

Article

Japanese Lexical Variation Explained by Spatial Contact Patterns

Péter Jeszenszky ^{1,*}, Yoshinobu Hikosaka ², Satoshi Imamura ³ and Keiji Yano ¹

¹ Department of Geography, Ritsumeikan University, Kyoto, Japan

² College of Letters, Ritsumeikan University, Kyoto, Japan

³ Kinugasa Research Organization, Ritsumeikan University, Kyoto, Japan

* Correspondence: peterj@gst.ritsumei.ac.jp

Abstract: In this paper we analyse spatial variation in Japanese dialectal lexicon by assembling a set of methodologies using theories in variationist linguistics and GIScience, and tools used in historical GIS. Based on historical dialect atlas data, we calculate a linguistic distance matrix across survey localities. The linguistic variation expressed through this distance is contrasted with several measurements, based on spatial distance, utilised to estimate language contact potential across Japan, historically and at present. Further, administrative boundaries are tested for their separation effect. Measuring aggregate association within linguistic variation can contrast previous notions of dialect area formation by detecting continua. Depending on local geographies in spatial subsets, great circle distance, travel distance and travel times explain a similar proportion of the variance in linguistic distance despite the limitations of the latter two. While they explain the majority, two further measurements estimating contact have lower explanatory power: least cost paths modelling contact before the industrial revolution, based on DEM and seafaring, and a linguistic influence index based on settlement hierarchy. Historical domain boundaries and present day prefecture boundaries are found to have a statistically significant effect on dialectal variation. However, the interplay of boundaries and distance is yet to be identified. We claim that a similar methodology can address spatial variation in other digital humanities, given a similar spatial and attribute granularity.

Keywords: GIScience; dialect geography; digital humanities; spatial modelling; historical GIS; geostatistics; linguistic variation; language change; language contact

1. Introduction

1.1. Motivation

Historical dialect data forms a valuable part of humanities similarly to folk songs and dances, beliefs and other cultural traits. Spatial patterns present in dialects have been a research topic in linguistic geography for over a century, with the digital preservation and quantitative investigation of dialectal variation becoming increasingly central [1]. Further, identities are often generated by noting linguistic differences to distinguish 'our group' from 'the others', which connects dialectal variation to the human psychological needs of categorisation [2,3].

Language is constantly changing and its perceived reality at any given time is a mere snapshot, resulting from language change through preceding centuries. Divergence and convergence in language is caused by isolation and contact between the speakers [4], with language change occurring at different time scales [5]. Intuitively, a connection can be assumed between linguistic variation and the potential of contact, which is, in turn, strongly associated with spatial phenomena such as distance, facility of access by transportation, topography, and even one's role in their social network, e.g. [6–8]).

33 Bloomfield [9] associates language change with the density of communication, which is in turn
34 based on the mobility patterns on the macro scale. The *urban hierarchical diffusion* [10–12] is one
35 of the models that explains the diffusion of linguistic innovations, which play a central role in
36 language change. It assumes that innovations spread from larger populations towards smaller ones,
37 corresponding to the mobility patterns of the population (including commute and relocation): an
38 innovation would first be transported between cities, prior to smaller towns catching on, and finally to
39 the countryside. Boundaries can, however, overwrite the diffusion processes by impacting the mobility
40 patterns (e.g. by the restriction of movement, leading to isolation) and the communication norms (such
41 as language policies), which is often the case of national borders isolating speakers of similar varieties,
42 e.g. [13].

43 Japan is, due to its archipelago geography and its high proportion of rugged terrain (about 73%
44 of its surface is mountainous or forested), contrasted by its large population concentrating in coastal
45 areas, a typical geographic example where isolation and dense communication are present side by
46 side. Most research on Japanese dialects focused on the linguistic relations themselves, and did not
47 quantitatively account for the underlying potential spatial factors assumed to affect dialectal variation.
48 With some exceptions, e.g. [14,15], quantitative studies involving aggregation of multiple phenomena
49 across larger areas are missing.

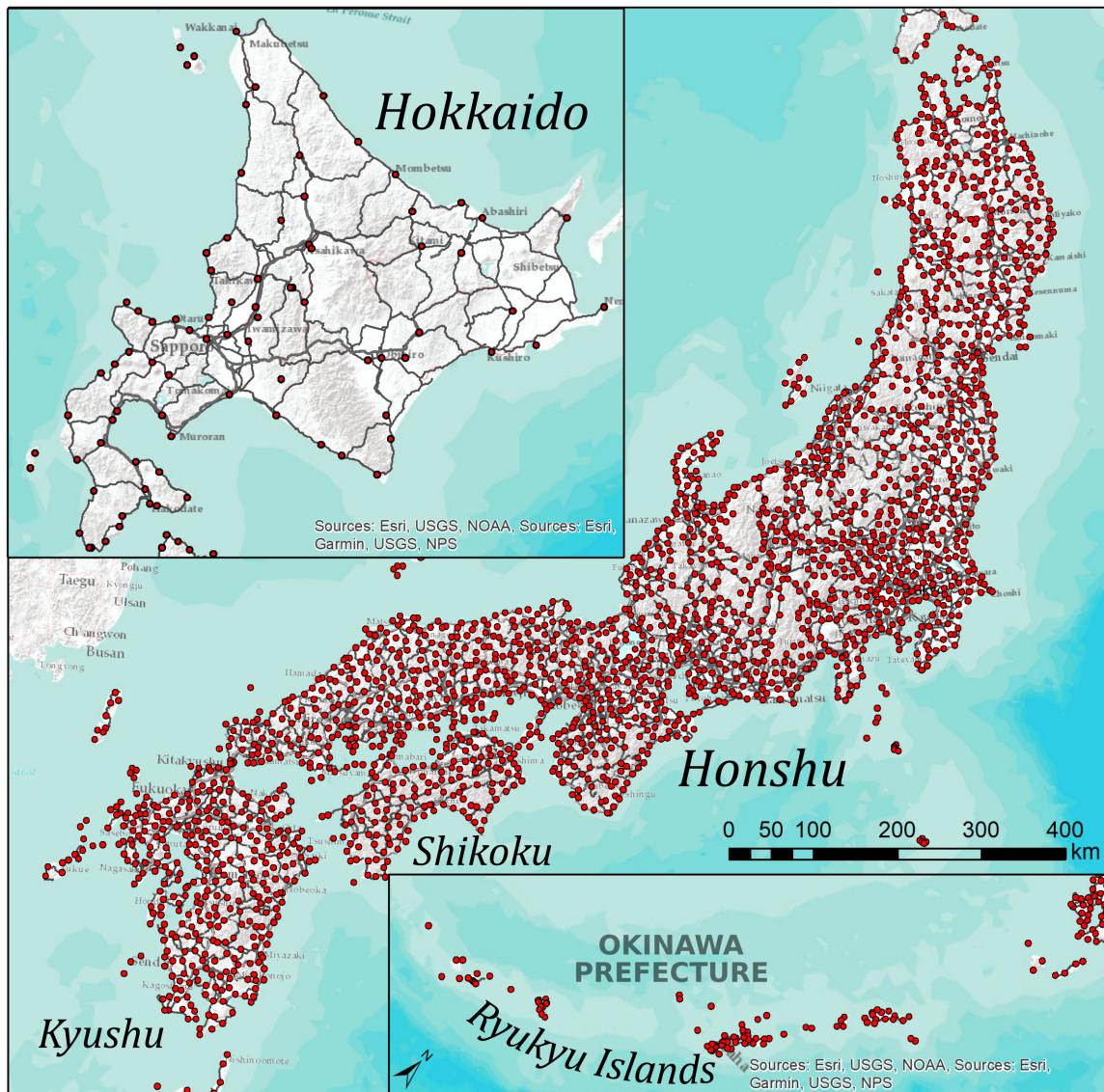
50 Therefore in this article we offer a comprehensive methodology for the analysis of the spatial
51 relations of Japanese dialects through the lens of GIScience, often criticised for its limited involvement
52 in dialect research beyond mapping, e.g. [16], despite offering "...an articulation of spatial theory as a
53 framework for approaching hypotheses in linguistics research" [17] (p. 28). The concept of *apparent*
54 *time* [18,19] states that mother tongue is mostly acquired until the late teenage, after which one's
55 language is more resistant to change. It is therefore assumed that every idiolect bears the effect of the
56 environment of their early life, therefore synchronic diversity can be interpreted diachronically. For
57 the respondents of the dialect database used in this study ('Linguistic Atlas of Japan' - LAJ [20]), born
58 between 1879 and 1903, it means that their language usage is assumed to be representative of the
59 late 19th, early 20th century.

60 It is generally acknowledged that historical contact paths and isolation patterns should explain
61 today's language variation better than contemporary contact patterns [21]. With the support of the
62 apparent time theory, resources in digital humanities (historical linguistic data, historical spatial
63 networks and points of interest) and the recent surge of computational power, it becomes possible to
64 quantitatively account for the potential contact patterns present at historical times. Our study thus
65 embarks on explaining linguistic situation as a result of topographic and political settings at and before
66 the time of LAJ respondents' mother tongue acquisition, and contrasts it with the explanatory power
67 of geographic factors that characterise more recent times.

68 1.2. Background

69 Phylogenetics has lately shown an elevated interest towards historical change in linguistic patterns,
70 regarding, for example, language evolution [22], contact-induced change [23] and correlations with
71 language-external traits [24]. However, historical quantitative analysis was only rarely focused on
72 similar effects on intra-language, dialectal data [14,25].

73 To account for linguistic variation in space, it is common to establish a measurement of difference
74 between locations visited in linguistic surveys, based on individual answers to survey questions.
75 Expressing this *linguistic distance* between surveyed locations quantitatively is one of the most
76 important focuses in the field of *dialectometry*, e.g. [26–29]. Linguistic distance is usually calculated
77 by defining the linguistic difference between dialectal variants (different forms people use to express
78 the same phenomenon) and aggregating these differences for a number of phenomena between each
79 location pair, resulting in a linguistic distance matrix [30]. The quantification of the difference between
80 dialectal variants depends on the way these variants can be mathematically contrasted. Dialectal
81 variants can be converted to vectors of sounds or letters, based on which Levenshtein's edit distance


[31] is often calculated in studies focused on pronunciation [32,33]. However, lexical variation is often categorical and, as sound vectors often become completely different, Levenshtein distance calculations are not always meaningful. Thus, for the lexical and syntactic level, aggregative measures based on categorical differences are often used, such as Goebel's [34] 'Relative Identity Value' (RIV). In a similar way, Kumagai [35] has introduced the NC-distance for LAJ's lexical data, based on the number of co-occurring answers.

Recently, linguistic distances are commonly used to chart areal similarities and differences, equivalent to what has often been done in classical dialectology by searching for overlapping dialectal boundaries that separate answer variants of different phenomena, from as early as 1898 [36–38]. The areas found were often classified as dialect areas, although aggregative studies rarely reproduce dialect areas with sharp boundaries, and thus argue for *continua* in the distribution of dialectal variants, cf. [39]. Nerbonne et al. [40] used multidimensional scaling (MDS), a dimension reduction technique, to reduce large dialectal matrices to a three-dimensional space, and associated the three components of the RGB colour space with these three dimensions, to show the continuous nature of transitions between dialect areas. Since then, MDS has become a common tool for dialectometric visualisations [28,33,41,42], showing the association across localities with regards to a multitude of phenomena. Many contemporary dialectometric studies use principal components analysis (PCA), e.g. [43], or factor analysis, e.g., [44–46], to detect linguistic items showing similar geographical patterns. Besides, hierarchical cluster analysis is often used for finding linguistically similar locations [43,47,48]. The mapped results of such analyses are often used to validate dialect area maps produced by the classic "isogloss bundling" method [36–38].

Once linguistic distances are calculated, it is common to attribute them to some (geographical) measurements that account for the possibility of language contact. Holman et al. [49] inspired by population genetics [50], explicitly associate the concept of 'isolation by distance' among the world's languages with the situation faced by dialectology. The axiomatic role of geography structuring language, phrased by Nerbonne and Kleiweg [51] (p. 154), which practically describes spatial autocorrelation in dialectal variation, has been tested in numerous studies, e.g. [15,21,26,41,52,53]. Nerbonne and Kleiweg's postulate, "geographically proximate varieties tend to be more similar than distant ones", is, in effect, the linguistic adaptation of Tobler's first law of geography [54].

The role of space, practically accounting for the potential linguistic contact between locations, has mostly been expressed by Euclidean distance, e.g. [26,52,55]. Séguy, who initiated the research of relating linguistic distance to geographic distance [26], observed a logarithmic relationship, which is since then assumed to be present between the two types of distances. Gooskens [21] was the first to operationalise the possibility of contact using contemporary and historical travel times. Since then, several studies have attempted to explain dialectal variation using geographic distance measures deemed to be more powerful for expressing a possibility for dialectal contact than Euclidean distance. Inoue [56] used distance along railways in Japan, Stanford [57] tested 'rice-paddy distances' in a clan-based society, Lameli et al. [58] associated dialect similarity to trade frequency in Germany and Derungs et al. [25] used least cost paths in mountainous areas of Switzerland.

Although Gooskens [21] and Jeszenszky et al. [53] confirmed the superior explanatory power of travel times, multiple studies for different languages [52,57,59] have found that travel times are not a better predictor for dialectal variation than Euclidean distance. Regarding historical contact, Huisman [14] showed that mainland Japanese displays an isolation-by-distance pattern, while Ryukyuan varieties display a typical isolation-by-colonisation pattern. Sociodemographic factors also play an important role in language variation beside spatial ones, increasingly affecting patterns in society, especially with mobility patterns changing. Mobility and commuting patterns are claimed to have a role in the diffusion of innovations. The original model accounting for this effect similar to gravity was worked out by Trudgill [11] to correspond to the potential of linguistic interaction between communities, and it has been popular in dialectology, e.g. [25,52,60].

Figure 1. LAJ localities and the network of main roads in Japan. The mapping scale of the rather scattered Ryukyu Islands is smaller by a factor of 1.5.

131 Due to their potential isolating effect, coincidence of dialectal boundaries with political and natural
 132 borders has often been tested, e.g. [61–63]. Derungs et al. [25] tested the impact of administrative and
 133 cultural boundaries on dialect variance using spatial autoregressive models. In relation to Japonic
 134 languages, Lee and Hasegawa [8] showed that ocean straits between Japan's islands act as a barriers
 135 that promote diversification. Nevertheless, effects of administrative boundaries within mainland Japan
 136 have not been quantitatively tested for their isolation role in language.

137 Despite the fact that Japanese dialects are among the most thoroughly researched ones, the
 138 explanatory power of geographic factors on linguistic variation has not been researched until lately
 139 [14,15]. Japanese dialectology until recently, similarly to traditional dialectology in general, was
 140 involved mostly in qualitative studies of characterising individual linguistic phenomena, e.g. [64–66],
 141 and quantitative studies involving aggregation of multiple phenomena based on surveys, but excluding
 142 geostatistical analyses. The latter line of research is exemplified in Tanaka's work [67], tracking the
 143 diffusion of Standard Japanese lexical features from the former and present capitals (Kyoto and Tokyo).
 144 Since the end of the 19th century in Japan, the official language policy enforced using Standard Japanese,
 145 based on the variety spoken in Tokyo (called *Edo* before 1869), in all official situations and in schools.

146 Since then, due to the low prestige associated with non-standard language, usage of Japanese dialects
147 has been dwindling and converging to the Standard, retaining less regional variation. Nevertheless,
148 regional differences in language variety keep enjoying popular interest and strengthen the feeling of
149 belonging and group formation in Japan, similarly to dialects in other countries. Although several
150 different research directions have been explored using the data from the Linguistic Atlas of Japan (LAJ)
151 and other dialect surveys, the lack of digitised data hindered very profound discoveries in many of
152 these directions [35,68–74].

153 Some peculiarities are important to note about the language landscape of Japan. Traditional
154 dialectology and computational approaches have proven the split between Japanese and Ryukyuan,
155 the variety of Okinawa prefecture in southern islands, often considered separate languages [14,75,76].
156 Due to this, Okinawan varieties are outliers in the LAJ as well. Besides, the northernmost large island,
157 Hokkaido is, on the one hand, less densely populated than other parts of Japan and, on the other hand,
158 has less distinct dialects because of its more recent large-scale settlement (starting at the end of the 19th
159 century, mainly from Honshu), resulting in more mixed and standardised varieties.

160 The data used for this research stems from the digitised LAJ survey data (LAJDB) [74]. LAJ
161 was produced at the National Language Research Institute (NLRI), today called National Institute of
162 Japanese Language and Linguistics (NINJAL), presenting the recorded material of a large-scale survey
163 conducted between 1957 and 1965. Throughout Japan, 2400 localities were surveyed, interviewing one
164 male respondent, born between 1879 and 1903, at each locality. The survey locations are mapped in
165 Figure 1, together with the most important regions of Japan, the main islands, showing the main roads.

166 1.3. Aims of the Research

167 In this study, we investigate the driving factors of dialectal variation and quantify contact between
168 communities at a historical scale making use of the potential of theories of GIScience and variationist
169 linguistics, and tools used in historical GIS. We identify the missing locality level dialectometric
170 analysis of Japanese dialect data as the main research gap and focus on providing a comprehensive
171 methodology to address it.

172 We establish a linguistic distance between localities based on the digitised LAJ data (termed
173 LAJDB). We perform an overlap analysis across the variants used throughout Japan, in search of spatial
174 clusters without taking space explicitly into account. Besides, using multidimensional scaling (MDS)
175 on the linguistic distance calculated, we provide a contrast to classic dialect maps often showing the
176 presence of dialect areas and by sharp borders, e.g. [77].

177 Due to the fact that linguistic variables chosen for dialect surveys usually exhibit spatial variation,
178 we may assume that spatially autocorrelated geographic factors explain a considerable proportion of
179 the variation in our survey data as well. We are motivated to research the historical contact potential
180 by the assumption that preceding environmental settings impact language variety, in relation to the
181 concept of apparent time. Potential contact might depend on accessibility rather than just distance,
182 especially in case of an archipelago nation such as Japan, inviting the question of how to best estimate
183 contact in such a scenario. Because of the regional differences in Japan, as in the case of the Ryukyu
184 Islands and Hokkaido, we employ a local approach beside performing global calculations.

185 We build the following models:

- 186 • A series of models estimating contact potential:
 - 187 – before the time of infrastructural development, using network of least cost paths based on
188 digital elevation models (DEM),
 - 189 – at present, using today's road network for calculating travel distances and travel times
 - 190 – independent of time, using the great circle distances between localities.
- 191 • A model estimating the potential influence between communities based on their population
192 density and an inverse-distance association similar to the law of gravity .
- 193 • Finally, we test the separating effect of administrative boundaries, on the one hand the
194 administrative system of *domains* (Japanese: *han*) used in the Edo-era (1603–1868), which are

195 deemed to have affected the language variation before the LAJ respondents' age of mother
196 tongue acquisition, due to restriction of free movement [78], and on the other hand their modern
197 counterpart, the *prefectures* (Japanese: *ken*).

198 The methodologies presented in this work contribute to the characterisation of the the Japanese
199 lexical dialectal landscape. The methodology accounts for geographic factors in a differentiated way,
200 and revisits associations among linguistic variables and the spatial patterns of their variants through
201 quantitative analysis. Based on this, the conventional dialect area formation theories of Japanese (often
202 coercing dialectal boundaries onto natural and man-made boundaries, much like the perception of
203 laypeople would delimit *continuous* variables) can be revisited. Further, the models worked out for this
204 study can be easily scaled to data in other languages or other data in digital humanities with similar
205 distribution and granularity.

206 2. Materials and Methodology

207 As this work conducts a comprehensive quantitative analysis of language data contrasting it to
208 several different spatial factors, the structure of the present section needs some explanation. First, we
209 introduce the LAJDB. Second, we present the data processing steps and the related overlap analysis.
210 Third, we detail the design of the linguistic distance measure. Fourth, we account for the spatial
211 association of linguistic distance by MDS. Fifth, we walk through the different analyses implementing
212 the distance based spatial models described in Section 1.3. We will use the generic term 'spatial
213 distances' for the measurements in these models which estimate contact potential based on spatial
214 factors. Finally, we present the methodology for testing the impact of administrative boundaries.
215 Similarly, in Section 3 the results of each analysis and their interpretation is presented sequentially,
216 followed by a comprehensive concluding section.

217 2.1. Dialect Data – Linguistic Atlas of Japan

218 This study uses digitised and publicly available data from the LAJDB [74]¹. LAJ is a dialect atlas
219 based on a survey conducted from 1957 to 1965 by the National Language Research Institute (NLRI),
220 the predecessor of NINJAL. The atlas was published in six volumes between 1966 and 1974. The atlas
221 contains 285 questions (termed *variables* in this work), mostly about *lexical variation* (the linguistic
222 term for variation in vocabulary), including common nouns, verbs and adjectives. 2400 localities were
223 surveyed by 65 fieldworkers by means of personal interviews. At each location, one respondent (a
224 male in almost all cases) was interviewed. The respondents were born and grew up at the survey
225 location or lived there without interruption from the age of 3 to 15 [74]. Most respondents of the LAJ
226 can be described as "NORMs", i.e., non-mobile, old, rural males [79], which in dialectology translates
227 to the research aims of such surveys finding the "*oldest*" possible, "*authentic*" dialectal forms present,
228 sometimes called the "*base dialect*". Due to the sampling strategy of LAJ (one NORM per locality), the
229 variation *within* localities is hidden. However, in some localities, two or more linguistic forms of some
230 linguistic variables were recorded from the same respondent. The fact that approximately 80% of all
231 localities were agricultural communities [20] also shows that NLRI wished to record a variation as
232 little impacted by urbanisation and standardisation as possible. About six localities are surveyed every
233 1000 km², except for Hokkaido. Figure 2 shows LAJ map nr. 182, presenting the distribution of the
234 variants used to express '*corn*' or '*maize*'.

235 We used 37 variables from LAJDB, available online² at the time of the research. The majority of
236 these variables focuses on basic vocabulary in relation with body parts, weather and time, animals and
237 plants, and levels of kinship. We identify this focus as a risk factor for our results being representative
238 of the LAJ.

¹ For a comprehensive English language summary on LAJ and LAJDB see [74].

² www.lajdb.org

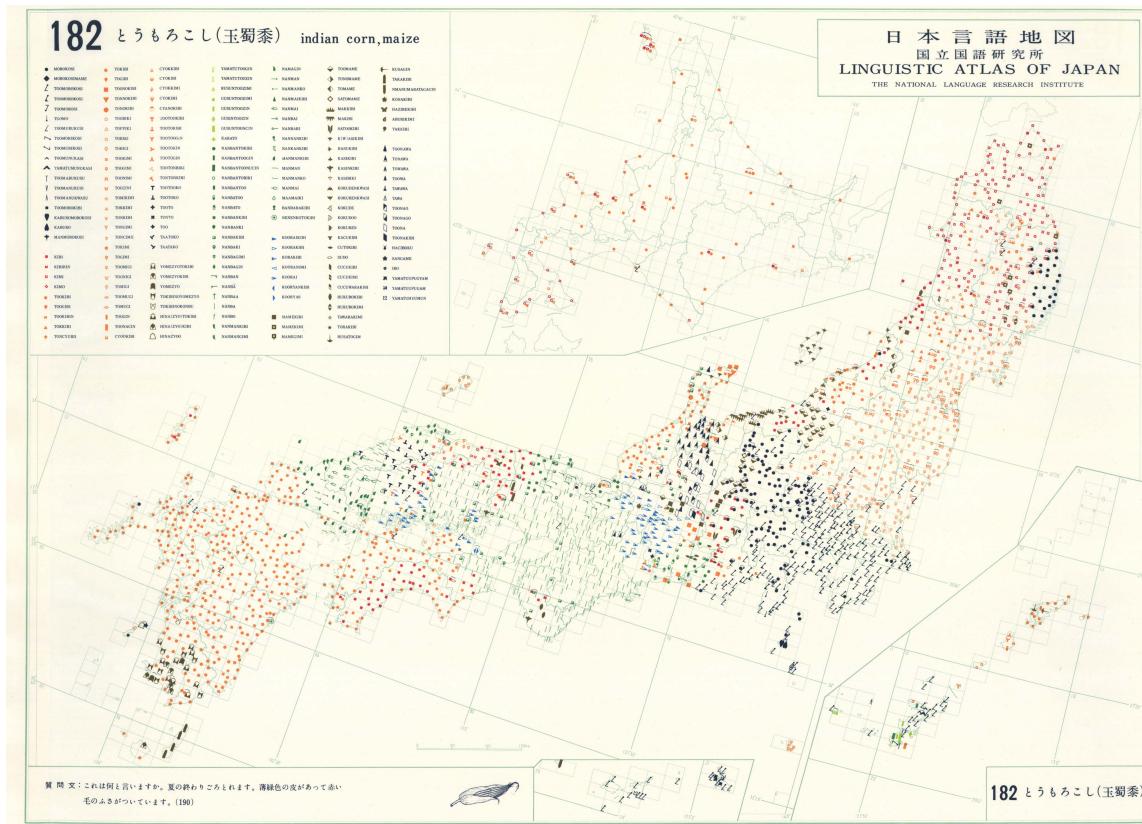


Figure 2. Example map from the LAJ (Nr. 182 - 'indian corn, maize').

According to the concept of apparent time, we infer the potential contact patterns that might have shaped the dialectal landscape before and at the time of the respondents' mother tongue acquisition. Apparent time constructs have been used to infer the synchronic manifestation of a language change in progress for various levels of linguistics [80,81]. It is claimed, however, that rates of change vary by linguistic level (e.g., lexicon, pronunciation, morphology, syntax), with lexicon, i.e. the function of words, their semantics and meaning, having a higher rate of change compared to other linguistic levels [82]. We identify this as a potential risk for our apparent time approach.

2.2. Categorisation of the Dialect Data – Overlap Analysis

We start the dialectometric analysis by discovering the associations across the dialectal variants in the 37 variables. Doing so we aim to find out whether certain variants are used together, but without the bias usually present in traditional analyses, i.e. the map comparison dialectal analysts usually do in search of individual variables' similar patterns. Lexical variation present in certain linguistic items can be immense, and this is also recorded in LAJDB. To reduce variation, we categorise the *answer variants* for each variable based on the original LAJ maps³. In LAJ maps, variants' symbols are grouped together based on phonetic similarity, historical relations and semantic categories (see the map legend example in Figure 3). Using the groupings present on the maps, the number of answer categories is reduced from approx. 10-500 to 3-15 per variable. We term the resulting categories *variant categories*.

To measure the overlap of usage between two categories, we use a measure of association similar to the Jaccard index, as we calculate the intersection over the union of the users of the variant categories. For a pair of variant categories, we take the number of localities where the variant categories are used concurrently (overlaps) and divide it by the number of localities where only one of the variant

³ Original LAJ maps of the variables in LAJDB are available online: https://mmsrv.ninjal.ac.jp/laj_map/

Figure 3. The legend of the example LAJ map Nr. 182 in Figure 2. The variant categories in our research were set up based on the groupings visible in such legends.

260 categories is used (divergences). A similar approach is present in previous research e.g. Uiboaed et al.
261 [83], who used the statistical ordination method correspondence analysis (CA) in dialectology, but for
262 finding associations across localities.

263 Based on the correspondence matrix of variant categories, Figure 6 shows a graph of associations
264 for each variant category with all others, independent of geography, created using the R package
265 *qgraph* [84].

266 2.3. Linguistic Distance – Quantifying the Dialect Variation across Localities

267 Based on the variant categories, we calculate *linguistic distances* for each pair of survey localities.
 268 Our linguistic distance measure is similar to the NC-measure of Kumagai [74] and the *RIV*-values
 269 of Goebel [34]. For a locality pair, our measure is defined based on the sum of differences for each
 270 of the 37 variables. In turn, the difference for each variable between localities i and j also takes into
 271 account differences within a variant category (see also Figure 4). If for a linguistic variable all answers
 272 in localities i and j are in different variant categories, then a linguistic distance of 1 is assigned to this
 273 locality pair for this variable. If i and j has answers in the same variant category, but not exactly the
 274 same variant, the linguistic distance grows by a flat rate of 0.2. Finally, if the answer(s) in i and j for this
 275 variable completely overlap(s), the linguistic distance does not grow. The linguistic distance between
 276 localities i and j is then summed:

$$D_{ij}^{ling} = \frac{\sum D_Q}{n} \quad (1)$$

LAJ	📍	📍	↔	Σ
Dialectal variables	Location 1.	Location 2.	Difference (D_{Q_x})	Cumulative distance
Q_1 – “Snail”	A	B	1	1
Q_2 – “Ankle”	B	A	1	2
Q_3 – “Pumpkin”	A (a)	A (b)	0.2	2.2
Q_4 – “Become bald”	A	B	1	3.2
Q_5 – “Rainy season”	B (a)	B (a)	0	3.2
Q_6 – “Frostbite”	A (a)	B (b)	0.2	3.4

Figure 4. Calculation of the linguistic distance between two localities. Uppercase letters stand for the variant category while lowercase letters stand for the actual variant *within* the variant category.

277 where n is the number of variables with answers from both respondents (both localities), $D_Q \in$
 278 $\{0, 0.2, 1\}$ is the grade of divergence or correspondence for an individual variable, regarding localities i
 279 and j . For a forged example, see Figure 4.

280 For linguistic distance calculations missing answers are not taken into account. In case answers in
 281 i and j are in the same variant category, the answers might be fairly similar to each other or wildly
 282 different. Variant categories impose sharp boundaries in an otherwise fuzzy and diverse continuum
 283 of lexical variation, often diverging based on the pronunciation of the linguistic item. Although for
 284 pronunciation the Levenshtein distance is often used in dialectology for defining the distance between
 285 two vectors, e.g. [32,33], we may not use this approach because of the variants that are categorised
 286 together due to a sound of interest, however completely diverge, e.g., ‘nanmai’ and ‘banbarakibi’ in
 287 the example variable in Figure 3). Two variants in the same variant category can also be a pair of
 288 compound words with the two parts swapped. The histogram of variant occurrences in a variant
 289 category, however, has a long tail, similar to a Zipf-curve [85] (p. 384). In most cases this means that
 290 the majority of answers in i and j that fall into a certain variant category are actually also the same
 291 variant. We decided for a flat rate of 0.2 when noting linguistic distances within a variant category
 292 because of such discrepancies within variant categories. We tested the effect of flat rates’ from 0.1 to
 293 0.5 on the resulting linguistic distance and the correlation coefficient always stayed above 0.97.

294 Having created the linguistic distance matrix, the linguistic distances can be mapped from any of
 295 the 2400 localities (example maps in Figure 7).

296 2.4. Discovering the Spatial Association of Linguistic Distance by Multidimensional Scaling

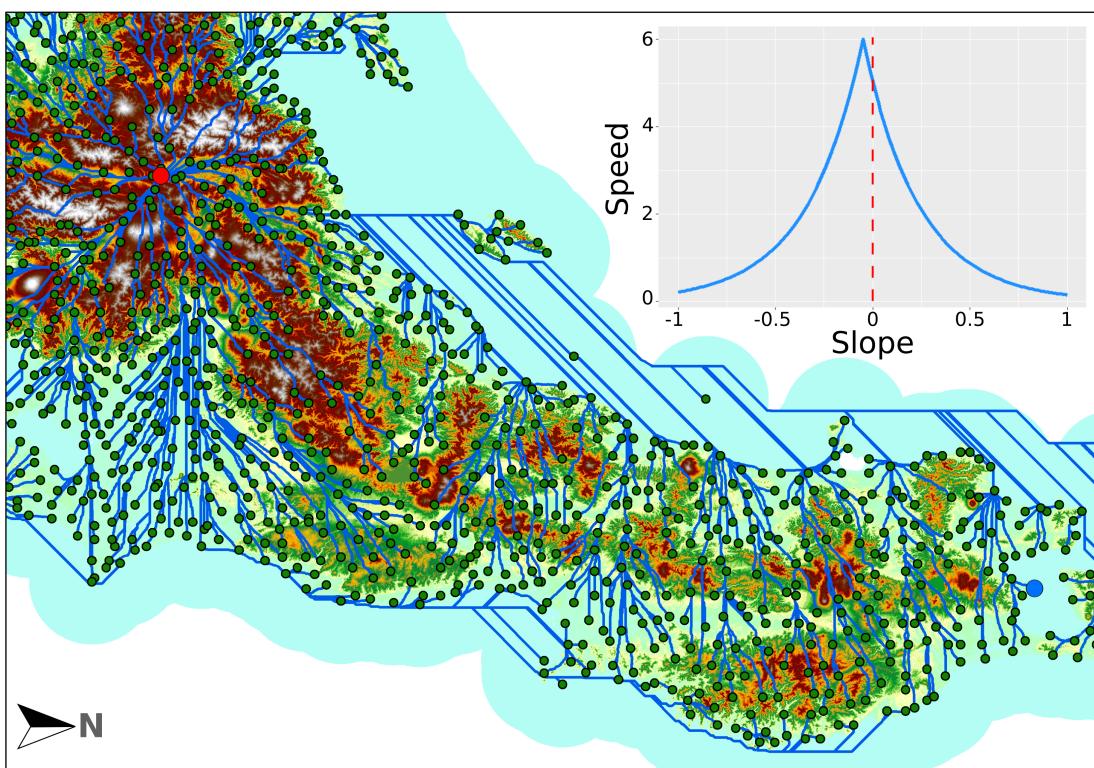
297 Calculating the linguistic distance matrix allows the discovery of the encapsulated spatial
 298 association. As we created a distance matrix based on the 37 variables, multidimensional scaling
 299 (MDS) can be performed directly on this 2400*2400 distance matrix, containing the *continuous* values
 300 for linguistic distance. Practically, MDS reduces the extent of a multidimensional point cloud into
 301 a space as low-dimensional as possible (most research reports two or three, similarly to Principal
 302 Component Analysis). “Each dimension extracted by multidimensional scaling represents a specific
 303 pattern of regional variation and can thus be interpreted in isolation. However, it is more common to
 304 display two or three dimensions simultaneously” [86] (p. 257). In our case, clusters of data points in a
 305 three dimensional space can be interpreted as localities (actually respondents) similar to each other
 306 with regards to the multitude of dimensions. Assigning the values along these dimensions to RGB
 307 (Red, Green, Blue) colour values, the resulting colours can be used to find spatial associations when
 308 the locations are mapped (Figure 9). As a consequence, MDS supports the investigation of dialect
 309 area formation, a central topic in linguistic geography. Moreover, dialect areas often defined by the
 310 traditional methods of searching for ‘isogloss bundles’ can be revisited based on a larger number of
 311 variables.

312 2.5. Estimating the Dialect Contact Potential

313 In effect, our models in Section 1.3 test correlations of linguistic distance with the different 'spatial
314 distances' (as estimations of contact potential) at the global level and in different functional subsets,
315 the main islands of Japan, using Pearson's product-moment correlation. As logarithmic relationship
316 with geographic distances was commonly found in previous research [26,30,39], we perform tests with
317 the logarithm of the explanatory variables as well. Statistical significance of the differences between
318 the resulting correlation coefficients is tested by means of a *z*-score suggested by Meng et al. [87],
319 implemented in *R* package *cocor* [88].

320 2.5.1. Great Circle Distance

321 In order to account for the possibility of contact between communities, most dialectometric
322 research, by default, uses the linear or Euclidean distance. Therefore we also use the Euclidean distance
323 as a baseline for testing the explanation power of other distance based explanatory variables. We
324 obtained great circle distances (*GCD*), i.e., Euclidean distances on the surface of Earth, using the '*fields*'
325 package [89] in *R*, for each locality pair. We perform correlation tests with the linguistic distances and
326 *GCD*, together with their logarithms. The distribution of *GCD* has a strong positive skew with the
327 largest distance being 2964 km between Western Okinawa and Northern Hokkaido.


328 2.5.2. Travel Distance

329 *GCD* might overestimate the potential contact between communities, as contact paths are seldom
330 straight due to obstacles in the landscape, such as mountains, rivers or lack of roads. Using the ArcGIS
331 Data Collection Road Network in Japan (state of 2016) [90], we calculated shortest travel distances
332 (*TD*) for locality pairs in ArcGIS with the help of *arcpy* scripts. The resulting *TD* matrix has limitations,
333 however, as it only contains values for locality pairs that are reachable on land, with missing values
334 accounting for 29.27% of all locality pairs. This leaves little results for Okinawan islands and other
335 smaller islands not connected to the main islands Honshu, Kyushu, Shikoku and Hokkaido by bridges.
336 Shikoku and Kyushu are connected to Honshu by road bridges, but Hokkaido is not. The network
337 available did not include ferry routes, therefore giving unrealistic contact patterns in relation of locality
338 pairs on Kyushu, Shikoku and Honshu as well, practically moving the agents through bridges, even if
339 a ferry was available.

340 The distribution of *TD* has a positive skew with the largest distance being 1999 km within the
341 connected islands of Honshu, Shikoku and Kyushu. However, due to the presence of large distances
342 and with a large number of locality pairs taken into account, the difference between *GCD* and *TD* is
343 assumed to level out. Because of this we expect the difference in their explanatory power to be more
344 meaningful in the regional subsets.

345 2.5.3. Travel Times

346 Shortest paths in networks are, however, not always the fastest paths, as they do not take into
347 account the quality of the roads and the permitted speed. Therefore the time necessary to reach a
348 certain point is hypothesised to be a better estimation for potential contact between communities.
349 Gooskens [21,91] and Jeszenszky et al. [53] tested the correlation of travel times and Norwegian
350 and Swiss German dialect differences, respectively, and found that historical travel times explain
351 more variance in the linguistic distance than contemporary travel times. Using *Open Source Routing
352 Machine* (OSRM) through its implementation in *R* (package '*osrm*') [92], we obtained present day travel
353 times (*TT*) by individual transportation. OSRM sends batched requests to the *Open Street Map* (OSM)
354 routing client and gets back travel time values. As OSM navigation takes ferry routes into account,
355 the resulting *TT* matrix has a missing value rate of only 3.14%. However, ferry connections towards
356 islands in Western Okinawa are missing. Besides, as OSRM does not incorporate common modes of

Figure 5. Representation of the least cost paths in our model with a starting point in the Japanese Alps (Nagano prefecture). Tobler's hiking function is shown in the top right corner with speed (km/h) as the function of slopes (proportion).

357 transport faster than car transport, such as airplanes and the *shinkansen* high-speed railway lines of
 358 Japan, TT obtained might underestimate the present day contact potential between localities.

359 Nevertheless, this TT matrix represents contact paths some 50 years after the dialect survey and
 360 more than a 100 years after the time of the respondents' mother tongue acquisition. We might assume,
 361 however, that with the increasing speeds in the system, the proportions in travel times have not
 362 significantly changed during these times, disregarding high-speed connections, which our OSM-based
 363 model also lacks. The distribution of TT has a strong positive skew with 94% of the values under 36
 364 hours.

365 2.5.4. Least Cost Paths and Hiking Times

366 As it is commonly assumed that historical contact patterns would explain today's dialectal
 367 landscape more, we aimed to model the potential contact paths in Japan before the infrastructural
 368 boom brought by the industrial revolution. In Japan the industrial revolution began in the 1870's, not
 369 much before the LAJ respondents' mother tongue acquisition. Therefore we assume the effects of 'intact'
 370 relief and environment to have had a substantial effect on the dialects surveyed. Our assumption is
 371 that least cost paths, the most natural paths of contact between communities, were predominantly
 372 unchanged for centuries before the industrial revolution and over land they would substantially
 373 depend on relief. We also assume that the first paved roads and other measures for speeding up
 374 transportation (earliest railways) were implemented along least cost paths. Our model is based on the
 375 10 m resolution digital elevation models (DEM) in the Fundamental Geospatial Data provided by the
 376 Geospatial Information Authority of Japan [93], which we resampled at 100 m resolution.

377 Using Tobler's hiking function [94] (Eqn. 2), which defines average walking speed as the function
 378 of the terrain's slope, we calculated the "*hiking times*" along the least cost paths for all locality

³⁷⁹ pairs, similarly to [25,95]. With its peak walking speed for slight downward slopes, the function
³⁸⁰ is asymmetrical, marked with a shift of 0.05 in the exponent (the shape of the function is shown in
³⁸¹ Figure 5):

$$V = 6 * e^{-3.5*|S+0.05|} \quad (2)$$

³⁸² where V is the velocity of walking and S is the slope value in radians.

³⁸³ This asymmetry means that in most cases the resulting least cost paths and subsequently the
³⁸⁴ hiking times differ depending on the direction of the path calculated between localities. As contact
³⁸⁵ between any communities is bidirectional, for each locality pair we take the mean of the resulting
³⁸⁶ hiking times along the least cost path .

³⁸⁷ In order to calculate least cost paths between localities separated by sea (i.e., where a path over
³⁸⁸ a DEM is not available), we allowed "seafaring". The speed of seafaring has been defined as 2.5
³⁸⁹ times larger than land movement on flat surface, to match the premise of pre-infrastructural contact
³⁹⁰ paths on land with that of sailing median speeds before steamboats. The speed was established
³⁹¹ based on Casson's calculations [96], who gathered travel speeds of the Mediterranean in the antiquity.
³⁹² This relatively slow speed is an average, taking into account favourable and unfavourable wind
³⁹³ conditions. This slow speed also balances to a degree the fact that the agents in the model start
³⁹⁴ sailing at the exact time they reach a port, which would be unimaginable in reality. To restrict the
³⁹⁵ movement as much as possible to plausible shipping routes we restricted "sea entry" to ports that were
³⁹⁶ important in the Edo-era (1603–1868), based on data from Saito's research [97]. To be able to reach all
³⁹⁷ localities, including those on smaller islands, further "ports" were added to the model. We allowed
³⁹⁸ only near-shore seafaring, limiting the model's inclusion of sea to 50 km off the coast. Besides, we used
³⁹⁹ the natural state of Japan's coastline, before the land reclamations around port cities took place mainly
⁴⁰⁰ after WWII. ArcGIS 10.6 and *arcpy* were used for the model calculations. The crucial location of ports
⁴⁰¹ from the point of view of potential contact is visible on Figure 5. Because of some obvious limitations
⁴⁰² of the model, such as the lack of land cover, the 100 m resolution and not taking fatigue or constant
⁴⁰³ availability of ships into account, results from our model should be taken with a grain of salt.

⁴⁰⁴ As we allow for sailing beside moving in the DEM, there are no points pairs in our model that are
⁴⁰⁵ not connected. In the remainder of this paper, we will term the measurement resulting from this model
⁴⁰⁶ *hiking time (HT)*. Of all our explanatory variables, the distribution of *HT* has the weakest positive skew,
⁴⁰⁷ with a median in *HT* around 90 hours and maximum of 384 hours.

⁴⁰⁸ 2.5.5. Linguistic 'Gravity' Index

⁴⁰⁹ To estimate the probability for actual contact across localities beyond accessibility, we calculated a
⁴¹⁰ gravity-like index, estimating the potential '*interaction*' between communities to which survey locations
⁴¹¹ belong, based on their geographic distance and their population densities. It is expected that more
⁴¹² populous communities would interact more with each other, even if they lie farther away. Besides,
⁴¹³ such 'gravitational' model is assumed to align with commuting and other communication patterns
⁴¹⁴ between smaller and larger settlements, i.e., villages would have more interaction with a nearby city
⁴¹⁵ than with the surrounding villages. The original of this model was worked out by Trudgill [11], and
⁴¹⁶ the resulting index is often called Trudgill's linguistic gravity index (TLGI). In Szmrecsanyi's words
⁴¹⁷ the inverse-square law of gravitation "postulates that the interaction between two dialects decreases
⁴¹⁸ with increasing geographic distance but this effect is counterbalanced by larger speaker communities"
⁴¹⁹ [52] (p. 222). Based on the Newton's law of gravity, TLGI is formulated as Eqn. 3.:

$$M_{ij} = \frac{P_i * P_j}{D_{ij}^2} \quad (3)$$

⁴²⁰ where M is the index of potential interaction (TLGI), P are the populations of the two localities in
⁴²¹ question and D is a distance measure between them.

Owing to the characteristics of the Japanese administrative and census system, data available about population is suboptimal. There is no direct data available about each settlement and thus, village population. However, data is available in the form of a census grid with several kinds of data about the local population merged into 1 km grid cells. We used population data from 1975 and 2005 from this gridded census data. The year 1975 is the closest available to the time of the survey and 2005 is closest to the peak of Japan's now declining population. For each LAJ locality, we considered the intersection of the population in grid cells with a 2.5 km radius buffer as the local community. Incidentally, in LAJDB, the survey locations' coordinates are snapped to the corners of the 1 km grid census grid, for privacy reasons. Thus for each locality, the same amount of grid cells are considered. This way the P weights in our model actually correspond to a neighbourhood level population density. On the downside, the distribution of population assigned to our localities does not reflect the actual population present in the municipalities, especially regarding metropolises. Although the actual population would be in the millions in several municipalities and in the 100'000s in dozens of municipalities, our P weights never go over a million and they are over 100'000 in the top one hundred localities, most of which pertain to areas of metropolises. This is thought to skew the gravitational force metropolises exert over long distance. However, the locally stronger gravity (due to several localities falling into today's metropolitan areas) might better reflect the communication patterns characteristic of the Meiji-era.

As GCD was available for all locality pairs, we used it as the distance measure in *TLGI*.

A logarithmic correspondence is expected between the linguistic distance and *Trudgill's linguistic gravity index (TLGI)*.

The gravity index is extremely skewed to the right with most localities incapable of direct contact (with *TLGI* value converging to 0) and nearby populous localities having a very strong impact on each other. The latter are basically the survey locations in metropolitan areas where the respondents practically belong to the same city rather than their 2.5 km neighbourhood, and thus their dialects should theoretically be the same. While the largest index values are in the thousands, 99% of the values stay under 0.2.

2.6. Explaining Linguistic Variation through Administrative Boundaries

We tested the separating effect of administrative boundaries of domains and prefectures, described in Section 1.3. These boundaries restricting the movement of their inhabitants is claimed to be one of the key factors in the formation of the latest Japanese dialects [78]. We test the effect of boundaries of 68 domains at the time of their abolition in 1868 on the lexical variation, together with the effect of prefectures. However, the boundaries of the 47 prefectures follow domain boundaries very closely and are virtually unchanged since 1888. It can be assumed that those domain boundaries were kept as prefecture boundaries that denoted an important isolation factor anyway.

The effect of administrative boundaries was analysed using the non-parametric Mann-Whitney U test (also known as the two-sample Wilcoxon rank-sum test). The null hypothesis is that both samples are from the same population and the U test determines whether two independent samples were selected from populations having the same distribution. Unlike the t -test, the U test does not require the assumption of normal distributions and unlike p -values, the U test is not affected by sample size. We perform a subsequent Vargha-Delaney effect size test [98] on domain and prefecture boundaries, and report the probability that a value from one group will be greater than a value from the other group, that is, we show the stochastic dominance of one group, when present, unaffected by sample size [99]. The groups used in the tests are the following:

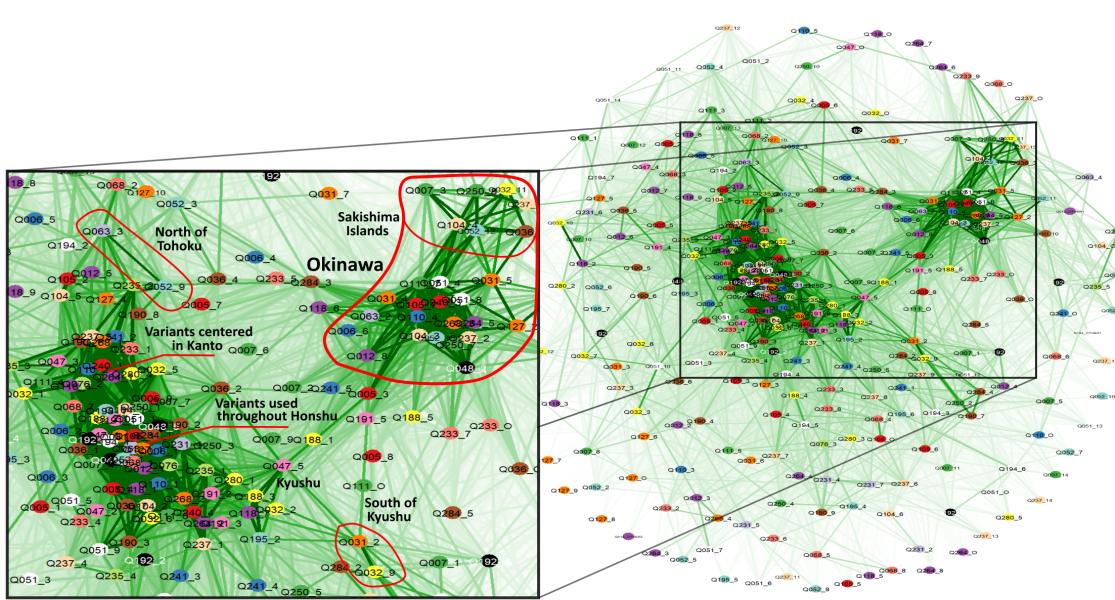
1. Both localities are located in the same domain or prefecture (termed '*within*' group) and
2. The localities are separated by prefectoral boundaries (termed '*separated*' group).

This grouping fulfills the requirement of the U test, assuming that the observations are independent. A significant result of the U test would suggest that the values for the two groups

470 are different and the linked Vargha-Delaney *A* value shows the direction and probability of the
471 difference.

472 The tests are done for each domain and prefecture separately and also as an aggregate. In order
473 to compare the effects of domains and prefectures, we performed the tests for prefecture boundaries
474 in the area covered by domains in 1868 (practically excluding Hokkaido and Okinawa, which were
475 incorporated later into Japanese administration). Due to their more historical role, we assumed the
476 domain boundaries to have a larger effect on the variation, resulting in larger linguistic distances for
477 the group 'separated' by boundaries.

478 As Japan's area is large, its administrative regions vary in size greatly, and internal migrations
479 assumed lower in volume before and at time of the LAJ respondents' mother tongue acquisition
480 than today, we performed the above tests with various distance cut-off measures. That is, we restricted
481 the locality pairs considered in the tests to various distances, between 50 km and 200 km. This assumes
482 that effects of isolation inflicted by the boundaries would manifest themselves with a relatively small
483 distance cut-off already.


484 3. Results and Interpretation

485 3.1. Association Across Linguistic Variants Disregarding Space

486 The association graph in Figure 6 visualises the variant categories that are used together in
487 the survey locations and the strength of the connection, proportional to the Jaccard index. Parallel
488 to analyses in traditional dialectology delimiting dialect areas based on isogloss bundles, e.g. [36–
489 38], this overlap analysis shows the degree to which dialect areas can be discovered based on the
490 37 lexical variables considered, but, importantly, independent of geography. Having no spatial
491 association thus means that our overlap analysis avoids the spatial bias that is present when creating
492 isoglosses by drawing lines on maps. The strongest connections ultimately mean exclusive overlap
493 of the areas covered by the variants in question. The network visualisation in Figure 6 uses the
494 Fruchterman-Reingold algorithm, which also conveys that the positions or distances of nodes are
495 not supposed to be spatially interpreted [84,100]. The color saturation and the width of the edges
496 corresponds to the absolute weight and scale relative to the strongest weights in the graph.

497 In Figure 6, two main clusters can be identified, with the association strength gradually fading
498 out around their centres. The larger cluster is associated with the Standard Japanese variants, usually
499 found spread across large areas in the main island Honshu. The more central the node's position within
500 such cluster, the more the variant category overlaps with others, signaling their ubiquitous distribution.
501 The spatial relations of such variant categories can be verified on LAJ's individual variable maps. The
502 smaller cluster on the right is associated with variant categories used in Okinawa, hinting at the fact
503 that variants used here usually do not overlap with the variants used in Honshu, Shikoku or Kyushu.
504 The close-knit cluster lets the observer associate on a high grade of exclusivity, except for its top right
505 part, which represents variant categories used on the Sachishima-islands, the westernmost island
506 group in the Ryukyu Islands, with what appears to be a distinct dialect based on our data.

507 Based on the 37 variables however, the classic of dialect areas' definition established using isogloss
508 bundles cannot be proved or disproved. On the one hand, even the close-knit clusters of overlapping
509 variant categories include only a few of the variant categories rather than one variant category from
510 most variables. On the other hand, the variant categories in the largest cluster are used throughout vast
511 areas in Honshu, a finding which would not qualify to building dialect areas. This pattern invites the
512 question whether the linguistically opposing concept, the dialect continuum theory can be warranted
513 based on the data available. This interpretation is in connection with analysing the results from the
514 MDS.

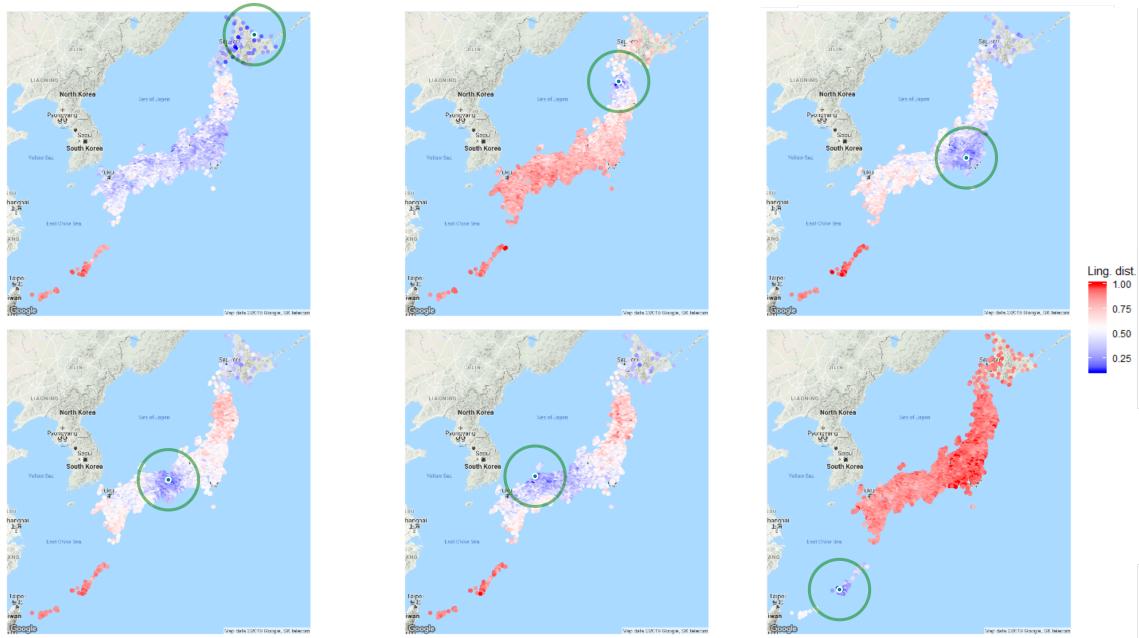


Figure 6. Graph presenting the occurrence overlap in variant categories, based on the Jaccard-index. Survey questions represented by the same colour are not related. For example Q188_5 means the 5th variant category in survey question nr. 188 in the original LAJ.

515 3.2. Linguistic Distances Mapped

516 Calculating the linguistic distance matrix allows to produce maps with different reference
 517 locations, i.e., presenting linguistic distances in reference to certain localities. This kind of visualisation
 518 goes back to Goebel's dialectometry [34,101]. Figure 7 maps the linguistic distance from the following
 519 six localities: the north of Hokkaido, a rural site in Aomori prefecture in the north of Honshu, Tokyo,
 520 Kyoto, Matsue city in Shimane prefecture in the west of Honshu, and Okinawa's capital city, Naha.
 521 Tokyo (formerly *Edo*) and Kyoto are the present and the past capitals and cultural centres of Japan, and
 522 therefore thought to have affected the language of the whole country by being the starting points of the
 523 (hierarchical) diffusion for many linguistic innovations [73,102,103]. Aomori in the northern extremes
 524 of Honshu is far away from both capitals, and as such, it is associated with preserving dialectal features
 525 less affected by standardisation. Matsue is the centre of the so called Umpaku dialect area which
 526 has a unique historical aspect. Hokkaido has been settled by Japanese primarily from the end of
 527 the 19th century, exactly when the respondents were acquiring their mother tongue, from different
 528 parts of Japan but mostly the Tohoku (NW) and Hokuriku (the western shore of central) areas in
 529 Honshu. Because of this, the language history is not deep and respondents are assumed to inherit their
 530 ancestor's language leading to a dialectally mixed area with Standard Japanese having gained ground
 531 more easily. It is not attested in our 37 variables whether the antecedent Ainu population of Hokkaido
 532 affects the variants used. Lastly, Okinawa as an archipelago used to be a semi-independent kingdom
 533 mostly isolated from imperial Japan until incorporated as a prefecture in 1879, also shortly before the
 534 LAJ respondents' mother tongue acquisition. Because of the historical isolation, vast differences are
 535 expected between Okinawan and "mainland" varieties.

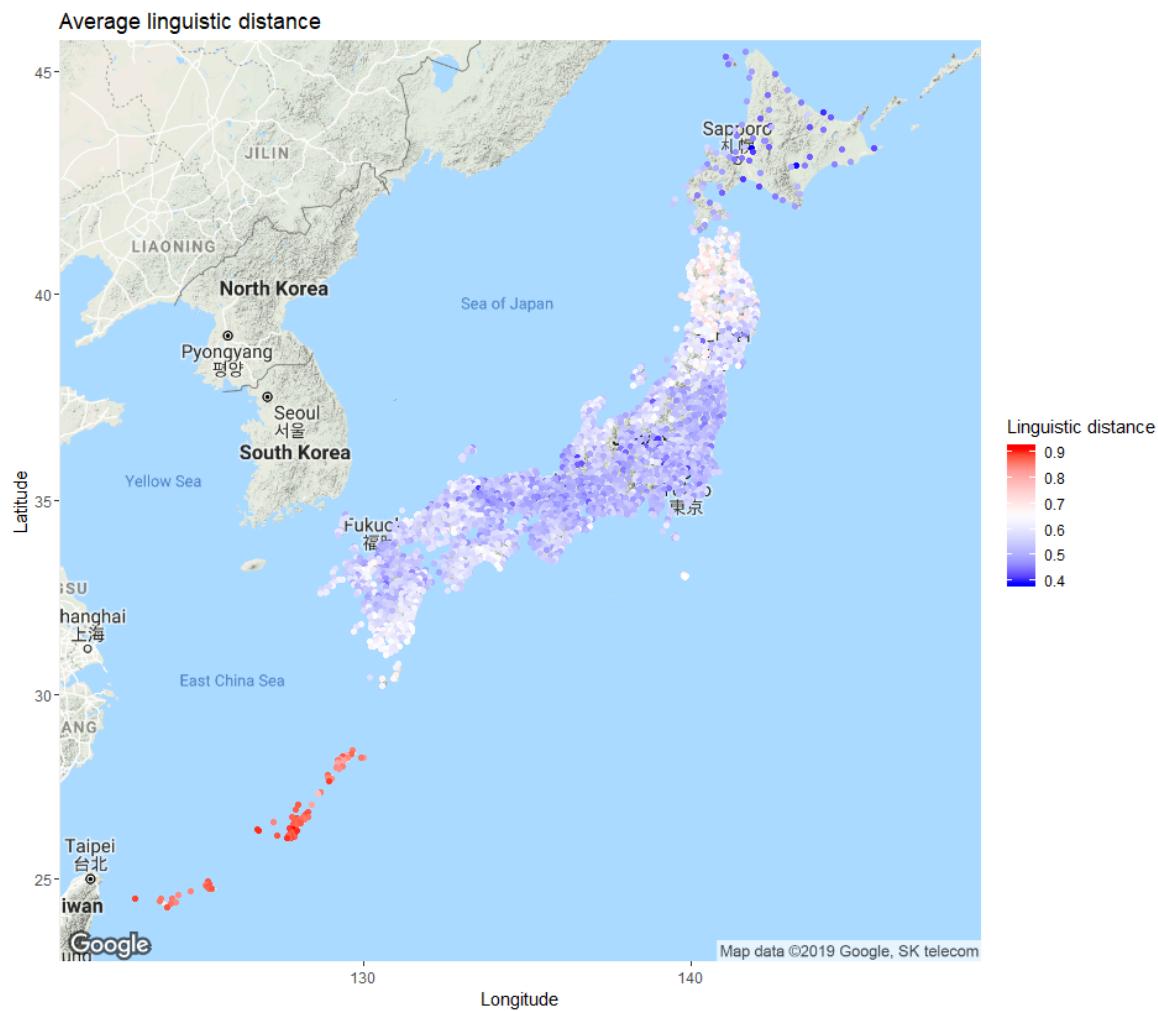

536 In general, Figure 7 shows that the closer a locality is to the reference locality, the smaller their
 537 linguistic distance, but Okinawa tends to show uniformly larger linguistic distances, while Hokkaido's
 538 localities are never extremely different from the reference localities. The northerly Hokkaido locality
 539 seems to be lexically close to various areas, attesting a mixture of dialects or the degree to which
 540 Standard Japanese is used in different parts of the country. Interestingly, the north of Honshu (Aomori,
 541 Tohoku) are some of the linguistically most different areas from this locality. The Aomori locality
 542 seems to only have a small area of linguistic similarity with most of Honshu, Kyushu and Shikoku

Figure 7. Linguistic distances map with six reference sites from top left to bottom right: Northern Hokkaido, rural location in Aomori prefecture, Tokyo, Kyoto, Matsue city (Shimane prefecture) and Naha, capital of Okinawa prefecture.

543 being different. At the same time the southern tip of Hokkaido seems more similar, which hints on
 544 the language connection present throughout history. Linguistic distances to Tokyo (the birthplace of
 545 Standard Japanese) tend to be smaller throughout Honshu, and most Hokkaido localities express a
 546 similarity with it. The largest distances are found in the north of Honshu (Tohoku) and the south
 547 of Kyushu, the geographically farthest areas. Kyoto, as the former capital is expressly similar to
 548 its surroundings, in the so called Kinki area, with its similarity gradually fading away by distance
 549 and levelling to the highest differences in the north of Honshu and south of Kyushu. Interestingly,
 550 similarity between the Tokyo and Kyoto area is not salient in these maps, based on our set of variables.
 551 The area looking similar to Matsue spreads farther away than Kyoto's and also looks concentrical,
 552 with the exception of Hokkaido. Okinawa is, finally, uniformly different in all maps with reference
 553 points in the larger islands. Its own reference map centred in Naha, the capital city of Okinawa shows
 554 extreme difference with all other provinces of Japan and even in the Okinawa prefecture itself, the
 555 Sachishima-islands in the west present a relatively large difference.

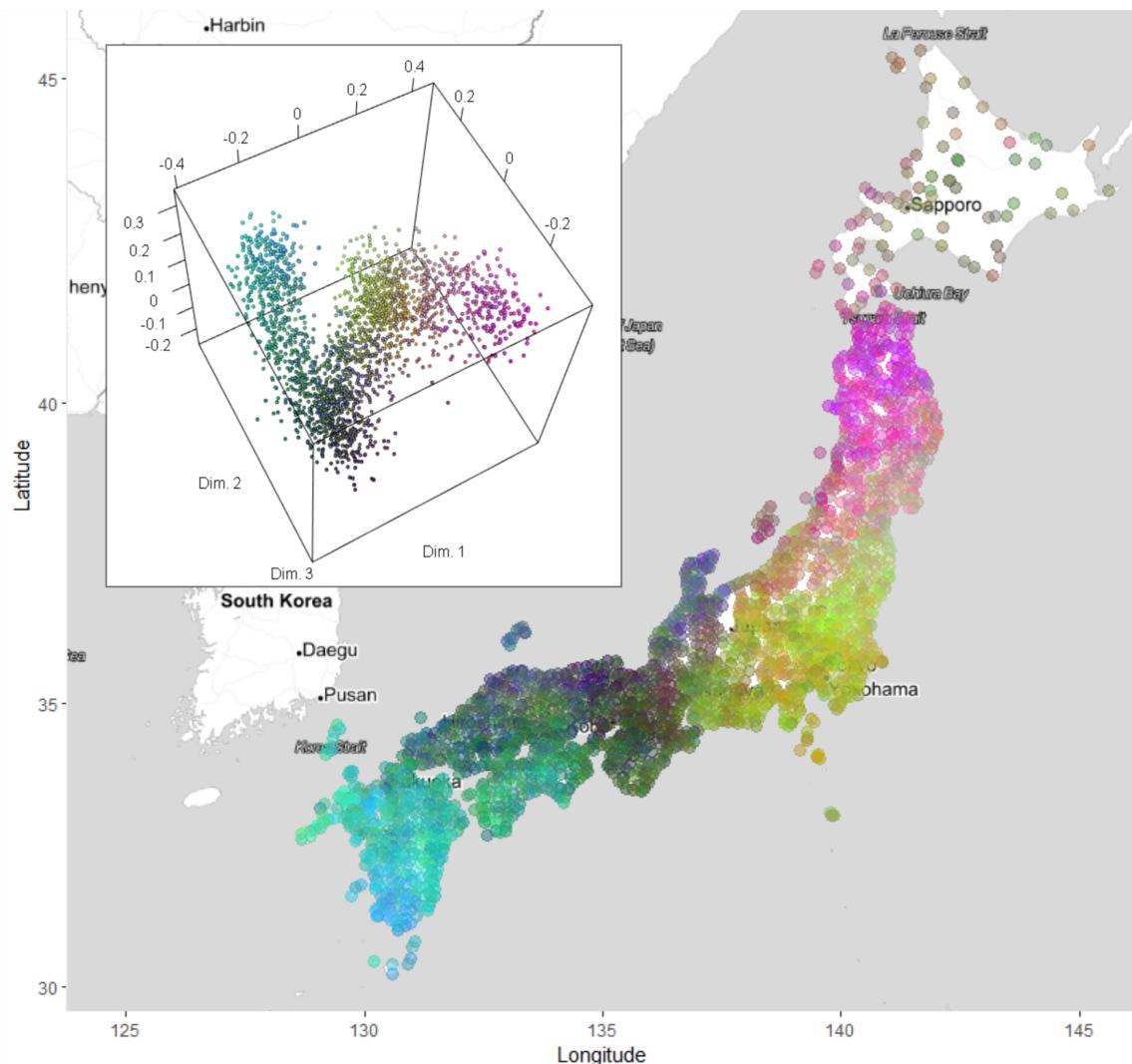

556 Based on the linguistic distance matrix, for each locality an average linguistic distance can be
 557 calculated to all other localities by taking the mean of each matrix row. Mapping these average values,
 558 used also in [53], adds a technique to Nerbonne's inventory of mapping aggregate variation [28]. The
 559 resulting map in Figure 8 can thus be interpreted as a degree of overlap between the locally used
 560 lexicon and all other localities' lexicon. Importantly, similar colours do not correspond to linguistic
 561 similarity, but to mean difference from all localities being similar. Although the lexical distance is
 562 calculated based on only 37 variables, the map shows several interesting points. The most conspicuous
 563 interpretation of the map is that Okinawan varieties are the most different from all others on average,
 564 as expected. The localities closest to all other sites are found on Hokkaido, attesting the mixed nature
 565 of the local varieties. In Honshu the area spanning from North of Kanto (the area containing Tokyo) to
 566 the West of Kansai (the area encompassing Kyoto, Osaka, and the cultural centre of Japan before the
 567 Edo-era) is a seemingly average area, fading out into the extremes of the three main islands: to the
 568 north of Honshu, and south of Shikoku and Kyushu.

Figure 8. Average linguistic distance map. Colours of each point correspond to the survey location's average linguistic distance toward all other survey location.

569 3.3. *Dialectal Variation in Space*

570 Having performed the multidimensional scaling (MDS) on the 2400*2400 linguistic distance
 571 matrix, we can represent the dialectal variation in a three dimensional space, which is readily
 572 interpretable. These three dimensions are assigned to the RGB colours. Interpreting the similarly
 573 coloured clusters and spatial areas similar in either the 3D plot or the map in Figure 9 is practically
 574 equivalent to finding similar survey sites with regards to all 37 variables and therefore to accounting
 575 for dialect areas. Figure 9 excludes the Ryukyu Islands (containing Okinawa) due to their large
 576 linguistic distance from all other parts of Japan. Despite the removal of the outlying Ryukyu Islands,
 577 no genuinely isolated clusters are visible in the 3D plot. Although contrasting colours and certain
 578 central areas can be identified in the map, such as the northern part of Honshu, the Kanto area centred
 579 around Tokyo, or the south of Kyushu, the transitions in between remain gradual, attesting for the
 580 theory of dialect continua. As expected, Hokkaido's localities seem to be mixed and brownish in
 581 colour, which indicates equal mixture of RGB colours and thus centrality. In essence, there is a contrast
 582 between the MDS map based on the 37 variables at hand, and the classic area formation map of
 583 Japan, e.g. [77]. The boundaries of dialect areas usually bordered by sharp lines can be considered
 584 as a representation of some core varieties based on the MDS map, painting a fuzzier picture of the
 585 transitions present between these cores.

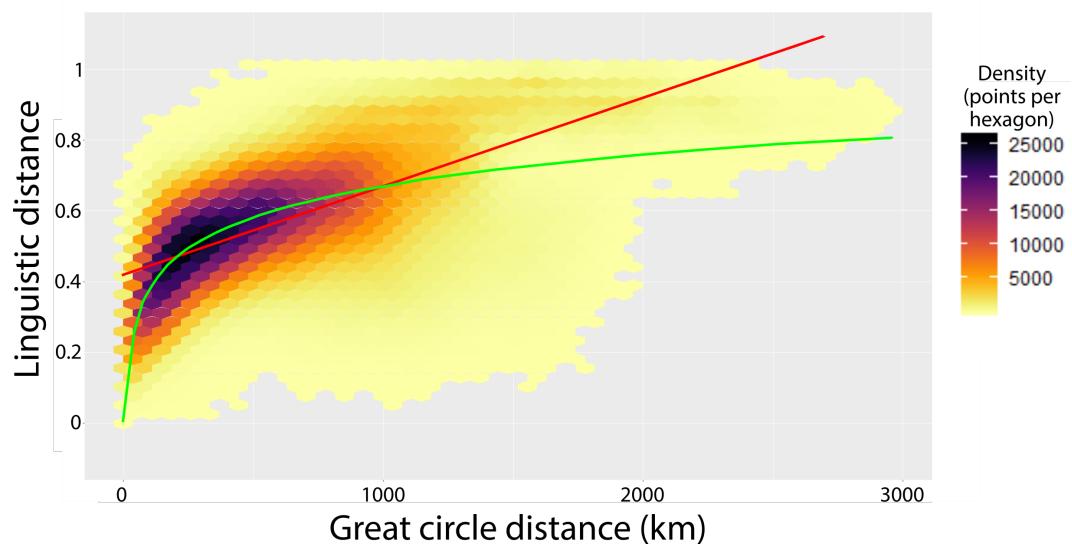
Figure 9. Multidimensional scaling map excluding Okinawa. The more similar colours are, the smaller the linguistic distance. The inset 3D plot shows the clustered relationship of the localities with regards to the three main dimensions.

586 An additional MDS conducted only on the Ryukyu Islands revealed that isolated clusters can
 587 be found based on the 37 variables, despite the small subset. Having found four isolated clusters –
 588 namely, from West to East, the Yaeyama Islands, the Miyako Islands, the Okinawa Islands (containing
 589 the capital), and the Amami Islands (belonging to the Satsuma domain of South Japan since 1624,
 590 rather than the then Ryukyu Kingdom) – hints on the historical isolation not only between the Ryukyu
 591 Islands from mainland Japan, but also within itself.

592 3.4. Correlations with Spatial Measurements

593 We calculated several values estimating the potential of dialect contact across localities in the LAJ.
 594 For the continuous values, we built spatial distance matrices similarly to the linguistic distance and for
 595 all matrix pairs, Pearson product-moment correlation was calculated. Figure 10 shows the correlation
 596 coefficients across the explanatory variables for the entire survey area. A high correlation present
 597 among *GCD*, *TD*, *TT* and *HT* is not surprising, given the size of Japan. These values are negatively
 598 correlated with the logarithms of the *TLGI* values, as they represent an *influence*, therefore similarity,
 599 rather than distance.

Figure 10. Correlation crossplot of the distance based explanatory variables.


600 It is expected that the logarithm of the spatial distances will have a greater explanatory power
 601 on the linguistic variation due to the following. While linguistic distance can grow up to a certain
 602 degree only (i.e., until total dissimilarity), spatial distance can constantly grow. It is expected (similarly
 603 to most dialectological studies) that in a large area, such as Japan, large linguistic differences will be
 604 reached before the most extreme spatial distance from a certain point is reached.

605 Correlation coefficients with the linguistic distance for the entire survey area and the functional
 606 subsets are given in Table 1. We first compare the effects of the spatial distances (rows) and then
 607 discuss the different data subsets (columns). As seen in Figure 10, the correlation of *GCD*, *TD*, *TT* and
 608 *HT* are almost total so, unsurprisingly, all of them explain a similar amount of variance in the dialectal
 609 differences. It is also due to this fact that we tested the travel distance (lengthwise shortest paths with
 610 regards to the network) and travel time matrices coming from different resources rather than sourcing
 611 both from OSRM.

612 The correlation of *GCD* with the linguistic distance is presented in a heatmap (Figure 11), due
 613 to the large number of locality pairs. Hexagons are coloured by the number of points (locality pairs)
 614 in each cell, thus plotting the density of points. The correlation is undoubtedly positive, but solely
 615 based on the plot, its linear or logarithmic nature cannot be warranted. The correlation tests reveal
 616 that the logarithm of *GCD* explains slightly more variance in the linguistic distance ($r = 0.6462$ and r
 617 $= 0.6714$, respectively). The difference, however, proves to be statistically significant based on Meng
 618 et al.'s *z*-score [87] calculated using the *R* package *cocor* [88]. This test is applied for finding whether
 619 any correlation coefficient is significantly different from another, given their difference and the sample
 620 sizes.

621 The high correlation with *TD* should be taken with a little skepticism due to the high rate of
 622 missing values. The logarithmic correlation is significantly higher in this case too. With a much smaller
 623 rate of missing values, the correlation obtained with contemporary *TT* is lower than that of *GCD*,
 624 but its logarithm seems to match the logarithm of *GCD*. The large number of locality pairs however,
 625 renders this difference statistically significant.

626 Correlation values for *HT* and their logarithms are similar, but lower than the previously discussed
 627 values, inviting the question whether our model is less valid for the estimation of dialect contact
 628 (resulting in the dialect landscape of the first half of the 20th century) or whether dialect variation is
 629 not governed as much by potential least cost paths as we determined at the scale of the entire country,
 630 and for our pool of variables.

Figure 11. Linguistic distance plotted against the great circle distance in the entire survey area. The colour of each hexagon represents the number of location pairs' value falling into it. Regression lines are plotted for showing the linear (in red) and the logarithmic (green) relation.

631 To level out the uncertainty due to missing values in TD , correlation with linguistic distance is
 632 calculated for the subset of locality pairs where all spatial distance values are available (L_{-NA}). For
 633 this subset, containing 70.7% of all locality pairs, the correlation coefficients are given in the second
 634 row of Table 1. These results, however biased by not taking into account distances between Okinawa,
 635 Hokkaido and the three most populous islands, show that the spatial distance based estimations
 636 of contact deliver very similar explained variance. We assume that this is due to the fact that the
 637 overwhelming majority of locality pairs lack the possibility for direct contact because of large distances.
 638 In such cases only indirect contact is present and thus the way we measure the *inability* of contact
 639 makes little difference. This convergence at the global level invites the investigation of the local impact
 640 of different estimations of contact.

Table 1. Correlation coefficients expressed as Pearson's r . For each set the number of localities included are given in parentheses. L_{-NA} means the survey location pairs with no missing values, i.e. where all *spatial distances* can be calculated. HSK stands from the set composed of Honshu, Shikoku and Kyushu.

*Travel distance has a missing value proportion of 29.27% while **Travel times have a missing value proportion of 3.14%, \$ Okinawan location pairs have very few non-missing values for TD and TT .

Entire area (2400)	$L_{-NA} \approx$ 70.7%	Hokkaido (83)	Honshu (1666)	HSK (2125)	Shikoku (141)	Kyushu (318)	Okinawa (82)	
<i>GCD</i>	0.6462	0.6672	0.2487	0.6488	0.6673	0.7391	0.7237	0.6999
<i>log(GCD)</i>	0.6714	0.7048	0.2339	0.6876	0.7037	0.7824	0.7544	0.7718
<i>TD*</i>	0.6613	0.6613	0.2564	0.6713	0.6606	0.7602	0.7246	0.3902\$
<i>log(TD)*</i>	0.7058	0.7057	0.2441	0.7126	0.7055	0.7943	0.7561	0.4139\$
<i>TT**</i>	0.5322	0.6681	0.1773	0.5023	0.6675	0.5456	0.5493	0.7573\$
<i>log(TT)**</i>	0.6717	0.7087	0.2782	0.6622	0.7072	0.6923	0.7357	0.7454\$
<i>HT</i>	0.5836	0.6718	0.2177	0.6605	0.6719	0.7548	0.6786	0.5739
<i>log(HT)</i>	0.6078	0.6834	0.2115	0.669	0.6845	0.7693	0.664	0.6848
<i>TLGI₁₉₇₅</i>	-0.5078	-0.5188	-0.3539	-0.4919	-0.5182	-0.6454	-0.5498	-0.6078
<i>TLGI₂₀₀₅</i>	-0.4695	-0.4862	-0.3407	-0.4627	-0.4855	-0.606	-0.4966	-0.584

641 Within **Hokkaido** lower correlation is expected, since the island has been populated by Japanese
 642 speakers more extensively only since the end of the 19th century, slightly before or around the LAJ

643 respondents' mother tongue acquisition. As the settlers came from all over Japan, we find that their
644 varieties are much closer to the Standard because of the newly established, cosmopolitan environment.
645 Besides, varieties tend to resemble those various areas that gave the diasporae to Hokkaido settlements.
646 The mixed pattern visible on Figures 7, 8 and 9 and the low correlation values are hard to explain by
647 local geographic factors, given that the historical scenarios leading to the then Hokkaido language
648 variation are not only formed in Hokkaido but necessarily around Honshu, the ancestral home of
649 the majority of LAJ respondents in Hokkaido. It is the *TLGI* that explains most of the variance. The
650 difference between its two measures is not statistically significant. Moreover, the correlation coefficient
651 for $TLGI_{2005}$, -0.3407, is not significantly higher than for the logarithm of *TT*, 0.2782, due to a low
652 number of samples. This means that contact patterns based on migration and hierarchy do not
653 characteristise dialectal variation in Hokkaido more than elsewhere.

654 **Honshu** is encompassing two thirds of the survey locations and most pairwise values for
655 explanatory variables could be calculated. The large distances within Honshu encompass mostly
656 indirect contact, rendering the spatial distance values to explain a similar amount of variance, with
657 *TT* having the lowest values. However, due to the high number of samples most of these correlation
658 coefficients are significantly different, resulting in the logarithm of *TD* being the best explanatory
659 variable.

660 Unsurprisingly, the resulting correlation coefficients for the united subset of **Honshu**, **Kyushu**
661 and **Shikoku** resemble those in L_{NA} . The nuanced differences present stem from incorporating
662 location pairs in L_{NA} that are *within* Hokkaido or other islands with multiple survey localities. This
663 also demonstrates the degree to which the three most populous islands outweigh all other areas when
664 accounting for correlations at the *global* scale, inviting the question of testing correlations at (more)
665 local scales.

666 **Shikoku** has the highest correlation coefficients of all subsets, with the logarithm of *TD* scoring
667 the highest (0.7943), however this value is not statistically significantly higher than that of *TD*, *HT*
668 and their logarithms, and the logarithm of *GCD*, due to the small number of localities on Shikoku.
669 These *r* values mean that the spatial distance measures explain about 62% of the variance in linguistic
670 distances, leaving a much smaller room for other, sociodemographic variables to influence the lexical
671 variation. Because of this, it would be interesting to investigate the role of geographic factors in
672 linguistic variation on the island of Shikoku more in depth. Shikoku's geography is defined by rugged
673 mountains, crucially defining the communication of the four prefectures located on it. The centres of
674 these prefectures are relatively isolated from each other, having partly better chances at communication
675 with Honshu via sea, e.g. [104].

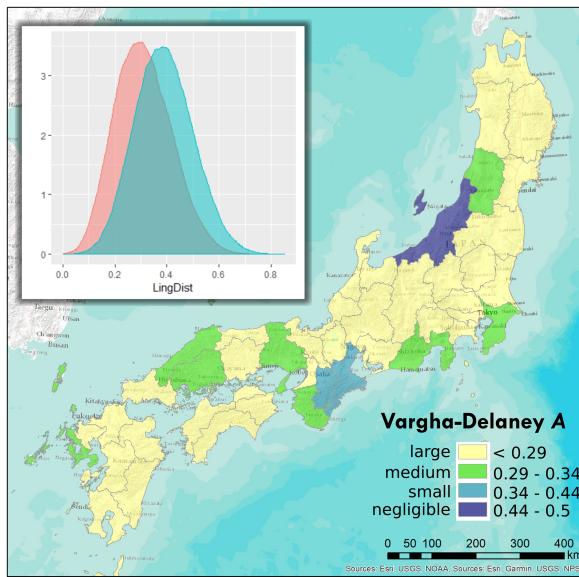
676 **Kyushu's** correlation coefficients are almost as high as Shikoku's, with statistically no difference
677 between *GCD*, *TD*, their logarithms and the logarithm of *TT*. The relatively lower correlation with *HT*
678 could be influenced by the fact that the number of Edo-era ports for the Kyushu subset is also relatively
679 low. This shows the propagating effect of small differences in local models and the importance of
680 limitations regarding the realistic estimation of contact potential.

681 In the case of **Okinawa**, as an archipelago, the fact of not having roads in between islands renders
682 the *HT* as the potential interaction estimation similar to *GCD*, with the difference of elevated importance
683 of port access. *TD* and times data are retained for less than half of the point pairs. Correlation with
684 *TLGI* is relatively high for Okinawa, probably due to its relatively small size and the frequency of
685 access across islands might historically correlate with their population, which might not have changed
686 much in terms of proportions. However, $TLGI_{1975}$ is not significantly lower than the logarithm of *HT*.
687 Huisman [14] notes that in the island languages "diversity is a reflection of time since divergence, as
688 a result of limited contact due to the geographic isolation of islands". High correlation of Okinawan
689 linguistic difference with the remaining explanatory variables means that even though Okinawa is
690 relatively small and its variation is very different from all others in general, linguistic differences
691 within Okinawa itself are large and spatially autocorrelated. Further, a large part of this linguistic
692 difference can be explained by distance contact patterns over sea.

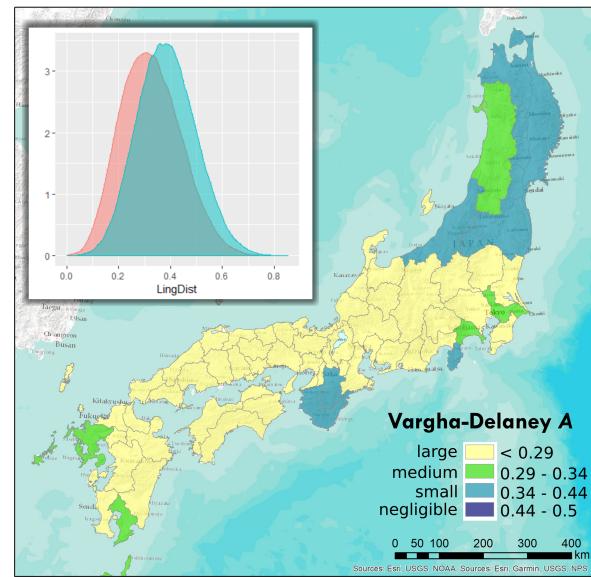
693 In each set of locations TLGI has a lower explanatory power, which would mean that even
 694 bigger cities are impeded from communication by long distances. It might, however, show that
 695 the communication patterns across the country characteristic of the Meiji-era cannot be very well
 696 explained by influence characteristics representing 1975 and 2005, despite them being scaled down to
 697 local population densities.

698 *3.5. Effects of Administrative Boundaries*

699 We report the tests investigating the dialect separation effect of administrative boundaries in two
 700 ways. On the one hand, Table 2 shows the aggregate effect of the boundaries, testing the *within* and
 701 *separated groups'* overlap when cumulated for all administrative regions. All Mann-Whitney *U* tests
 702 result in statistically significant separation values, therefore only their effect sizes are reported, by
 703 giving the Vargha-Delaney *A* and their interpretation as defined in the *R* package *effsize* [105]. On the
 704 other hand, Figures 12 and 13 map the underlying effect sizes contributed by each of the administrative
 705 regions, prefectures and domains respectively, showing the results of the calculations with a 150 km
 706 cut-off. The colours of the regions correspond to the effect size categories. Besides, density plots show
 707 the distribution of linguistic distances in the *within* and *separated* groups, respectively, with *within*
 708 groups expected to have smaller values.


709 Vargha and Delaney's *A* reports the probability that a randomly chosen value from one group
 710 will be greater than a randomly chosen value from the other group. A value of 0.5 would indicate
 711 stochastic equality of the two groups. A value of 1 would indicate that the *within* group shows complete
 712 stochastic domination over the *separated* group, and a value of 0 would indicate the other way around,
 713 the *separated* group showing larger linguistic distances in all cases.

714 **Table 2.** Global results of testing the effect of administrative boundaries. The density plots for 150 km
 715 distance cut-off cases are presented in Figures 12 and 13.


Boundary type	Distance cut-off (km)	Vargha-Delaney <i>A</i>	Interpreted effect size
Prefectures (47)	200	0.2607	large
Prefectures (47)	150	0.3045	medium
Prefectures (47)	100	0.3473	small
Prefectures (47)	50	0.3793	small
Domains (68)	200	0.5387	negligible
Domains (68)	150	0.3513	small
Domains (68)	100	0.3725	small
Domains (68)	50	0.4079	small

714 In all cases, at the aggregate scale in Table 2, locality pairs separated by the domains' boundaries
 715 show little to negligible stochastic dominance with regards to linguistic distance, which means that
 716 having a domain boundary between two survey locations would not mean much bigger chances for a
 717 higher linguistic distance. The small stochastic difference between the *within domain* and the *separated*
 718 groups is also visible in the density plot in Figure 13. In contrast, for prefecture boundaries the higher
 719 distance cut-off value we chose, the larger the effect size, reaching the medium and large categories.

