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Abstract: Induction machines drive many industrial processes, and their unexpected failure can cause 
heavy production losses. The analysis of the current spectrum can identify online the characteristic 
fault signatures at an early stage, avoiding unexpected breakdowns. Nevertheless, frequency domain 
analysis requires stable working conditions, which is not the case for wind generators, motors driving 
varying loads, etc. In these cases an analysis in the time-frequency domain -such as a spectrogram- is 
required for detecting faults signatures. The spectrogram is built using the short frequency Fourier 
transform, but its resolution depends critically on the time window used to generate it: short windows 
provide good time resolution, but poor frequency resolution, just the opposite than long windows. 
Therefore, the window must be adapted at each time to the shape of the expected fault harmonics, 
by highly skilled maintenance personnel. In this paper, this problem is solved with the design of 
a new multi-band window, which generates simultaneously many different narrow-band current 
spectrograms, and combines them into as single, high resolution one, without the need of manual 
adjustments. The proposed method is validated with the diagnosis of bar breakages during the 
start-up of a commercial induction motor.

Keywords: fault diagnosis; induction motors; wind energy generation; fourier transforms; spectral 
analysis; spectrogram; transient regime16

1. Introduction17

Induction machines (IMs) are a key component of many industrial processes, either as motors18

or as generators, such as double fed induction generators (DFIGs) used for wind energy generation.19

Their reliability ensures the continuity of the production processes, but they are subjected to eventual20

failures (broken bars, bearing faults, eccentricity, turn to turn or phase to ground short-circuits, etc.),21

which may cause unexpected breakdowns and high economic losses. A way to reduce these risks22

is the continuous monitoring of the machine’s condition, in order to detect the presence of a fault23

at an early stage, when corrective measures can be implemented or maintenance works scheduled.24

Diverse quantities have been proposed in the technical literature for implementing condition based25

maintenance systems (CBMS) [1,2], such as the analysis of the stator currents [3–7], machine vibrations26

[8–10], fluxes [11,12], thermal images [13], or acoustic signals [14,15]. These techniques have been27

applied to detect different types of faults not only of the IM, such as stator inter-turn short circuits28

[11,16], broken bars [17,18], rotor asymmetries [19], eccentricity [20], bearing faults [6,21], but also of29

the inverter drive [3] or the mechanical coupling to the load, as gearboxes and pulleys [3,22].30
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Table 1. Characteristic Frequencies of Different Types of IM Faults

Type of fault Fault Harmonics Frequency

Shorted coils f1
(
k± n 1−s

p
) k = 1, 3, 5 . . .

n = 1, 2, 3, . . .

Rotor asymmetries f1
(
(1− s) k

p ± s
) k

p = 1, 3, 5 . . .

Mixed eccentricity | f1 ± k fr| k = 1, 2, 3 . . .

Bearing (outer race) Nb
2 fr

[
1− Db cos(β)

Dc

]
Bearing (inner race) Nb

2 fr

[
1 + Db cos(β)

Dc

]
Bearing (balls) Dc fr

2Db

[
1−

(
Db cos(β)

Dc

)2]

A diagnostic technique that has gained a widespread interest in recent years is the motor current31

signature analysis (MCSA) [23–26], which is based on the detection of the characteristic fault signatures32

that each type of fault impress in the current spectrum. It is a non-invasive method, which can be33

applied on line without disturbing the normal operation of the machine; it requires, in its more basic34

implementation, just a current sensor for acquiring the current signal and a fast Fourier transform35

(FFT) for generating its spectrum; and it can detect a wide variety of machine faults through their36

spectral signatures, because each type of fault generate a specific set of fault frequencies, as shown37

in Table 1 [27], where f1 stands for the fundamental component frequency, p is the number of pole38

pairs, s is the machine slip, fr is the rotational frequency of the IM rotor, Nb is the number of balls of39

the bearings, Db if the bearing diameter, Dc is the pitch or cage diameter, and β is the contact angle.40

Nevertheless, the use of the current spectrum as signal processing tool in MCSA limits its field of41

application to machines working in stationary conditions, which is not the case of industrial processes42

with varying load or speed conditions, or also of wind generators operating under variable wind43

regimes. In these cases, the fault frequencies shown in Table 1 become random time functions, and44

the fault harmonics do not produce isolated spectral lines in the current spectrum, which blurs their45

characteristic signatures.46

To extend MCSA to the fault diagnosis of IM working in transient regime, advanced47

time-frequency (TF) transforms of the current are needed, so that the transient fault signatures can48

be identified in a joint TF domain. These transforms can be lineal, such as the short-time Fourier49

transform (STFT) [28–30], the short-frequency Fourier transform (SFFT) [31], and the wavelet transform50

(WT)[32], or quadratic, such as the Wigner-Ville distribution (WVD) [33], or the ambiguity function51

[34]. Quadratic TF transforms can achieve optimal resolution for mono-component chirp signals, but52

in case of multi-component ones, they produce cross-terms artifacts that pollute the TF representation53

of the current, making it difficult the correct identification of the fault harmonics. On the contrary,54

linear TF transforms are free from cross-terms artifacts. The STFT representation, the spectrogram, and55

the WVD representation, are built by multiplying the current signal with an analysing window at each56

time instant, and performing the FT of the resultant signal. In the case of the STFT, this window has a57

constant shape, which makes it difficult to obtain a good resolution both in time and in frequency: a58

short window gives a good time resolution, but a poor frequency resolution; on the contrary, a long59

window gives a good frequency resolution, but a poor time resolution. The WT solves this issue by60

performing a multi-resolution analysis, using different windows at different frequency bands: long61

windows for the lower frequency bands, and short windows for the higher frequency bands. But62

this approach makes the application of the WT much more complex than the FT, and distorts the TF63

signature of the fault harmonics.64
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Diverse solutions to this problem have been proposed recently, in order to built a current’s65

spectrogram with enough resolution for being used as an IM fault diagnosis tool. One of them is66

to adapt the shape of the analyzing window in the TF domain to the expected shape of the fault67

harmonics, either using a single window, as in [35], or using different window shapes for different68

sections of the current signal, as in [36]. This approach requires a deep a priori knowledge of the69

time evolution of the fault harmonics in the current signal, which requires highly skilled maintenance70

personnel for implementing it, and difficult its application in automated diagnostic systems. Other71

approach apply to the spectrogram a post-processing based on reassignment [37] or synchrosqueezing72

[9,38] techniques, so improving its sharpness, but these techniques add a considerable computational73

burden to the process of building the current spectrogram, departing from the simplicity of the STFT.74

Another alternative for obtaining an improved spectrogram is the Matching Pursuit approach [39]. This75

method is based on calculating a series of spectrograms, using a set of different windows designated76

as "dictionary" [40], which has to be previously built. Then, combining spectrograms corresponding to77

each window of the dictionary through a pre-defined algorithm, obtains the final spectrogram, which78

is considered the optimum one. This method has several drawbacks, such as the need of building79

an extensive dictionary, with a great amount of different windows for obtaining a good resolution80

spectrogram. This implies to calculate a huge quantity of spectrograms and thus consuming a vast81

quantity of time and computational resources82

In this paper, a novel approach (up to the best of the authors’ knowledge) is proposed to obtain83

a high-resolution current spectrogram, useful for fault diagnostic purposes, with the simplicity of a84

single STFT. It is based on85

1. Performing the STFT with a wide range of windows with different lengths, and selecting, for86

each point in the TF domain, the best result obtained at that point among the complete set of87

windows.88

2. Instead of running a separate STFT for each of the windows used in the analysis, a single,89

multi-band window is built by stacking all the desired analysing windows in consecutive90

frequency bands. This approach obtains in parallel the spectrograms corresponding to several91

hundreds of different analysis windows with the computing cost of a single one, which makes it92

suitable for fast, online diagnostic systems in transient regime.93

The structure of the paper is as follows. In Section 2 the generation of the spectrogram with94

