Preprint
Article

Deep Learning for Detecting Building Defects Using Convolutional Neural Networks

Altmetrics

Downloads

576

Views

662

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

04 August 2019

Posted:

06 August 2019

You are already at the latest version

Alerts
Abstract
Clients are increasingly looking for fast and effective means to quickly and frequently survey and communicate the condition of their buildings so that essential repairs and maintenance work can be done in a proactive and timely manner before it becomes too dangerous and expensive. Traditional methods for this type of work commonly comprise of engaging building surveyors to undertake a condition assessment which involves a lengthy site inspection to produce a systematic recording of the physical condition of the building elements, including cost estimates of immediate and projected long-term costs of renewal, repair and maintenance of the building. Current asset condition assessment procedures are extensively time consuming, laborious, and expensive and pose health and safety threats to surveyors, particularly at height and roof levels which are difficult to access. We propose a method for automated detection and localisation of key building defects from images using deep learning and convolution neural networks. The proposed model is based on a pre-trained VGG-16 classifier with Class Activation Mapping (CAM) for object localisation. The model has proven to be robust and able to accurately detect and localise mould growth, stains, and paint deterioration defects arising from dampness in buildings. The approach is being developed with potentials to scale-up to support automated detection of defects and deterioration of buildings in real-time using mobile devices and drones.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated