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1 Abstract: Induction machines drive many industrial processes, and their unexpected failure can cause
= heavy production losses. The analysis of the current spectrum can identify online the characteristic
s fault signatures at an early stage, avoiding unexpected breakdowns. Nevertheless, frequency domain
«  analysis requires stable working conditions, which is not the case for wind generators, motors driving
s varying loads, etc. In these cases an analysis in the time-frequency domain -such as a spectrogram- is
o required for detecting faults signatures. The spectrogram is built using the short frequency Fourier
»  transform, but its resolution depends critically on the time window used to generate it: short windows
s provide good time resolution, but poor frequency resolution, just the opposite than long windows.
o  Therefore, the window must be adapted at each time to the shape of the expected fault harmonics,
10 by highly skilled maintenance personnel. In this paper, this problem is solved with the design of
1 anew multi-band window, which generates simultaneously many different narrow-band current
12 spectrograms, and combines them into as single, high resolution one, without the need of manual
1z adjustments. The proposed method is validated with the diagnosis of bar breakages during the
1« start-up of a commercial induction motor.

15 Keywords: fault diagnosis; induction motors; wind energy generation; fourier transforms; spectral
s analysis; spectrogram; transient regime

7 1. Introduction

-

18 Induction machines (IMs) are a key component of many industrial processes, either as motors
1s  Or as generators, such as double fed induction generators (DFIGs) used for wind energy generation.
20 Their reliability ensures the continuity of the production processes, but they are subjected to eventual
= failures (broken bars, bearing faults, eccentricity, turn to turn or phase to ground short-circuits, etc.),
22 which may cause unexpected breakdowns and high economic losses. A way to reduce these risks
2 is the continuous monitoring of the machine’s condition, in order to detect the presence of a fault
2« at an early stage, when corrective measures can be implemented or maintenance works scheduled.
= Diverse quantities have been proposed in the technical literature for implementing condition based
2 maintenance systems (CBMS) [1,2], such as the analysis of the stator currents [3—7], machine vibrations
2z [8-10], fluxes [11,12], thermal images [13], or acoustic signals [14,15]. These techniques have been
2s  applied to detect different types of faults not only of the IM, such as stator inter-turn short circuits
20 [11,16], broken bars [17,18], rotor asymmetries [19], eccentricity [20], bearing faults [6,21], but also of
30 the inverter drive [3] or the mechanical coupling to the load, as gearboxes and pulleys [3,22].
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Table 1. Characteristic Frequencies of Different Types of IM Faults

Type of fault Fault Harmonics Frequency
k=1,3,5...
Shorted coils k+nls "
filk£n ) n=1,23,...
Rotor asymmetries A((1- s)% +5) % =1,3,5
Mixed eccentricity |f1 £ kfrl k=1,2,3
Bearing (outer race) % fr [1 - Db%f(ﬁ)]
Bearing (inner race) M f, [1 + Db%f(/s)]
2
Bearing (balls) gﬂ; . [1 — (Db#f(ﬁw }
31 A diagnostic technique that has gained a widespread interest in recent years is the motor current

»2  signature analysis (MCSA) [23-26], which is based on the detection of the characteristic fault signatures
ss  that each type of fault impress in the current spectrum. It is a non-invasive method, which can be
s« applied on line without disturbing the normal operation of the machine; it requires, in its more basic
s implementation, just a current sensor for acquiring the current signal and a fast Fourier transform
s (FFT) for generating its spectrum; and it can detect a wide variety of machine faults through their
sz spectral signatures, because each type of fault generate a specific set of fault frequencies, as shown
se in Table 1 [27], where f; stands for the fundamental component frequency, p is the number of pole
ss  Ppairs, s is the machine slip, f, is the rotational frequency of the IM rotor, N, is the number of balls of
s the bearings, Dy, if the bearing diameter, D, is the pitch or cage diameter, and B is the contact angle.
a Nevertheless, the use of the current spectrum as signal processing tool in MCSA limits its field of
a2 application to machines working in stationary conditions, which is not the case of industrial processes
«»  with varying load or speed conditions, or also of wind generators operating under variable wind
« regimes. In these cases, the fault frequencies shown in Table 1 become random time functions, and
s the fault harmonics do not produce isolated spectral lines in the current spectrum, which blurs their
s characteristic signatures.

a7 To extend MCSA to the fault diagnosis of IM working in transient regime, advanced
« time-frequency (TF) transforms of the current are needed, so that the transient fault signatures can
4 be identified in a joint TF domain. These transforms can be lineal, such as the short-time Fourier
so transform (STFT) [28-30], the short-frequency Fourier transform (SFFT) [31], and the wavelet transform
s1 (WT)[32], or quadratic, such as the Wigner-Ville distribution (WVD) [33], or the ambiguity function
52 [34]. Quadratic TF transforms can achieve optimal resolution for mono-component chirp signals, but
ss  in case of multi-component ones, they produce cross-terms artifacts that pollute the TF representation
s« of the current, making it difficult the correct identification of the fault harmonics. On the contrary,
ss linear TF transforms are free from cross-terms artifacts. The STFT representation, the spectrogram, and
ss the WVD representation, are built by multiplying the current signal with an analysing window at each
sz time instant, and performing the FT of the resultant signal. In the case of the STFT, this window has a
ss constant shape, which makes it difficult to obtain a good resolution both in time and in frequency: a
ss short window gives a good time resolution, but a poor frequency resolution; on the contrary, a long
e window gives a good frequency resolution, but a poor time resolution. The WT solves this issue by
&1 performing a multi-resolution analysis, using different windows at different frequency bands: long
e windows for the lower frequency bands, and short windows for the higher frequency bands. But
es this approach makes the application of the WT much more complex than the FT, and distorts the TF
es signature of the fault harmonics.
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o5 Diverse solutions to this problem have been proposed recently, in order to built a current’s
es spectrogram with enough resolution for being used as an IM fault diagnosis tool. One of them is
ez to adapt the shape of the analyzing window in the TF domain to the expected shape of the fault
ss harmonics, either using a single window, as in [35], or using different window shapes for different
es sections of the current signal, as in [36]. This approach requires a deep a priori knowledge of the
70 time evolution of the fault harmonics in the current signal, which requires highly skilled maintenance
= personnel for implementing it, and difficult its application in automated diagnostic systems. Other
72 approach apply to the spectrogram a post-processing based on reassignment [37] or synchrosqueezing
7 [9,38] techniques, so improving its sharpness, but these techniques add a considerable computational
za burden to the process of building the current spectrogram, departing from the simplicity of the STFT.
7s Another alternative for obtaining an improved spectrogram is the Matching Pursuit approach [39]. This
s method is based on calculating a series of spectrograms, using a set of different windows designated
7z as "dictionary" [40], which has to be previously built. Then, combining spectrograms corresponding to
7e each window of the dictionary through a pre-defined algorithm, obtains the final spectrogram, which
7 is considered the optimum one. This method has several drawbacks, such as the need of building
s an extensive dictionary, with a great amount of different windows for obtaining a good resolution
a1 spectrogram. This implies to calculate a huge quantity of spectrograms and thus consuming a vast
s2 quantity of time and computational resources

83 In this paper, a novel approach (up to the best of the authors” knowledge) is proposed to obtain
s« a high-resolution current spectrogram, useful for fault diagnostic purposes, with the simplicity of a
es single STFT. It is based on

86 1. Performing the STFT with a wide range of windows with different lengths, and selecting, for
o7 each point in the TF domain, the best result obtained at that point among the complete set of
e windows.

80 2. Instead of running a separate STFT for each of the windows used in the analysis, a single,
% multi-band window is built by stacking all the desired analysing windows in consecutive
01 frequency bands. This approach obtains in parallel the spectrograms corresponding to several
02 hundreds of different analysis windows with the computing cost of a single one, which makes it
03 suitable for fast, online diagnostic systems in transient regime.

0a The structure of the paper is as follows. In Section 2 the generation of the spectrogram with

os Gaussian windows shifted in the frequency domain is analyzed, and in Section 3 it is used for the
s theoretical and practical explanation of the proposed method. In Section 4, it is validated with the
oz analysis of the start-up current of a high rated power, medium voltage squirrel cage induction motor,
os with broken bars. Section 5 presents the conclusions of this work.

9o 2. Time-Frequency Analysis of the Machine’s Current via STFT with a Multi-Band Window

100 To highlight the spectral content of a time-varying current signal, which may contain the
101 characteristic fault harmonics given in Table 1, it is necessary to generate a representation of the
102 current signal in the join TF domain. Among the diverse transforms available to this end (STFT, SFFT,
13 WT, WVD, ambiguity function, etc.), the STFT has been selected in this work, because it is a linear
10e  transform, without cross-terms artifacts, and is computationally very effective, which makes it suitable
105 for being implemented in low-cost, low-power embedded devices for on-line CBM systems.

106 In this Section, the traditional STFT analysis of the stator current using a Gaussian window will be
w07 first reviewed, and after the proposed method using a multi-band frequency window will be presented
s and compared with the traditional one.

w9 2.1. Spectrogram of Machine’s Current

110 The STFT of a current signal i(t) is a linear TF transform that is able to generate a joint TF
w1 representation of the current, the spectrogram, through the following steps:
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112 1. For each instant 7, the current signal is multiplied element by element by the conjugate of a
113 suitable time window centered at T, h(t — T)
iz(t) = i(Hh(t — )" ©)
114
115 that emphasizes the content of the current signal at time 7, and attenuates it at other times
. i(t), iftisclosetoT
ie(y = 4 1 A @
0, iftisfarfromT

2. The Fourier transform if applied to the time-windowed signal i (t), which gives the frequency
content of the current signal i(¢) around time T

L(w) = \/% [ e wtiz(t)dt

®)
rfe JOti(HYh(t — T)*dt
17 where w = 27tf, and f stands for the frequency, in Hz.
3. The energy density spectrum at time 7 is obtained as
wt * 2
Isp(T, @) = |Ie(w)]? = ’W/ - (t— 1) dt )
110 For each instant 7 the STFT generates a different energy spectral density Isp(7, w), and the total

120 set of these spectra constitutes the current spectrogram. A critical issue for obtaining a high resolution
121 spectrogram of the current signal is the selection of the window h(t) in (4). To obtain a high resolution
122 of the energy content of the current signal in the joint TF domain, it is necessary to use a window
123 with a high concentration of energy in the TF plane, but such energy concentration is limited by the
12« Heisenberg’s uncertainty principle : a short time window gives a good time resolution, but a poor
frequency resolution, and, on the contrary, a long time window gives a good frequency resolution, but
126 a poor time resolution. The window that can achieve the highest energy concentration in the joint TF
127 domain is the Gaussian window [35], given in the time domain by

"
N
o

4 1/4 —a 2
g =(2) e ©)
120 and in the frequency domain by
1\1/4 1 »
G((U) = (E) e~ wY (6)

The standard deviation of the Gaussian window in the time domain (5) is 07 = 1/(2«), and in the
frequency domain (6) is 02 = a/2. Therefore, for the Gaussian window, the product of its duration o
and its bandwidth o, gives [41]

010 =1/2 (7)

131
The Heisenberg’s uncertainty principle states that one cannot construct any signal whose duration
oy and bandwidth o, are, both, arbitrarily small, because

00, > 1/2 (8)
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133 In this way, the Gaussian window has a duration-bandwidth product (7) that reaches the minimum
13s  value (i.e, the highest concentration in the joint TF plane) that can be achieved under the uncertainty
135 principle (8).