Gaussian windows shifted in the frequency domain is analyzed, and in Section 3 it is used for the95

theoretical and practical explanation of the proposed method. In Section 4, it is validated with the96

analysis of the start-up current of a high rated power, medium voltage squirrel cage induction motor,97

with broken bars. Section 5 presents the conclusions of this work.98

2. Time-Frequency Analysis of the Machine’s Current via STFT with a Multi-Band Window99

To highlight the spectral content of a time-varying current signal, which may contain the100

characteristic fault harmonics given in Table 1, it is necessary to generate a representation of the101

current signal in the join TF domain. Among the diverse transforms available to this end (STFT, SFFT,102

WT, WVD, ambiguity function, etc.), the STFT has been selected in this work, because it is a linear103

transform, without cross-terms artifacts, and is computationally very effective, which makes it suitable104

for being implemented in low-cost, low-power embedded devices for on-line CBM systems.105

In this Section, the traditional STFT analysis of the stator current using a Gaussian window will be106

first reviewed, and after the proposed method using a multi-band frequency window will be presented107

and compared with the traditional one.108

2.1. Spectrogram of Machine’s Current109

The STFT of a current signal i(t) is a linear TF transform that is able to generate a joint TF110

representation of the current, the spectrogram, through the following steps:111
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1. For each instant τ, the current signal is multiplied element by element by the conjugate of a112

suitable time window centered at τ, h(t− τ)113

iτ(t) = i(t)h(t− τ)∗ (1)

114

that emphasizes the content of the current signal at time τ, and attenuates it at other times115

iτ(t) =

{
i(t), if t is close to τ

0, if t is far from τ
(2)

116

2. The Fourier transform if applied to the time-windowed signal iτ(t), which gives the frequency
content of the current signal i(t) around time τ

Iτ(ω) = 1√
2π

∫
e−jωtiτ(t)dt

= 1√
2π

∫
e−jωti(t)h(t− τ)∗dt

(3)

where ω = 2π f , and f stands for the frequency, in Hz.117

3. The energy density spectrum at time τ is obtained as

ISP(τ, ω) = |Iτ(ω)|2 =
∣∣∣ 1√

2π

∫
e−jωti(t)h(t− τ)∗dt

∣∣∣2 (4)

118

For each instant τ the STFT generates a different energy spectral density ISP(τ, ω), and the total119

set of these spectra constitutes the current spectrogram. A critical issue for obtaining a high resolution120

spectrogram of the current signal is the selection of the window h(t) in (4). To obtain a high resolution121

of the energy content of the current signal in the joint TF domain, it is necessary to use a window122

with a high concentration of energy in the TF plane, but such energy concentration is limited by the123

Heisenberg’s uncertainty principle : a short time window gives a good time resolution, but a poor124

frequency resolution, and, on the contrary, a long time window gives a good frequency resolution, but125

a poor time resolution. The window that can achieve the highest energy concentration in the joint TF126

domain is the Gaussian window [35], given in the time domain by127

g(t) =
( α

π

)1/4
e
−α
2 t2

(5)

128

and in the frequency domain by129

G(ω) =
( 1

απ

)1/4
e−

1
2α ω2

(6)

130

The standard deviation of the Gaussian window in the time domain (5) is σ2
t = 1/(2α), and in the

frequency domain (6) is σ2
ω = α/2. Therefore, for the Gaussian window, the product of its duration σt

and its bandwidth σω gives [41]
σtσω = 1/2 (7)

131

The Heisenberg’s uncertainty principle states that one cannot construct any signal whose duration
σt and bandwidth σω are, both, arbitrarily small, because

σtσω ≥ 1/2 (8)
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132

In this way, the Gaussian window has a duration-bandwidth product (7) that reaches the minimum133

value (i.e, the highest concentration in the joint TF plane) that can be achieved under the uncertainty134

principle (8).135

The parameter α in (5) and in (6) is the only one that defines the shape of the Gaussian window. A136

low value of α gives a long window with a narrow bandwidth, while a high value of α gives a short137

window, with a wide bandwidth. This parameter must be tuned to the current signal to be analyzed138

with the STFT. As detailed in [35], the optimal Gaussian window to build the spectrogram of a given139

current signal is the one that has the maximum overlap with the current in the TF domain. That is, the140

optimal parameter α is the one whose height/width ratio σω/σt = α best approximates the slope of the141

current signal in the TF domain. Unfortunately, the slope of the fault harmonics in an IM in transient142

regime is not a constant value, because in this regime the slip and the rotational frequency in Table 1143

are time-varying quantities, as well as the fault frequencies that depend on them. Besides, different144

components of the current signal may have different slopes (such as the fundamental component and145

the fault harmonics). These facts preclude the use of a single, optimal Gaussian windows for building146

a high resolution diagnostic spectrogram of the IM current.147

2.2. Frequency Shifting of the Gaussian Analysing Window148

If the Gaussian window (5) is used as the analysing window to build the energy density spectrum,149

then (4) becomes150

ISP(τ, ω) = |Iτ(ω)|2 =
∣∣∣ 1√

2π

∫
e−jωti(t)g(t− τ)∗dt

∣∣∣2 (9)

151

The Gaussian window (5) is a real valued function. If it shifted in the frequency domain by a152

frequency fk, corresponding to an angular frequency ωk = 2π fk, then (5) becomes a complex-valued153

function154

gk(t) = g(t)ejωk =
( α

π

)1/4
e
−α
2 t2

ejωk (10)

155

Replacing (10) in (9) gives156

ISP(τ, ω) = |Iτ(ω)|2 =
∣∣∣ 1√

2π

∫
e−jωti(t)g(t− τ)∗e−jωk dt

∣∣∣2 (11)

157

that is,

ISP(τ, ω) = |Iτ(ω)|2 =
∣∣∣ 1√

2π

∫
e−j(ω+ωk)ti(t)g(t− τ)∗dt

∣∣∣2 (12)

158

and, making the change of variable ω′ = ω + ωk, (12) can be expressed as159

ISP(τ, ω′ −ωk) = |Iτ(ω
′ −ωk)|2 =

∣∣∣ 1√
2π

∫
e−jω′ti(t)g(t− τ)dt

∣∣∣2 (13)

160

Therefore, as the shift ωk of the Gaussian analysis window changes, the frequencies of the entire161

corresponding spectrogram (13) suffer the same ωk shift, at each time τ.162

3. Proposed Multi-Band Analysing Window163

A possible approach for obtaining a high-resolution spectrogram of a current signals with164

components of different slopes in the TF domain could be a variant of the Matching Pursuit approach,165

using as dictionary a set of Gaussian functions with different values of α. In this way, a batch of166
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spectrograms, each one with a different value α for the Gaussian window (5) would be generated.167

In a second stage, for each point in the TF domain, the best value obtained among the whole set of168

spectrograms would be selected, giving the best approximation to the ideal TF representation of the169

current signal.170

The drawback of this technique is the high amount of resources that it requires. For each possible171

value of α, in a given range, a full spectrogram must be built, which is a time-consuming operation,172

and, also, it must be stored, which implies high memory resources. Afterwards, a processing algorithm173

must be applied to each point of all the spectrograms to combine them. These requirements make this174

technique unsuitable for being deployed with on-line, low power embedded devices.175

On the contrary, the novel technique presented in this paper can achieve the same results at176

roughly the cost of a single STFT, in terms of speed and storage requirements, even with the use of177

several hundreds of Gaussian windows with different values of α. It is based on a particular feature178

of the IM faults presented in Table 1: in most industrial IMs, the fault harmonics with the highest179

amplitudes are those with an index k = 1, and they are located in a narrow, low frequency band with a180

bandwidth fb (normally of one or two hundreds of Hz). Nevertheless, the current signal is acquired181

normally using high frequencies rates, from 5 or 10 kHz up to 100 kHz and more. This implies that,182

when performing the FT of the windowed current signal, at each stage of the STFT process, only the183

values within the narrow band [0− fb] of diagnostic interest are kept, and the rest of the spectrogram184

values are discarded, what represents a waste of computing resources.185

The proposed method addresses this problem, filling the whole spectrogram with useful186

diagnostic contents. It relies on frequency shifting the Gaussian analysing window, as in sub-section187

2.2, (13). If the current signal is low-pass filtered with a cut-off frequency fb (using, for example, a188

frequency filter as in [42]), then its spectrogram, built with a Gaussian window (5), will be non-zero189

only in the frequency band of diagnostic interest [0− fb]. But, if the Gaussian window is shifted to a190

frequency fk = fb in (10), then the spectrogram of filtered current signal will appear in the frequency191

band [ fb − 2 fb] (and will be zero outside this band). If the α parameters of both Gaussian windows (the192

shifted and the non-shifted one) are equal, the same spectral information will appear in both frequency193

bands. But, if the shifted Gaussian window has a different value of α, then the spectrograms in the194

frequency bands [0− fb] and [ fb − 2 fb] will be different, each one corresponding to a different value of195

the parameter α.196

What is proposed in this paper is to extend this feature, using, instead of two frequency bands,197

a partition of the whole spectrogram in Ng adjacent bands, each one with a frequency width equal198

to fb; and to use a set of Ng Gaussian windows, with different values of α (αk, k = 0 . . . Ng − 1), and199

with increasing shifting frequencies ( fk = k fb, k = 0 . . . Ng − 1), for filling each of these frequency200

bands. This can be achieved in a single run of the FFT if, using the superposition principle, all these Ng,201

frequency shifted, Gaussian windows are summed in the time domain, giving a single time window.202

The use of this new, multi-band window, in (4) gives a single spectrogram with Ng adjacent bands,203

each one corresponding to the analysis of the current signal with a different parameter αk for the204

Gaussian window.205

For a given sampling frequency fs, and a frequency band of interest fb, the total number Ng of206

adjacent frequency bands that can be used is equal to207

Ng = fs/ fb (14)

208

The proposed multi-band window is built, using (10), as

gm(t) =
Ng−1

∑
k=0

(αk
π

)1/4
e−

αk
2 t2

ejk2π fb (15)
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As an example, a multi-band window (15) has been built using Ng = 10 different Gaussian windows209

with values of α in (5) spanning linearly the range [αmin = 1 - αmax = 700], with a step equal to210

∆α = (αmax − αmin)/(Ng − 1), as211

gm(t) =
Ng−1

∑
k=0

(αmin + k∆α

π

)1/4
e−

αmin+k∆α
2 t2

ejk2π fb . (16)

The multi-band window (16) is displayed in Fig. 1, which shows the real (Fig. 1.top) and the imaginary212

part (Fig. 1.middle) of the window, as well as its spectrum (Fig. 1.bottom). Fig. 2 shows the spectrogram213

of the window in the joint TF domain, with all the individual Gaussian atoms stacked in adjacent214

frequency bands.215
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Figure 1. Multi-band window designed in Section 3 in the time domain (real part, top, imaginary part,
middle), and in the frequency domain (bottom). This windows contains 20 Gaussian windows, located
in 20 adjacent frequency bands of 100 Hz, spanning linearly the range [α = 1 - α = 700].
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Figure 2. Atoms of the multi-band window designed in Section 3 in the joint time-frequency domain.
This windows contains 20 Gaussian windows, located in 20 adjacent frequency bands of 100 Hz,
spanning linearly the range from α = 1 (bottom) up to α = 700 (top).

3.1. Steps for Applying the Proposed Multi-Band Window216

In this sub-section the process for applying the concept of multi-band window to a given current
signal i(t) is explained, using a synthetic current signal i(t) with a sinusoidal component of 50 Hz, and
a linear chirp with a frequency slope of 1 Hz/s, starting at -50 Hz. It has been built with a duration of
50 s, using a frequency sampling rate of 200 Hz (Fig. 3),

i(t) = cos(2π50t) + 0.05 cos(2π(−50t + t2)). (17)

217
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Figure 3. Synthetic current signal (17) used for illustrating the application of the proposed method.

The steps for analysing the current signal (17) using the proposed multi-band windows are the218

following ones:219

1. The analysis window (15) is built:220

• first, the bandwidth of diagnostic interest [0- fb] is established ([0-]100 Hz] in this case),221

which gives the maximum number of elementary Gaussian windows from (14) (Ng =222

200/100 = 2). The current signal is low-pass filtered with a cut-off frequency equal to fb. In223

this work, a spectral filter which zeroes all the spectrum bins with a frequency greater than224

fb has been used, as in [42].225

• second, the parameters αk of each of these windows in (15) must be selected. For the simple226

signal (17), only two values of α are used, α0 = 1 (a long window), and α1 = 12.6, tailored227

to the chirp component according to [35].228

The resulting multi-band window expression, applying (15), is

gm(t) =
( 1

π

)1/4
e−t2/2 +

(12.6
π

)1/4
e−12.6t2/2ej2π100t (18)

This window is plotted in Fig. 4, in the time and frequency domains.229
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Figure 4. Multi-band window (15) in the time domain (top), and in the frequency domain (bottom).
This windows contains 2 Gaussian windows, in 2 adjacent frequency bands of 100 Hz, one with α = 1
and the other one with α = 12.6.

2. The spectrogram of the current signal (17) is built, using the multi-band window (18) as sliding230

window (Fig. 5). It shows two elementary spectrograms in adjacent TF regions, obtained with231

a single run of the STFT algorithm. The bottom one (α = 1) locates the sinusoidal component232

at 50 Hz, but blurs the chirp component. On the contrary, the top one (α = 12.6) locates the233

chirp component, but widens the sinusoidal component.This second Gaussian window, and the234

spectrogram that it generates, have been shifted to the frequency band [100 Hz-200 Hz].235
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Figure 5. Spectrogram of the current signal (17) obtained in step 2 with the multi-band window (right).
The Gaussian component of the window with α = 1 (bottom, left) locates the sinusoidal component
at 50 Hz (bottom, right), but fails to resolve the chirp component. On the contrary, the Gaussian
component with α = 12.6 (top, left), locates the chirp component, but widens the sinusoidal component
(top, right).The Gaussian window that is frequency shifted (left) generates a spectrogram that is also
frequency shift (right).

3. All the stacked, elementary spectrograms obtained in step 2 are shifted back to the frequency band236

[0- fb], as shown in Fig. 6. This process has a negligible computational cost, just the renumbering237

of the frequency axis of each elementary spectrogram.238

Figure 6. Relocation in the frequency axis of the elementary spectrograms, so that all of them span the
same frequency band [0- fb].
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4. The points with the same time-frequency coordinates in all the relocated spectrograms obtained239

in step 3 (Fig. 6, are combined to give a single high resolution spectrogram of the TF region of240

diagnostic interest, in the frequency band [0 - fb] (Fig. 7). The combination process used in this241

work consists in selecting, for each point of this region, the minimum value obtained among all242

the relocated spectrograms. The final result shows with a high resolution both the sinusoidal243

component at 50 Hz and the chirp component.244

Figure 7. High resolution spectrogram of the current signal (17): for each point of the TF region of
interest, the minimum value obtained among all the stacked spectrograms of Fig. 5, right, is selected.
The final result shows with a high resolution both the sinusoidal component at 50 Hz and the chirp
component.

4. Experimental Validation245

For the experimental verification of the proposed approach, an IM whose characteristics are given246

in Appendix A has been prepared with a forced rotor fault, by drilling a hole in one of the rotor bars.247

The stator current during a startup transient has been acquired with a frequency rate fs = 5000 Hz,248

during 12 seconds, using a current probe whose characteristics are given in Appendix B, and it is249

shown in Fig. 8.250
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Figure 8. Start-up current of the motor of Appendix A with a broken bar fault.

From Table 1, the characteristic frequencies of the fault harmonics in an IM with a rotor asymmetry,
such as a broken bar, are, for the main fault harmonics (k/p = 1 in Table 1),

fbb = f1(1± 2s) (19)
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In particular, the fault harmonic with a frequency given by

fLSH = f1(1− 2s), (20)

which is known as the lower side-band harmonic (LSH), is commonly tracked for the diagnosis of251

rotor asymmetries. During a start-up transient, the trajectory of the LSH in the TF plane given by (20)252

generates a typical V-shaped fault signature [43], with a frequency that initially (s = 1) is equal to253

the fundamental frequency f1, decreases to 0 (s = 0.5), and then increases again until its steady-state254

regime value of f1(1− 2s) ≈ f1, according to (20). The ability to detect this fault harmonic using the255

proposed method is to be assessed in this section.256

The three steps presented in Section 3.1 will be followed in this experimental case to obtain the257

spectrogram of the current signal presented in Fig. 8.258

1. The analysis window (15) is built:259

• first, the bandwidth of diagnostic interest is established. In this case, from (20), the frequency260

band of interest is the [0 - 50 Hz] band. Due to the presence of higher order harmonics in the261

current spectrum, apart form the LSH, a wider band [0 - 125 Hz] has been selected, in order262

to better assess the strength of the LSH compared with them. In this way, With a sampling263

frequency of 5000 Hz, the maximum number of elementary Gaussian windows from (14) is264

Ng = 5000/125 = 40 windows.265

• second, the parameter αk of each of these windows in (15) is selected. In this case, a linear266

range of the parameter α is used, covering the range [αmin = 1 - αmax = 700].267

The resulting multi-band window, applying (15), is

gm(t) =
39

∑
k=0

( kαk
π

)1/4
e−

kαk
2 t2

ejk2π125, (21)

with
αk = 1 + k

700− 1
39

k = 0, 1 . . . 39. (22)

The multi-band window (21) is displayed in Fig. 9, which shows the real (Fig. 9.top) and the268

imaginary part (Fig. 9.middle) of the window, as well as its spectrum (Fig. 9.bottom).269
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Figure 9. Multi-band window (21) in the time domain (real part, top, imaginary part, middle), and in
the frequency domain (bottom). This windows contains 40 Gaussian windows, located in 40 adjacent
frequency bands of 125 Hz, with values of α ranging from αmin = 1 to αmax = 700.

2. The spectrogram of the current signal of Fig. 8 is built. First, the current signal is low-pass270

filtered, keeping only the frequency bins of its spectrum lower than 125 Hz. After, and using the271

multi-band window (21) as sliding window, the STFT algorithm (4) is applied, which generates272

the spectrogram sown in Fig. 10. This spectrogram contains 40 elementary spectrograms in273

adjacent TF regions (Fig. 10, right), obtained with 40 different Gaussian windows (Fig. 10, left),274

at the cost of a single run of the STFT algorithm (6 seconds with the computer of Appendix C).275
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Figure 10. Spectrograms of the current of Fig. 8 (right) obtained with the multi-band window (21) (left).
The 40 stacked spectrograms have been obtained with a single run of the STFT algorithm.

Two of the 40 individual Gaussian windows shown in Fig. 10 are displayed in Fig. 11, left, along276

with their corresponding current spectra (Fig. 11, right). The two zoomed bands corresponds to277

the spectrogram located in the base frequency band [0-125 Hz] (Fig. 11, bottom), which defines278

clearly the fundamental component, but blurs the fault harmonics, and to the spectrogram shifted279

to the frequency band [1500-1625 Hz], (Fig. 11, top) which defines clearly the fault harmonics,280

but widens the fundamental component.281
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Figure 11. Zoom of Fig. 10 showing two of the individual Gaussian windows contained in the
multi-band window of Fig. 10 (left), and the corresponding spectrograms generated with them (right).
The two zoomed bands corresponds to the spectrogram located in base frequency band [0-125 Hz]
(bottom), which defines clearly the fundamental component, but blurs the fault harmonics, and to
the spectrogram shifted to the frequency band [1500-1625 Hz] (top), which defines clearly the fault
harmonics, but widens the fundamental component.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2019                   doi:10.20944/preprints201908.0039.v1

Peer-reviewed version available at Energies 2019, 12, 3361; doi:10.3390/en12173361

https://doi.org/10.20944/preprints201908.0039.v1
https://doi.org/10.3390/en12173361


3. All the stacked, elementary spectrograms obtained in step 2 (Fig. 10, right), are relocated in the282

base frequency band [0 125 Hz], by renumbering their frequency axis.283

4. All the relocated, elementary spectrograms obtained in step 3 (Fig. 10, right), are combined to give284

a high resolution spectrogram of the TF region of diagnostic interest (Fig. 12). The combination285

process used in this work consists in selecting, for each point of this [0 - 125 Hz] region, the286

minimum value obtained among all the relocated spectrograms. The final result shows with a287

high resolution both the sinusoidal component at 50 Hz and the LSH fault component. Unlike288

the individual spectrograms, the optimized spectrogram clearly shows the LSH not only during289

the transient periode, but also when the steady state is reached; it is also remarkable the set290

of fault-related second-order components that are revealed, which helps to get a more reliable291

diagnostic.292

Figure 12. High resolution spectrogram of the current of Fig. 8: for each point of the TF region of
interest, the minimum value obtained among all the stacked spectrograms of Fig. 10, right, is selected.
The final result shows with a high resolution both the sinusoidal component at 50 Hz and the LSH fault
component.

5. Conclusions293

In this work, a novel technique for performing the fault diagnosis of IMs working in transient294

regime has been presented and validated experimentally. This technique consists in building a295

multi-band analysing window, composed by several, different Gaussian windows, stacked in the296

frequency domain. When this window is multiplied by the current signal in the time domain, it297

generates a spectrum which contains all the spectra generated by each of the Gaussian windows298

that form the multi-band window. In this way, a spectrogram containing even hundreds of different299

Gaussian windows can be obtained at the cost of a single run of the STFT algorithm. The selection300

of the parameters of the individual windows that compose the multi-band window can be setup by301

the user using different criteria, without affecting the performance of the proposed approach. In this302

work, a blind approach has been used, by selecting a range of individual windows that cover a wide303

range of, a priori, unkown fault harmonic components. This approach can be particularly useful for304

automated diagnostic system, which can operate without expert assistance, and for the detection of305

different types of faults. In this case, a single multi-band window can avoid the design of multiple306

analysis windows specifically designed for each single type fault.307
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Appendix A Motor Characteristics315

Three-phase induction machine. Rated characteristics: P = 1.1 kW, f = 50 Hz, U = 230/400 V,316

I = 2.7/4.6 A, n = 1410 r/min , cos ϕ = 0.8.317

Appendix B Current Clamp318

Chauvin Arnoux MN60, Nominal measuring scope: 100 mA–20A, ratio input/output:319

1 A/100 mV, intrinsic error: ≤ 2% + 50 mV, frequency use: 400 Hz–10 kHz.320

Appendix C Computer Features321

CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB, Matlab Version: 9.6.0.1072779322

(R2019a).323
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