Preprint
Article

Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground

Altmetrics

Downloads

228

Views

387

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

05 August 2019

Posted:

06 August 2019

You are already at the latest version

Alerts
Abstract
This paper describes the physico-chemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. KOH activated carbon is a microporous material with a specific BET surface area of 2330 m2·g-1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g-1. A significant dependence of the adsorption capacity on the solution pH was found, while it does not depend significantly neither on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g-1 and 33.52 mg·g-1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better fit to a Langmuir model and a pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous and favorable process.
Keywords: 
Subject: Chemistry and Materials Science  -   Applied Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated