Preprint
Article

Fluxes of Gaseous Elemental Mercury at a Mediterranean Coastal Grassland

Altmetrics

Downloads

194

Views

314

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 August 2019

Posted:

13 August 2019

You are already at the latest version

Alerts
Abstract
Coastal rural areas can be a source of elemental mercury, but the potential influence of their topographic and climatic particularities on gaseous elemental mercury (GEM) fluxes have not been investigated extensively. In this study gaseous elemental mercury was measured over Mediterranean coastal grassland located at Northern Greece from 2014 to 2015 and GEM fluxes were evaluated utilizing Monin-Obukhov similarity theory. The GEM fluxes ranged from -50.30 to 109.695 ng m-2 h-1 with a mean value equal to 10.501 ng m-2 h-1 ± 19.14 ng m-2 h-1. Concerning the peak events, with high positive and low negative GEM fluxes, those were recorded from the morning until the evening. Rain events were a strong contributing factor for enhanced GEM fluxes. The enhanced turbulent mixing under daytime unstable conditions led to greater evasion and positive GEM fluxes while during nighttime periods the GEM evasion is lower indicating the effect of atmospheric stability on GEM fluxes. The coastal grassland with its specific characteristics influences the GEM fluxes and this area could be characterized as source of elemental mercury. This study is one of the rare efforts in the research community to estimate GEM fluxes in a coastal natural site based on aerodynamic gradient method.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated