0) could not be pointed out by any sediment transport formula. Finally, at region *D* the model results show that the widening of the gravel bar and also the erosion at the vicinity of the groin pair occur rather during the higher flood wave than during the slighter flood waves, or mean water regime.

284

Measured data based verification of the combined method

285

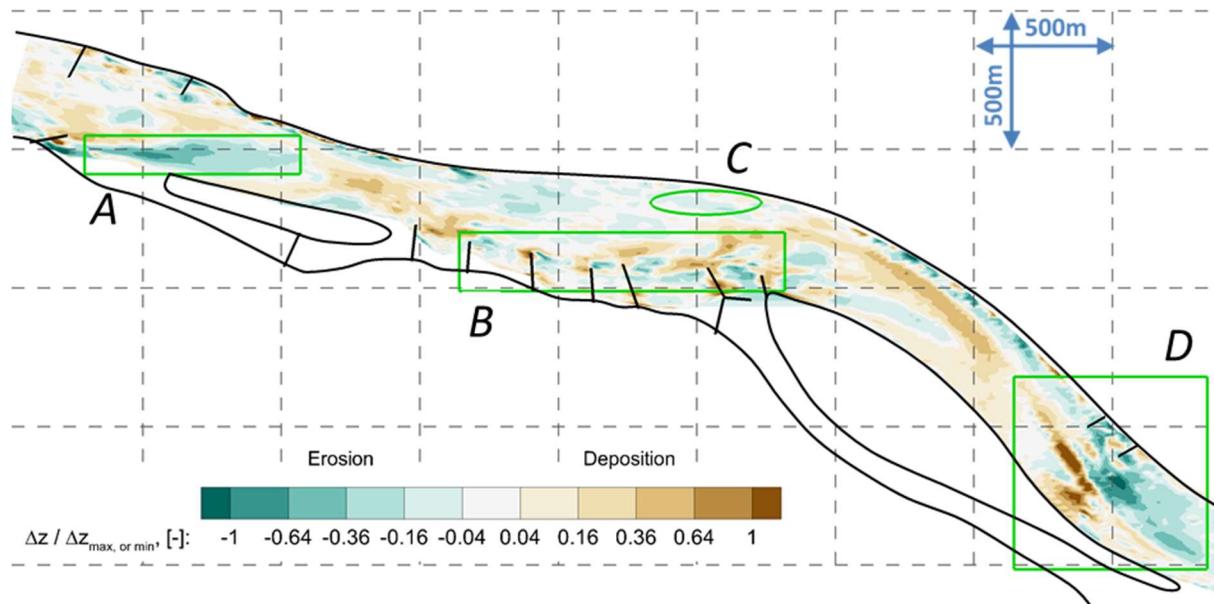
A quantitative assessment of the tested sediment transport formulas was performed based on the results of the comparative analysis. First, in accordance with the conclusions of the field measurement based investigation it was assumed that the measured erosion and deposition took place mainly during higher water regimes at region *D*, when the flow discharge was higher than the bed forming discharge [18,42]. Thus, the measured and calculated data can be considered as indirectly comparable at this region. Therefore, from the measured bed level change maps, the total volume of the erosion and deposition can be calculated. Furthermore, counting the number of days of the higher water levels, the average daily rate of the volume of both the erosion and deposition

292

293 can be estimated. Likewise, based on the calculated bed change maps and knowing the duration of
 294 the historical flood wave, the daily average volume changes of the deposition and erosion can be
 295 estimated. The following Table shows data about these volumes. The Table presents the ratio of the
 296 calculated and measured deposition and erosion volumes, for each sediment transport formula. A
 297 value of 1 would indicate a perfect match to the measured volume change.

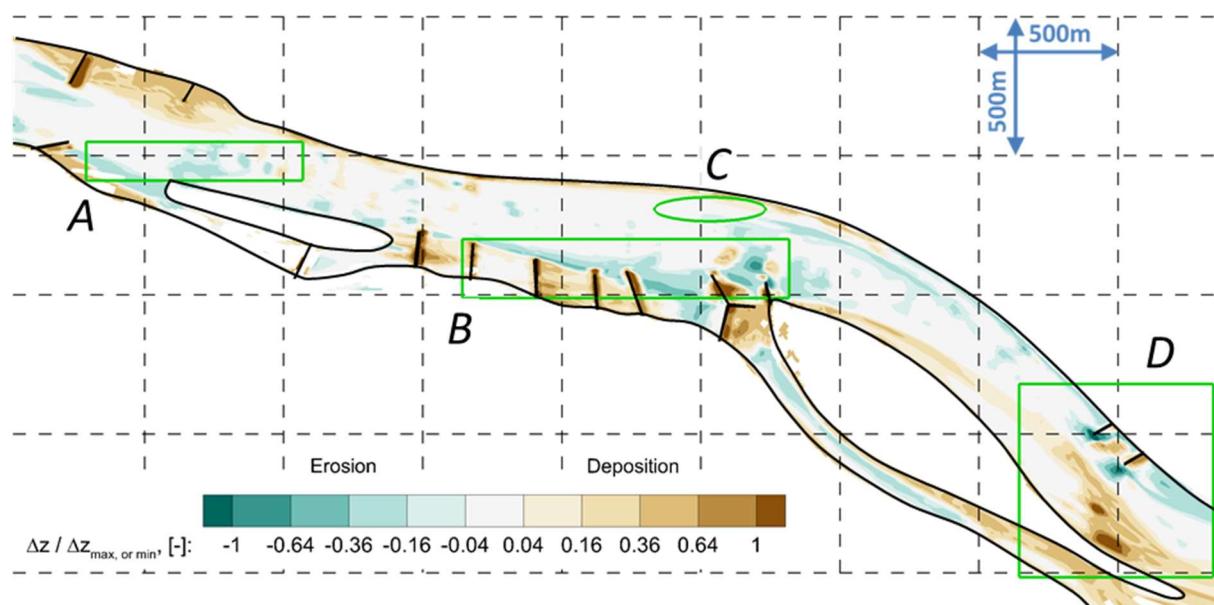
298 **Table 1.** The $\Delta V_c/\Delta V_m$ values for region *D*, where ΔV is the average daily volume changes. ΔV_c is
 299 derived from the model results, while ΔV_m estimated from the bed level measurements.

ΔV / day	Sediment transport model		
	van Rijn	Wilcock and Crowe	Re* based combined
	Deposition	48.7	4.9
	Erosion	7.2	0
			0.7


300 The Table data show, that the *vR* model is the one which overestimates most both the deposition
 301 and erosion volumes. The *W&C* model calculates the deposition rate more accurately, but still
 302 indicates more than the measured. This is partly explained by the lack of the suspended sediment
 303 calculation. In turn, the *W&C* model estimates negligible low erosion. In total, the more reliable
 304 results were provided by the combined method. With this, the erosions at the near-bank parts were
 305 calculated more accurately by the *vR* model, resulting in sediment feed for region *D*. Thus, because
 306 of the capturing of the coming sediments, the widening of the deposition could be better represented.
 307 As the Re^* dependent criterion activated the *vR* formula at the groin pair, the bed level incision at its
 308 vicinity was also estimated better.

309 Even though the measured and calculated bed changes cannot be compared directly, the nature,
 310 the magnitudes and the locations of the remarkable bed changes suggest the greater aptitude of the
 311 combined method.

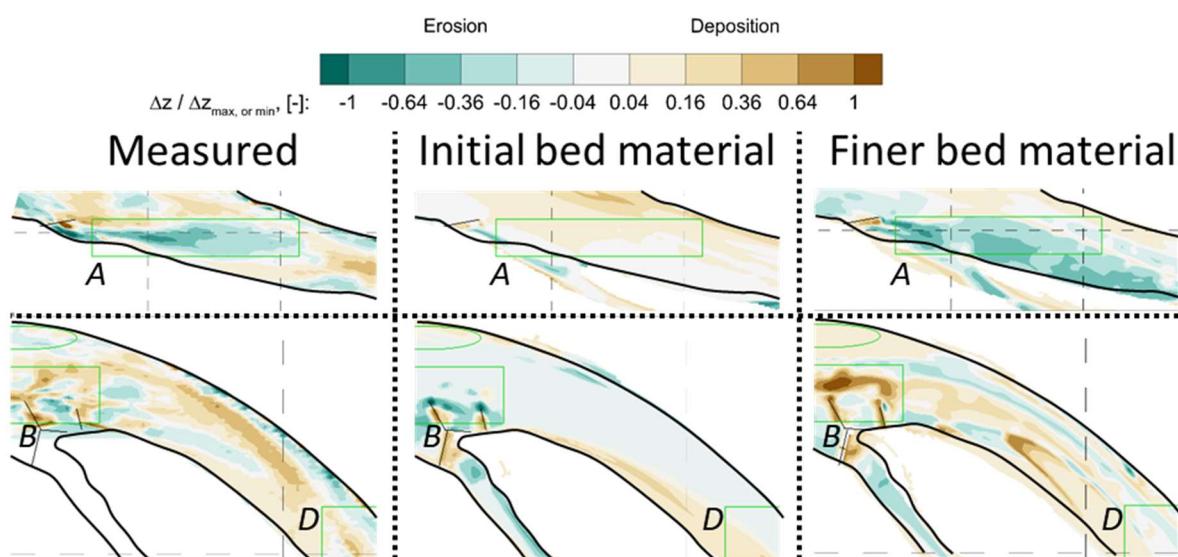
312 As it was discussed in Chapter Model setup, the low- and mean flow discharges transport is the
 313 third part of the annual bed load, which also plays a not negligible role in the sediment feed and so
 314 in the bed changes. Because of the calculated bed changes were elaborated only for the higher flow
 315 discharges ($> 2100 \text{ m}^3/\text{s}$). The results cannot be compared with the measured changes directly.
 316 Therefore, to achieve a notionally common scale, the bed change values were normalized. That is
 317 both the measured and calculated bed changes got divided by the highest bed level decrease or
 318 increase value of the main channel:


$$\Delta z_{norm} = \begin{cases} \text{if } \Delta z > 0 \rightarrow \frac{\Delta z}{\Delta z_{max}} \\ \text{else } \rightarrow \frac{\Delta z}{|\Delta z_{min}|} \end{cases} \quad (3)$$

320 Thus, the occurring values develops between -1 and 1, where 1 indicates the maximum
 321 deposition height along the river reach, while -1 belongs to the biggest erosion ($\Delta z_{max,meas} = 1.5 \text{ m}$,
 322 $|\Delta z_{min,meas}| = 1.8 \text{ m}$; $\Delta z_{max,calc} = 0.5 \text{ m}$, $|\Delta z_{min,meas}| = 0.25 \text{ m}$). The measured bed changes both the
 323 erosions and depositions were consequently higher than the calculated. That is the numerical model
 324 underestimates the magnitudes of the bed changes. This can be partly explained by the ignore of the
 325 third part of the annual bed load in the numerical model estimation.

326

327 **Figure 12.** Normalized bed changes of the measured values (0) regarding to the whole period 2012
 328 October – 2014 October.


329

330 **Figure 13.** Normalized bed changes of the calculated regarding. The calculation was elaborated for
 331 the eight flood waves in the period 2012 October – 2014 October (0).

332 By the comparison of the measured (0) and calculated normalized bed changes (0) the following
 333 remarks can be stated. The modelled bed changes do not represent the remarkable erosion at region
 334 A. It is noted that this difference also means a sediment supply loss for the downstream in the model
 335 calculation. Since the model does not manifest any bed level decreasing, the bed material was
 336 probably finer here than it was set in the model. At region B, the measured scours appear in the
 337 calculated results (blue spots). But not as concentric scours, but rather as lengthwise formations. The
 338 numerical model represents depositions closed to the measured magnitude at region B also.
 339 However, their location are not accurately; the brown spots occur between the groins, instead of in
 340 the front of the groins, like in 0.

341 At the gravel bar in region *C*, negligible bed changes were measured. Likewise, the numerical
 342 model predicts stable bed surface. Finally, the combined method points out the growing of the lower
 343 part of the Vének lower gravel bar (region *D*, 0). The measured bed changes indicate two, separable
 344 depositions. These double depositions are also represented by the model results. Like the measured
 345 changes, the model also calculates scouring in the front of the left bank groin pair. However, the
 346 extension of it is considerable lower than the scale of the measured deepening. In turn, the lengthwise
 347 deposition between the groins (between region *C* and *D*) is also indicated in both measured and
 348 calculated maps. However, the calculated deposition occurs in significantly lower range and forms
 349 at the right bank side and not in the main stream. Also important match that neither the measured
 350 nor the calculated suggests any essential large-scale bed changes in the main channel.

351 Significant difference between the measured and calculated bed changes happened at region *A*.
 352 Here, the effect of the potential error in the initial bed material was further examined. An
 353 investigation was performed, which based on the assumption that the initial bed material was set
 354 inaccurately around region *A*. The bed material samples around $d_{50} \approx 0.01\text{m}$. Considering the grain-
 355 size distributions [18], a still realistic, but considerably finer bed material was presupposed.
 356 Therefore, the model was set up by 30% lower d_{50} , that is $d_{50} \approx 0.007\text{m}$. With this only one difference,
 357 the model was run for the historical flood wave. 0 presents the bed changes at region *A*, and at the
 358 downstream of it.

359
 360 **Figure 14.** Calculated bed changes by the combining method for the historical flood wave. The model
 361 in the middle Figure was set up with the initial, while in the right Figure with finer bed material.

362 The right side of the Figure shows the bed changes in case of finer bed material. It can be seen
 363 that the 30% decrease of the d_{50} resulted in major erosion at region *A*. Considering the measured
 364 changes in the left Figure it is obvious that the decreasing of the d_{50} led to a better match to the real
 365 bed changes. The lower row of the Figures represents the bed changes at the downstream. Here,
 366 important deposition formations could be measured (left Fig.) in front of the right bank groin pair
 367 (section *B*) and also in the main stream, between the two gravel bars (between region *B* and *D*). These
 368 changes could not be represented by the original model setup (middle Fig.). In turn, in case of finer
 369 bed material (right Fig.), the model predicted important depositions at these regions. The extension
 370 of the deposition in front of the groin pair (section *B*) is very similar to the measured. And also, the
 371 lengthwise extension of the deposition downstream (between region *B* and *D*), in the main stream
 372 also reproduced. However, the location of it is not correct. It seems that the model underestimated
 373 the crosswise sediment transport, which is a known limitation of the Reynolds averaged description
 374 of the flow field [47–50]. Concluding, the herein presented investigation suggests that the bed
 375 material at region *A* was finer than the predicted d_{50} allocation for the original model setup. With this
 376 assumption, the deposition nature at the downstream has become also detectable.

377 **Discussion and conclusion**

378 In this study, the validation of a novel sediment transport approach with field measurements
379 was introduced. The results show that the combined application of the Wilcock and Crowe and the
380 van Rijn models can significantly increase the precision of numerical bed change calculations even
381 by order of magnitude. In addition to the magnitude of local river bed changes, the results also
382 evinced that the location, extension and shape of the bed formations (e.g. scours, deposition, bar
383 evolution) are much reliably calculated by the novel combined approach than by the previous
384 models. That is, not necessarily the development of completely new models can lead to the evolution
385 of the sediment transport calculation.

386 There are existing proven models in the literature which works reliably for given
387 morphodynamic cases (e.g. the van Rijn model for hydraulic smooth regimes, which mainly occurs
388 in clear sand bed; or the Wilcock and Crowe model for hydraulic rougher regimes, which develops
389 in coarser bed surfaces). The application of the combined approach really makes sense, within river
390 reaches, where such well-separated morphodynamic situations prevail (e.g. sand aggradation in
391 groin fields; bed armorling in the main stream). In such cases, the local-scale morphodynamic
392 processes are calculated by the proven models, while the interaction between them leads to a more
393 accurate reach-scale calculation. Thus this study highlights that the combined use of sediment
394 transport models is a promising alternative in the sediment transport calculation.

395 Important to note that the combination of sediment transport models requires an accurate
396 description of the applicability limits of the models. In this study, we used a shear Reynolds number
397 based description. The presented method could be further developed by defining the limits of other
398 models and involving them in combining.

399 **Author Contributions:** conceptualization, methodology, software, validation, writing—original draft
400 preparation, visualization, G.T.T., resources, data curation, G.T.T. and S.B.; formal analysis, writing—review
401 and editing, S.B.; supervision, project administration, funding acquisition, S.B. and J.J..

402 **Acknowledgments:** This research was supported by MTA TKI of the Hungarian Academy of Sciences. Support
403 of grant BME FIKP-VÍZ by EMMI is also kindly acknowledged. The authors acknowledge the funding of the
404 OTKA FK 128429 grant.

405 **Conflicts of Interest:** Declare conflicts of interest or state “The authors declare no conflict of interest.” Authors
406 must identify and declare any personal circumstances or interest that may be perceived as inappropriately
407 influencing the representation or interpretation of reported research results. Any role of the funders in the design
408 of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the
409 decision to publish the results must be declared in this section. If there is no role, please state “The funders had
410 no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
411 manuscript, or in the decision to publish the results”.

412 **References**

1. Parker, G. Transport of Gravel and Sediment Mixtures. In *Sedimentation Engineering*; Garcia, M., Ed.; American Society of Civil Engineers, 2008; pp. 165–251 ISBN 978-0-7844-0814-8.
2. Meyer-Peter, E.; Müller, R. *Formulas for Bed-Load Transport*; IAHSR 2nd meeting, Stockholm, Sweden, 7–9 June, 1948;
3. Einstein, H.A. *The Bed-Load Function for Sediment Transportation in Open Channel Flows*; Washington, 1950;
4. Ashida, K.; Michiue, M. Study on hydraulic resistance and bedload transport rate in alluvial streams. *Transactions of Japan Society of Civil Engineering* **1972**, *206*, 59–69.
5. Parker, G.; Klingeman, P.; McLean, D. Bedload and size distribution in natural paved gravel bed streams. *Journal of Hydraulic Engineering* **1982**, *108*, 544–571.

422 6. Parker, G. Surface-based bedload transport relation for gravel rivers. *Journal of Hydraulic Research* **1990**,
423 *28*, 417–436.

424 7. Wilcock, P.R.; Kenworthy, S.T. A two-fraction model for the transport of sand/gravel mixtures. *Water*
425 *Resources Research* **2002**, *38*, 1–12.

426 8. Wilcock, P.R.; Crowe, J.C. Surface-based transport model for mixed-size sediment. *Journal of Hydraulic*
427 *Engineering-Asce* **2003**, *129*, 120–128.

428 9. Wu, W.; Wang, S.S.Y.; Jia, Y. Nonuniform sediment transport in alluvial rivers. *Journal of Hydraulic*
429 *Research* **2000**, *38*, 427–434.

430 10. Powell, D.M.; Reid, I.; Laronne, J.B. Evolution of bed load grain size distribution with increasing flow
431 strength and the effect of flow duration on the caliber of bed load sediment yield in ephemeral gravel
432 bed rivers. *Water Resources Research* **2001**, *37*, 1463–1474.

433 11. Török, G.T.; Baranya, S.; Rüther, N. 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment
434 Deposition. *Water* **2017**, *9*, 56.

435 12. Rákóczi, L.; Sass, J. A Felső-Duna és a Szigetközi mellékágak mederalakulása a dunacsúni duzzasztómű
436 üzembe helyezése után (Changes of the channel of the Hungarian Upper Danube and of the side river
437 arms of the Szigetköz upon putting the Dunacsúny I. river barrage into operati. *Vízügyi Közlemények*
438 **1995**, *77*, 46–75.

439 13. Hankó, Z. Gondolatok a Duna Szap és Szob közötti szakaszának fejlesztéséről (Considerations related
440 to the development of the Danube reach between Szap and Szob). *Vízügyi Közlemények* **2000**, *82*, 285–299.

441 14. Holubová, K.; Čapeková, Z.; Szolgay, J. Impact of hydropower schemes at bedload regime and channel
442 morphology of the Danube River. In Proceedings of the River Flow 2004: Proceedings of the Second
443 International Conference on Fluvial Hydraulics; CRC Press: Napoli, 2004; pp. 135–142.

444 15. Baranya, S.; Józsa, J.; Török, G.T.; Ficsor, J.; Mohácsiné Simon, G.; Habersack, H.; Haimann, M.; Riegler,
445 A.; Liedermann, M.; Hengl, M. A Duna hordalékvizsgálatai a SEDDON osztrák-magyar
446 együttműködési projekt keretében (Introduction of the joint Austro-Hungarian sediment research under
447 the SEDDON ERFE-project). *Hidrológiai Közlöny* **2015**, *95*, 41–46.

448 16. Hankó, Z.; Starosolszky, Ö.; Bakonyi, P. Megvalósíthatósági tanulmány a Duna környezetének és
449 hajózhatóságának fejlesztésére (Danube Environmental and navigation Project, Feasibility Study).
450 *Vízügyi Közlemények* **1996**, *78*, 291–315.

451 17. Goda, L. A Duna gázlói Pozsony-Mohács között (Shallows of the River Danube between Pozsony,
452 Bratislava and Mohács. *Vízügyi Közlemények* **1995**, *77*, 71–102.

453 18. Török, G.T.; Baranya, S. Morphological Investigation of a Critical Reach of the Upper Hungarian
454 Danube. *Periodica Polytechnica Civil Engineering* **2017**, *61*, 752–761.

455 19. Holubová, K.; Čomaj, M.; Lukáč, M.; Mravcová, K.; Čapeková, Z.; Antalová, M. *Final report in DuRe Flood*

456 project - 'Danube Floodplain Rehabilitation to Improve Flood Protection and Enhance the Ecological Values of the
457 River in the Stretch between Sap and Szob; Bratislava, 2015;

458 20. Varga-Lehofer, D.T. A felső-magyarországi Duna morfológiai változásainak elemzése (Investigation of
459 the morphological changes of the Hungarian Upper Danube), BSc Thesis, manuscript: Budapest
460 Univerity of Technology and Economics, 2014.

461 21. Török, G.T.; Józsa, J.; Baranya, S. A Shear Reynolds Number-Based Classification Method of the
462 Nonuniform Bed Load Transport. *Water* **2019**, *11*(1), 1–16.

463 22. Liedermann, M.; Gmeiner, P.; Kreisler, A.; Tritthart, M.; Habersack, H. Insights into bedload transport
464 processes of a large regulated gravel-bed river. *Earth Surface Processes and Landforms* **2017**.

465 23. Baranya, S. Three-dimensional analysis of river hydrodynamics and morphology, PhD Thesis,
466 manuscript: Budapest University of Technology and Economics, 2009.

467 24. Török, G.T.; Baranya, S. A shear Reynolds number based sediment transport classification method for
468 complex river beds. In Proceedings of the 8th International Symposium on Environmental Hydraulics;
469 2018.

470 25. Rákóczi, L. *A Duna Szap-Gönyű közötti szakaszának hajózási viszonyait javító beavatkozások vizsgálata*
471 (*Investigation of interventions for navigation improovement at the Danube channel between Szap and Szob*);
472 Technical report, 2004;

473 26. Baranya, S.; Goda, L.; Józsa, J.; Rákóczi, L. Complex hydro- and sediment dynamics survey of two critical
474 reaches on the Hungarian part of river Danube. *IOP Conference Series: Earth and Environmental Science*
475 **2008**, *4*.

476 27. Egiazaroff, I. V. Calculation of Nonuniform Sediment Concentrations. *Journal of the Hydraulics Division*
477 **1965**, *91*, 225–247.

478 28. Bogárdi, J. *A hordalékmozgás elmélete*; Vilmos, I., Ed.; Akadémiai Kiadó: Budapest, Hungary, 1955;

479 29. van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. *Journal of Hydraulic Engineering* **1984**, *110*,
480 1431–1456.

481 30. van Rijn, L.C. Mathematical modelling of morphological processes in the case of suspended sediment
482 transport. *Delft Hydra. Communication* **1987**.

483 31. Reidar B. Olsen, N. *A Three-Dimensional Numerical Model for Simulation of Sediment Movements in Water*
484 *Intakes with Moving Option*; Trondheim, 2002;

485 32. Olsen, N.R.B. *Numerical Modelling and Hydraulics*; Online manuscript, 2012;

486 33. Pope, S.B. *Turbulent Flows*; Cambridge University Press, 2000; ISBN 9780521598866.

487 34. Patankar, S. V. *Numerical Heat Transfer and Fluid Flow*; Minkowycz, M.J., Sparrow, E.M., Eds.; McGraw-

488 Hill Book Company, 1980; ISBN 0-07-048740-5.

489 35. Schlichting, H. *Boundary-layer theory*; McGraw-Hill: New York, 1979;

490 36. Zinke, P.; Olsen, N.R.B.; Bogen, J.; Rüther, N. 3D modelling of the flow distribution in the delta of Lake
491 Øyeren, Norway. *Hydrology Research* **2010**, *41*, 92–103.

492 37. Török, G.T.; Baranya, S.; Rüther, N. Three-dimensional numerical modeling of non-uniform sediment
493 transport and bed armoring process. In Proceedings of the 18th Congress of the Asia & Pacific Division
494 of the International Association for Hydro-Environment Engineering and Research 2012; Jeju, 2012.

495 38. Fischer-Antze, T.; Reidar B. Olsen, N.; Gutknecht, D. Three-dimensional CFD modeling of
496 morphological bed changes in the Danube River. **2008**, *44*, 1–15.

497 39. Baranya, S. River Bed Material Mapping to Support Habitat Assesment in Large Rivers. In Proceedings
498 of the 12th International Symposium on Ecohydraulics; Tokyo, Japan, 2018.

499 40. BME-VVT; OFV; VIZITERV-Environ Kft *A mértékadó árvízszintek országos felülvizsgálata (Reconsideration
500 of the high water levels in Hungary)*; Budapest, Hungary, 2014;

501 41. Ficsor, J. Lebgetetett hordalék vizsgálata a Felső-magyarországi Duna-szakaszon (Study of suspended
502 sediment transport on the upper Hungarian reach of the Danube River), Thesis, manuscript: Budapest
503 University of Technology and Economics, 2016.

504 42. Török, G.T. Methodological improvement of morphodynamic investigation tools for rivers with non-
505 uniform bed material by, PhD Thesis, manuscript: Budapest Univerity of Technology and Economics,
506 2018.

507 43. Baranya, S.; Józsa, J. Flow analysis in River Danube by field measurement and 3D CFD turbulence
508 modelling. **2006**, *50*, 57–68.

509 44. Baranya, S.; Józsa, J. Numerical and laboratory investigation of the hydrodynamic complexity of a river
510 confluence. *Periodica Polytechnica Civil Engineering* **2007**, *51*, 3–8.

511 45. Török, G.T. Vegyes szemcseösszetételű folyómedrek numerikus vizsgálata (Numerical investigation of
512 non-uniform river bed). *Hidrológiai Tájékoztató* **2013**, 22–24.

513 46. Török, G.T.; Baranya, S.; Rüther, N. Validation of a combined sediment transport modelling approach
514 for the morphodynamic simulation of the upper Hungarian Danube River. In Proceedings of the 19th
515 EGU General Assembly; Vienna, Austria, 2017; Vol. 19:15749.

516 47. Koken, M.; Constantinescu, G. An investigation of the flow and scour mechanisms around isolated spur
517 dikes in a shallow open channel: 1 . Conditions corresponding to the initiation of the erosion and
518 deposition process. *Water Resources Research* **2008**, *44*, 1–19.

519 48. Catalano, P.; Wang, M.; Iaccarino, G.; Moin, P. Numerical simulation of the flow around a circular
520 cylinder at high Reynolds numbers. *International Journal of Heat and Fluid Flow* **2003**, *24*, 463–469.

521 49. Roulund, R.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation of flow
522 and scour around a circular pile. *Journal of Fluid Mechanics* **2005**, *534*, 351–401.

523 50. Baranya, S.; Olsen, N.R.B.; Stoesser, T.; Sturm, T. Three-dimensional rans modeling of flow around
524 circular piers using nested grids. *Engineering Applications of Computational Fluid Mechanics* **2012**, *6*, 648–
525 662.

526