136 The parameter « in (5) and in (6) is the only one that defines the shape of the Gaussian window. A
137 low value of a gives a long window with a narrow bandwidth, while a high value of « gives a short
132 window, with a wide bandwidth. This parameter must be tuned to the current signal to be analyzed
130 with the STFT. As detailed in [35], the optimal Gaussian window to build the spectrogram of a given
190 current signal is the one that has the maximum overlap with the current in the TF domain. That is, the
11 optimal parameter « is the one whose height/width ratio ., /0; = a best approximates the slope of the
12 current signal in the TF domain. Unfortunately, the slope of the fault harmonics in an IM in transient
13 regime is not a constant value, because in this regime the slip and the rotational frequency in Table 1
s are time-varying quantities, as well as the fault frequencies that depend on them. Besides, different
s components of the current signal may have different slopes (such as the fundamental component and
16 the fault harmonics). These facts preclude the use of a single, optimal Gaussian windows for building
147 a high resolution diagnostic spectrogram of the IM current.

s 2.2. Frequency Shifting of the Gaussian Analysing Window

149 If the Gaussian window (5) is used as the analysing window to build the energy density spectrum,
150 then (4) becomes

2
Isp(t, @) = |Ie(@) = | = vor: [ttt — vyt ©)

152 The Gaussian window (5) is a real valued function. If it shifted in the frequency domain by a
13 frequency f, corresponding to an angular frequency wy = 27 fy, then (5) becomes a complex-valued
1« function

. 1/4
gi(t) = g(B)e = () e el (10)
:: Replacing (10) in (9) gives
lan(r, ) = @) = | = [ e ie)gle = e esae] (1)
" that is,
Isp(t, @) = |Ie(@) P = | == = et redtiqhyg(t - ) “ai| (12)
:: and, making the change of variable w’ = w + wy, (12) can be expressed as

Isp(T, 0’ — wy) = |l (' — wy)| eI ()g(t — T)dt‘ (13)

L)

161 Therefore, as the shift wy of the Gaussian analysis window changes, the frequencies of the entire
162 corresponding spectrogram (13) suffer the same wy, shift, at each time .

163 3. Proposed Multi-Band Analysing Window

164 A possible approach for obtaining a high-resolution spectrogram of a current signals with
16 components of different slopes in the TF domain could be a variant of the Matching Pursuit approach,
16 Using as dictionary a set of Gaussian functions with different values of a. In this way, a batch of
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17 spectrograms, each one with a different value « for the Gaussian window (5) would be generated.
16 In a second stage, for each point in the TF domain, the best value obtained among the whole set of
10 spectrograms would be selected, giving the best approximation to the ideal TF representation of the
170 current signal.

171 The drawback of this technique is the high amount of resources that it requires. For each possible
12 value of &, in a given range, a full spectrogram must be built, which is a time-consuming operation,
173 and, also, it must be stored, which implies high memory resources. Afterwards, a processing algorithm
17a must be applied to each point of all the spectrograms to combine them. These requirements make this
175 technique unsuitable for being deployed with on-line, low power embedded devices.

176 On the contrary, the novel technique presented in this paper can achieve the same results at
17z roughly the cost of a single STFT, in terms of speed and storage requirements, even with the use of
s several hundreds of Gaussian windows with different values of «. It is based on a particular feature
7o of the IM faults presented in Table 1: in most industrial IMs, the fault harmonics with the highest
10 amplitudes are those with an index k = 1, and they are located in a narrow, low frequency band with a
121 bandwidth f; (normally of one or two hundreds of Hz). Nevertheless, the current signal is acquired
1.2 normally using high frequencies rates, from 5 or 10 kHz up to 100 kHz and more. This implies that,
13 when performing the FT of the windowed current signal, at each stage of the STFT process, only the
1e¢  values within the narrow band [0 — f;] of diagnostic interest are kept, and the rest of the spectrogram
15 values are discarded, what represents a waste of computing resources.

186 The proposed method addresses this problem, filling the whole spectrogram with useful
17 diagnostic contents. It relies on frequency shifting the Gaussian analysing window, as in sub-section
e 2.2, (13). If the current signal is low-pass filtered with a cut-off frequency f; (using, for example, a
s frequency filter as in [42]), then its spectrogram, built with a Gaussian window (5), will be non-zero
10 only in the frequency band of diagnostic interest [0 — f;]. But, if the Gaussian window is shifted to a
11 frequency fi = fp in (10), then the spectrogram of filtered current signal will appear in the frequency
102 band [f, — 2f;] (and will be zero outside this band). If the & parameters of both Gaussian windows (the
103 shifted and the non-shifted one) are equal, the same spectral information will appear in both frequency
1s bands. But, if the shifted Gaussian window has a different value of «, then the spectrograms in the
15 frequency bands [0 — f,] and [f, — 2}, ] will be different, each one corresponding to a different value of
106 the parameter «.

107 What is proposed in this paper is to extend this feature, using, instead of two frequency bands,
s a partition of the whole spectrogram in N¢ adjacent bands, each one with a frequency width equal
100 to fj; and to use a set of Ny Gaussian windows, with different values of a (a;, k = 0... Ng — 1), and
200 With increasing shifting frequencies (fy = kfy, k = 0... Ng — 1), for filling each of these frequency
200 bands. This can be achieved in a single run of the FFT if, using the superposition principle, all these Ny,
202 frequency shifted, Gaussian windows are summed in the time domain, giving a single time window.
203 The use of this new, multi-band window, in (4) gives a single spectrogram with N, adjacent bands,
20¢ each one corresponding to the analysis of the current signal with a different parameter a; for the
20s  Gaussian window.

206 For a given sampling frequency f;, and a frequency band of interest f, the total number N of
207 adjacent frequency bands that can be used is equal to

Ng:fs/fb (14)

208

The proposed multi-band window is built, using (10), as

Ng—1

/4 o,
gm(t) =Y (%) e~ 3 efk2ry (15)
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200 As an example, a multi-band window (15) has been built using Ny = 10 different Gaussian windows
20 with values of «a in (5) spanning linearly the range [«a,,;;, = 1 - amax = 700], with a step equal to
an Ax = (&max — Wpin)/ (Ng — 1), as

gm(t) = Ngil (P2 :km)meﬁm;m Felih, (16)
k=0
22 The multi-band window (16) is displayed in Fig. 1, which shows the real (Fig. 1.top) and the imaginary
23 part (Fig. 1.middle) of the window, as well as its spectrum (Fig. 1.bottom). Fig. 2 shows the spectrogram
2a of the window in the joint TF domain, with all the individual Gaussian atoms stacked in adjacent
a5 frequency bands.
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Figure 1. Multi-band window designed in Section 3 in the time domain (real part, top, imaginary part,
middle), and in the frequency domain (bottom). This windows contains 20 Gaussian windows, located
in 20 adjacent frequency bands of 100 Hz, spanning linearly the range [x = 1 - & = 700].
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Figure 2. Atoms of the multi-band window designed in Section 3 in the joint time-frequency domain.
This windows contains 20 Gaussian windows, located in 20 adjacent frequency bands of 100 Hz,
spanning linearly the range from « = 1 (bottom) up to « = 700 (top).

ze 3.1, Steps for Applying the Proposed Multi-Band Window

In this sub-section the process for applying the concept of multi-band window to a given current
signal i(t) is explained, using a synthetic current signal i(¢) with a sinusoidal component of 50 Hz, and
a linear chirp with a frequency slope of 1 Hz/s, starting at -50 Hz. It has been built with a duration of
50 s, using a frequency sampling rate of 200 Hz (Fig. 3),

i(t) = cos(27t50t) + 0.05 cos (27t (—50¢ + £2)). (17)

217
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Figure 3. Synthetic current signal (17) used for illustrating the application of the proposed method.

218 The steps for analysing the current signal (17) using the proposed multi-band windows are the
210 following ones:

220 1. The analysis window (15) is built:

221 e first, the bandwidth of diagnostic interest [0-f}] is established ([0-]100 Hz] in this case),
222 which gives the maximum number of elementary Gaussian windows from (14) (Ng =
223 200/100 = 2). The current signal is low-pass filtered with a cut-off frequency equal to f;. In
224 this work, a spectral filter which zeroes all the spectrum bins with a frequency greater than
225 f» has been used, as in [42].

226 e second, the parameters «aj of each of these windows in (15) must be selected. For the simple
227 signal (17), only two values of « are used, ag = 1 (a long window), and a; = 12.6, tailored
220 to the chirp component according to [35].

The resulting multi-band window expression, applying (15), is

gm(t) = (%)1/46—9/2 + (%)1/48—12.6t2/2€j27r100t (18)
This window is plotted in Fig. 4, in the time and frequency domains.
g o
0 5 10 15 20 . mz: o 2 3 20 e 50

0 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)

Figure 4. Multi-band window (15) in the time domain (top), and in the frequency domain (bottom).
This windows contains 2 Gaussian windows, in 2 adjacent frequency bands of 100 Hz, one with & = 1
and the other one with o« = 12.6.

230 2. The spectrogram of the current signal (17) is built, using the multi-band window (18) as sliding

231 window (Fig. 5). It shows two elementary spectrograms in adjacent TF regions, obtained with
232 a single run of the STFT algorithm. The bottom one (x = 1) locates the sinusoidal component
233 at 50 Hz, but blurs the chirp component. On the contrary, the top one (x = 12.6) locates the
234 chirp component, but widens the sinusoidal component.This second Gaussian window, and the

235 spectrogram that it generates, have been shifted to the frequency band [100 Hz-200 Hz].
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Figure 5. Spectrogram of the current signal (17) obtained in step 2 with the multi-band window (right).
The Gaussian component of the window with & = 1 (bottom, left) locates the sinusoidal component
at 50 Hz (bottom, right), but fails to resolve the chirp component. On the contrary, the Gaussian
component with & = 12.6 (top, left), locates the chirp component, but widens the sinusoidal component
(top, right).The Gaussian window that is frequency shifted (left) generates a spectrogram that is also
frequency shift (right).

236 3. All the stacked, elementary spectrograms obtained in step 2 are shifted back to the frequency band

237 [0-f], as shown in Fig. 6. This process has a negligible computational cost, just the renumbering
238 of the frequency axis of each elementary spectrogram.
100 100
80 80
= 2
S, 60 = 60
g o
o &
S S
g 40 g 40
L I
20 20
0 ’ 0 )
0 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)

Figure 6. Relocation in the frequency axis of the elementary spectrograms, so that all of them span the
same frequency band [0-f].


https://doi.org/10.20944/preprints201908.0039.v1
https://doi.org/10.3390/en12173361

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019 d0i:10.20944/preprints201908.0039.v1

239 4. The points with the same time-frequency coordinates in all the relocated spectrograms obtained
240 in step 3 (Fig. 6, are combined to give a single high resolution spectrogram of the TF region of
201 diagnostic interest, in the frequency band [0 - f;,] (Fig. 7). The combination process used in this
202 work consists in selecting, for each point of this region, the minimum value obtained among all
243 the relocated spectrograms. The final result shows with a high resolution both the sinusoidal
248 component at 50 Hz and the chirp component.
90
80
70
N 60 —_
L 1-30 G
& 50 5
e 40 3
) =
S 40 =
o
o E
i 30 <
20
10

Time (s)

Figure 7. High resolution spectrogram of the current signal (17): for each point of the TF region of
interest, the minimum value obtained among all the stacked spectrograms of Fig. 5, right, is selected.
The final result shows with a high resolution both the sinusoidal component at 50 Hz and the chirp
component.

