This study investigated the trends of registered Death and Birth in Nigeria using Generalized Linear Models. Annual data on Death and Birth was collected from National Population Commission for the period of 2004 to 2017. The Natural increase calculated revealed a positive trend in the natural increase in Nigeria from 2004 to 2017. Evidence from summary statistics revealed some level of over dispersion (variance > mean). This study explored Poisson Regression Models and Negative Binomial Regression Models using two links (identity and log). The results revealed a positive increase in registration of birth and death rates in Nigeria and among the competing the models, Negative Binomial regression model with identity link emerged as the best model for modeling birth and death rates registration in Nigeria. Data on numbers of deaths and causes of death are essential if countries are to determine priorities, formulate and monitor policies for public health care as well as other government policies that may be based on such data
Keywords:
Subject: Computer Science and Mathematics - Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.