2es 4. Experimental Validation

246 For the experimental verification of the proposed approach, an IM whose characteristics are given
2z in Appendix A has been prepared with a forced rotor fault, by drilling a hole in one of the rotor bars.
2es  The stator current during a startup transient has been acquired with a frequency rate f; = 5000 Hz,
20 during 12 seconds, using a current probe whose characteristics are given in Appendix B, and it is
20 shown in Fig. 8.

——

[SEN
=)

Current (A)
o 5

=5

A&
S 3

| | |
6 8 10 12
Time (s)

Figure 8. Start-up current of the motor of Appendix A with a broken bar fault.

From Table 1, the characteristic frequencies of the fault harmonics in an IM with a rotor asymmetry,
such as a broken bar, are, for the main fault harmonics (k/p = 1 in Table 1),

foo = f1(1£2s) (19)
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In particular, the fault harmonic with a frequency given by

fisu = fi(1-2s), (20)

which is known as the lower side-band harmonic (LSH), is commonly tracked for the diagnosis of
rotor asymmetries. During a start-up transient, the trajectory of the LSH in the TF plane given by (20)
generates a typical V-shaped fault signature [43], with a frequency that initially (s = 1) is equal to
the fundamental frequency f1, decreases to 0 (s = 0.5), and then increases again until its steady-state
regime value of f1(1 — 2s) &~ f3, according to (20). The ability to detect this fault harmonic using the
proposed method is to be assessed in this section.
The three steps presented in Section 3.1 will be followed in this experimental case to obtain the
spectrogram of the current signal presented in Fig. 8.

1. The analysis window (15) is built:

o first, the bandwidth of diagnostic interest is established. In this case, from (20), the frequency
band of interest is the [0 - 50 Hz] band. Due to the presence of higher order harmonics in the
current spectrum, apart form the LSH, a wider band [0 - 125 Hz] has been selected, in order
to better assess the strength of the LSH compared with them. In this way, With a sampling
frequency of 5000 Hz, the maximum number of elementary Gaussian windows from (14) is

Ng =5000/125 = 40 windows.
e second, the parameter oy of each of these windows in (15) is selected. In this case, a linear

range of the parameter « is used, covering the range [«,,;;, = 1 - &ax = 700].

The resulting multi-band window, applying (15), is

39 1/4 ko .
gm(t) =) (%") e~ 2 k225, 1)
k=0
with 700 — 1
v =1+k=——— k=0,1...39. (22)

The multi-band window (21) is displayed in Fig. 9, which shows the real (Fig. 9.top) and the
imaginary part (Fig. 9.middle) of the window, as well as its spectrum (Fig. 9.bottom).
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Figure 9. Multi-band window (21) in the time domain (real part, top, imaginary part, middle), and in
the frequency domain (bottom). This windows contains 40 Gaussian windows, located in 40 adjacent
frequency bands of 125 Hz, with values of a ranging from «,,,;;, = 1 to aax = 700.

270 2. The spectrogram of the current signal of Fig. 8 is built. First, the current signal is low-pass
a1 filtered, keeping only the frequency bins of its spectrum lower than 125 Hz. After, and using the
272 multi-band window (21) as sliding window, the STFT algorithm (4) is applied, which generates
273 the spectrogram sown in Fig. 10. This spectrogram contains 40 elementary spectrograms in
270 adjacent TF regions (Fig. 10, right), obtained with 40 different Gaussian windows (Fig. 10, left),

275 at the cost of a single run of the STFT algorithm (6 seconds with the computer of Appendix C).
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Figure 10. Spectrograms of the current of Fig. 8 (right) obtained with the multi-band window (21) (left).
The 40 stacked spectrograms have been obtained with a single run of the STFT algorithm.

276 Two of the 40 individual Gaussian windows shown in Fig. 10 are displayed in Fig. 11, left, along
277 with their corresponding current spectra (Fig. 11, right). The two zoomed bands corresponds to
278 the spectrogram located in the base frequency band [0-125 Hz] (Fig. 11, bottom), which defines
279 clearly the fundamental component, but blurs the fault harmonics, and to the spectrogram shifted
280 to the frequency band [1500-1625 Hz], (Fig. 11, top) which defines clearly the fault harmonics,
201 but widens the fundamental component.
¥ 1600 ¥ 1600
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Figure 11. Zoom of Fig. 10 showing two of the individual Gaussian windows contained in the
multi-band window of Fig. 10 (left), and the corresponding spectrograms generated with them (right).
The two zoomed bands corresponds to the spectrogram located in base frequency band [0-125 Hz]
(bottom), which defines clearly the fundamental component, but blurs the fault harmonics, and to
the spectrogram shifted to the frequency band [1500-1625 Hz] (top), which defines clearly the fault
harmonics, but widens the fundamental component.
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282 3. All the stacked, elementary spectrograms obtained in step 2 (Fig. 10, right), are relocated in the

203 base frequency band [0 125 Hz], by renumbering their frequency axis.
204 4. All the relocated, elementary spectrograms obtained in step 3 (Fig. 10, right), are combined to give
285 a high resolution spectrogram of the TF region of diagnostic interest (Fig. 12). The combination
286 process used in this work consists in selecting, for each point of this [0 - 125 Hz] region, the
267 minimum value obtained among all the relocated spectrograms. The final result shows with a
288 high resolution both the sinusoidal component at 50 Hz and the LSH fault component. Unlike
280 the individual spectrograms, the optimized spectrogram clearly shows the LSH not only during
200 the transient periode, but also when the steady state is reached; it is also remarkable the set
201 of fault-related second-order components that are revealed, which helps to get a more reliable
202 diagnostic.
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Figure 12. High resolution spectrogram of the current of Fig. 8: for each point of the TF region of
interest, the minimum value obtained among all the stacked spectrograms of Fig. 10, right, is selected.
The final result shows with a high resolution both the sinusoidal component at 50 Hz and the LSH fault
component.

203 5. Conclusions

204 In this work, a novel technique for performing the fault diagnosis of IMs working in transient
205 regime has been presented and validated experimentally. This technique consists in building a
20 multi-band analysing window, composed by several, different Gaussian windows, stacked in the
207 frequency domain. When this window is multiplied by the current signal in the time domain, it
208 generates a spectrum which contains all the spectra generated by each of the Gaussian windows
200 that form the multi-band window. In this way, a spectrogram containing even hundreds of different
s0 Gaussian windows can be obtained at the cost of a single run of the STFT algorithm. The selection
;1 of the parameters of the individual windows that compose the multi-band window can be setup by
sz the user using different criteria, without affecting the performance of the proposed approach. In this
s0s  work, a blind approach has been used, by selecting a range of individual windows that cover a wide
;s  range of, a priori, unkown fault harmonic components. This approach can be particularly useful for
s0s automated diagnostic system, which can operate without expert assistance, and for the detection of
a6 different types of faults. In this case, a single multi-band window can avoid the design of multiple
sz analysis windows specifically designed for each single type fault.

s0s  Author Contributions: R.P. and A.S. developed the theoretical explanation of the method. J.B. and ]. M. designed
so0 and carried out the experimental validations; M.P. wrote the paper and M.R. carried out the revision the paper.
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as Appendix A Motor Characteristics

316 Three-phase induction machine. Rated characteristics: P = 1.1 kW, f = 50 Hz, U = 230/400 V,
sz [ =27/46 A, n=1410 r/min, cos ¢ = 0.8.

sis Appendix B Current Clamp

319 Chauvin Arnoux MN60, Nominal measuring scope: 100 mA-20A, ratio input/output:
320 1 A/100 mV, intrinsic error: < 2% + 50 mV, frequency use: 400 Hz-10 kHz.

sz Appendix C Computer Features

322 CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB, Matlab Version: 9.6.0.1072779
323 (R20193)
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