720 In Figures 12 and 13 it is often the larger regions for which a smaller effect is present. However,
 721 not all large prefectures show this pattern and actually some of the largest ones' boundaries show a
 722 large effect. In case of the domains, the three largest ones in the north of Honshu show smaller effects
 723 while the other domains showing small and medium effect overlap the areas of the prefectures that
 724 also show small and medium effect. Smaller effects of larger regions' boundaries might be due to larger
 725 possible linguistic distances possible *within* large regions, which might go hand in hand with smaller
 726 distances across its boundaries. But as it is not always the case, it is safe to say that spatial variation is
 727 present. This spatial variation is also marked by boundaries that changed as domains were reorganised
 728 into prefectures. As changing boundaries often show a change in effect size category as well, we might

Figure 12. Map of the prefectural boundaries' effect size categories on dialectal variation. The density plot shows the distributions of linguistic distances in the cumulated *within* (left) and *separated* (right) group, at the global scale. Distance cut-off: 150 km.

Figure 13. Map of the domain boundaries' effect size categories on dialectal variation. The density plot shows the distributions of linguistic distances in the cumulated *within* (left) and *separated* (right) group, at the global scale. Distance cut-off: 150 km.

729 confirm the presence of the modifiable area unit problem (MAUP). When aggregated, however, the
 730 differences across individual regions level out. Nonetheless, the underlying variation in effect statistics
 731 invites the question of analysing such boundaries more in detail, focusing on certain sections rather
 732 than investigating the whole length of a region's boundaries, together with their historical context
 733 and changes of location, stability and porosity. Finally, the larger effect visible in longer distances for
 734 prefectures might be interpreted as the effect of distance, rather than the effect of boundaries.

735 4. Summary and Conclusion

736 It is clear that historical geographic and sociodemographic settings influence linguistic variation.
 737 However, to account for such settings regarding the role they play in contact patterns in society, such
 738 that it is universally representative, is challenging. In this work we provided a spatial analysis on
 739 dialectal data by means of estimating potential historical contact across a dialect landscape using
 740 different models. The analysis was carried out on Japanese dialects due to their ideal geographic
 741 characteristics showing potential isolation and dense communication and due to the fact that so far no
 742 comprehensive dialectometric analysis was done on Japanese using aggregated data.

743 We confirmed the relationship between the potential of contact, expressed by spatial factors and
 744 dialectal variation, and we have found differences between global and local explanation power of
 745 different geographic factors.

746 Due to the apparent time concept, we assumed the dialectal variation recorded in the 1950s and
 747 '60s to be representative of the geographic and sociodemographic settings of Japan at the turn of the
 748 19th and 20th centuries, the mother tongue acquisition age of the respondents, and the period before
 749 the industrial revolution regarding the movement of their parents' generation. Calculating linguistic
 750 distances and finding associations across dialectal variants, dialect continua were assumed to be found
 751 rather than the classic dialect area formation.

752 Several limitations of the research can be identified. Relatively few LAJ variables (37 out of
 753 285 contained in the atlas) were digitally available at the time of our research, assumed not to be

representative of the whole LAJ. The same way LAJ respondents are also not representative of the entire Japanese dialect landscape, due to LAJ's design, in search of the oldest possible dialectal variation in linguistic variables assumed to show spatial variation. This might as well contribute to the relatively high correlation coefficients found with spatial factors. Adding further variables may change our results, which could be contrasted to running similar experiments on the survey data from the New Linguistic Atlas of Japan (NLJ) [106], recently revisiting LAJ questions. The apparent time approach we employed might be in several cases erroneous, due to lexicon assumed to be prone to change throughout our lives more easily than other levels of linguistics. If LAJ respondents have indeed changed their originally acquired idiolect as a result of language contact or standardisation (as attested in [74]) by the time of the survey, or even at the interview due to *accommodation* effects, the models aimed to estimate historical contact might be negatively biased. As for accounting for the historical contact patterns with more accuracy, the digitisation of the road system in the Meiji-era (1868-1912) and involving the frequency and routes of ships could provide a more realistic model. As for the separation effect of boundaries, investigating them section by section rather than all boundaries of a region might be more beneficial.

Our research brings three plus one contributions. First, using the methodology presented we can challenge the picture traditional dialectology paints about the distribution of (historical) Japanese dialects, despite the relative scarcity and presence of bias in the data available. Based on the overlap analysis of variant categories and the results of MDS, the spatial relations of local similarities can be revisited. Beside having confirmed the outlying nature of Okinawan varieties (similarly to [14,75,76]), these simple statistical methods can be used to establish whether dialect continua [39] are present, based on LAJDB and additional (digitised) data, and give a more differentiated picture about dialectal boundaries at the level of individual or aggregated variables (thereby contrasting the classic dialect area formation maps, e.g. [77]).

Second, we showed that all geographic factors tested explain a significant proportion of the variance in linguistic distance at the global and more local scales as well. Since linguistic distance tends to rise to a ceiling when large enough areas are examined, the logarithmic model functions generally perform better, as expected. As sociodemographic variation across the LAJ respondents is small (they are NORMs [79]), it leaves more potential variation to be explained by space. Due to missing values, TD and TT usually do not explain more variance than GCD. It is also the large proportion of indirect potential contact and the large distances present that make the choice of explanatory spatial distance variables indifferent, inviting the question of testing them in smaller regions [53]. The hiking time model, assumed to estimate contact potentials before the industrial revolution better, seems to have slightly worse explanatory power which could be due to suboptimal model parameters (missing land cover, no fatigue or waiting times added at ports). Another reason might be our faulty assumptions of apparent time in relation to lexical change. In conclusion, due to the different flaws potentially present in derived spatial distances, and long distances rendering most estimations of contact potential equal, it is suggested that a linear distance be always tested.

Third, the impact of administrative boundaries was tested for the first time on Japanese dialectal variation. The tests showed statistically significant separation effects and delivered two types of results. On the one hand, at a global level, neither historical, nor modern administrative boundaries appear to play a serious role, contrary to expectations based on their assumed historical quality of restricting movement. On the other hand, boundaries of individual administrative regions showed strong effects of separation. It requires, however, further tests to identify the role of boundaries and distance in such results.

In addition, estimating contact potentials across the systems of communities at global and local scales enables testing further linguistic hypotheses focusing on individual or aggregated variables, such as: "Do main connecting roads associate more with standard variation?" [67]. "Do dialect areas overlap with functional name regions?" [107]. "Are Northern Shikoku dialects closer to those around the Seto Inland Sea than to the dialects of Southern Shikoku?" [104]. Our achievement is the synthesis

804 and systematic development of the above methodology which is significant beyond dialectology and
805 could be implemented for similar quantitative databases in digital humanities of historical importance
806 having similar spatial and attribute granularity. Then the influence of contact and isolation can
807 be tested on the spread of 'innovations' at different geographic scales, such as cultural monument
808 registers, georeferenced collections of folk songs [108] and customs. Moreover, similar analysis can be
809 performed on data collected for marketing and be used in location based services, targeted marketing
810 and statistical predictions.

811 **Author Contributions:** The idea, research questions and conceptualization for this article was developed by P.J.,
812 K.Y. and Y.H. The methodology was worked out by P.J. and K.Y. and implemented in R, ArcGIS, QGIS and SPSS
813 by P.J., S.I. and K.Y. Visualisations were done by P.J. The original draft was written by P.J. with the writing-review
814 and editing done by P.J. and K.Y. The interpretation of results were done by P.J. and K.Y. while Y.H. lent his
815 knowledge about Japanese linguistics. Project administration and funding acquisition was done by P.J. and K.Y.

816 **Funding:** This research was funded by the Swiss National Science Foundation scholarship number
817 P2ZHP2_175019 and the APC was funded by JSPS Kakenhi Grant Number 16H01965.

818 **Acknowledgments:** We are grateful to the NINJAL (National Institute of Japanese Language and Linguistics) and
819 especially Yasuo Kumagai for making parts of the digitised Linguistic Atlas of Japan freely available. Further,
820 we would like to acknowledge the work of Rui Niwa on data cleaning and the valuable comments of Takuichiro
821 Onishi and the anonymous reviewers.

822 **Conflicts of Interest:** The authors declare no conflict of interest.

823 Abbreviations

824 The following abbreviations are used in this manuscript:

825	GCD	Great Circle Distance
	HT	Hiking Time (along least cost paths)
	LAJ	Linguistic Atlas of Japan
	LAJDB	Linguistic Atlas of Japan DataBase
	MDS	MultiDimensional Scaling
826	NLRI	National Language Research Institute
	NINJAL	National Institute of Japanese Language and Linguistics
	OSRM	Open Source Routing Machine
	TD	Travel Distance
	TLGI	Trudgill's Linguistic Gravity Index
	TT	Travel Time

827 References

- 828 1. Lameli, A.; Purschke, C.; Rabanus, S. Digitaler Wenker-Atlas (DiWA). In *Regionale Variation des Deutschen – Projekte und Perspektiven*; Kehrein, R.; Lameli, A.; Rabanus, S., Eds.; De Gruyter: Berlin, Boston, 2015; pp. 127–154.
- 829 2. Rosch, E.H. Natural categories. *Cognitive Psychology* **1973**, *4*, 328–350. doi:10.1016/0010-0285(73)90017-0.
- 830 3. Lakoff, G. *Women, Fire, and Dangerous things: What Categories Reveal about Thought*; University of Chicago Press: Chicago and London, 1987.
- 831 4. Hinskens, F.; Auer, P.; Kerswill, P. The study of dialect convergence and divergence: Conceptual and methodological considerations. In *Dialect Change: Convergence and Divergence in European Languages*; Auer, P.; Hinskens, F.; Kerswill, P., Eds.; Cambridge University Press, 2005; pp. 1–48. doi:10.1017/CBO9780511486623.002.
- 832 5. Bowern, C. Relatedness as a Factor in Language Contact. *Journal of Language Contact* **2013**, *6*, 411–432. doi:10.1163/19552629-00602010.
- 833 6. Schreier, D. Language in isolation, and its implications for variation and change. *Linguistics and Language Compass* **2009**, *3*, 682–699. doi:10.1111/j.1749-818X.2009.00130.x.
- 834 7. Fagyal, Z.; Swarup, S.; Escobar, A.M.; Gasser, L.; Lakkaraju, K. Centers and peripheries: Network roles in language change. *Lingua* **2010**, *120*, 2061–2079. doi:10.1016/j.lingua.2010.02.001.

844 8. Lee, S.; Hasegawa, T. Oceanic barriers promote language diversification in the Japanese Islands. *Journal of*
845 *Evolutionary Biology* **2014**, *27*, 1905–1912. doi:10.1111/jeb.12442.

846 9. Bloomfield, L. *Language*; Holt, Rinehart & Winston: New York, 1933.

847 10. Hägerstrand, T. The propagation of innovation waves. *Lund studies in geography, Series B* **1952**.

848 11. Trudgill, P. Linguistic change and diffusion: Description and explanation in sociolinguistic dialect
849 geography. *Language in Society* **1974**, *2*, 215–246.

850 12. Britain, D. Space and spatial diffusion. In *Language and space: An international handbook of linguistic*
851 *variation*; Chambers, J.K.; Trudgill, P.; Schilling-Estes, N., Eds.; Blackwell: Oxford, 2002; pp. 603–637.
852 doi:10.1002/9780470756591.ch24.

853 13. de Vriend, F.; Giesbers, C.; van Hout, R.; Ten Bosch, L. The Dutch-German Border: Relating Linguistic,
854 Geographic and Social Distances. *International Journal of Humanities and Arts Computing* **2008**, *2*, 119–134.
855 doi:10.3366/edinburgh/9780748640300.003.0007.

856 14. Huisman, J.L.A.; Majid, A.; van Hout, R. The geographical configuration of a language area influences
857 linguistic diversity. *PLoS ONE* **2019**, *14*, e0217363. doi:10.1371/journal.pone.0217363.

858 15. Onishi, T. On the relationship of the degrees of correspondence of dialects and distances. *Languages* **2019**,
859 *4*. doi:10.3390/languages4020037.

860 16. Limper, J.; Pheiff, J.; Williams, A. REDE SprachGIS: A Geographic Information System for Linguists.
861 *Handbook of the Changing World Language Map* **2019**, pp. 1–30. doi:10.1007/978-3-319-73400-2_145-1.

862 17. Hoch, S.; Hayes, J. Geolinguistics: The Incorporation of Geographic Information Systems and Science. *The*
863 *Geographical Bulletin* **2010**, *51*, 23–36.

864 18. Labov, W. The Social Motivation of a Sound Change. *Word* **1963**, *19*, 273–309.
865 doi:10.1080/00437956.1963.11659799.

866 19. Bailey, G.; Wilke, T.; Tillary, J.; Sand, L. The apparent time construct. *Language Variation and Change* **1991**,
867 *3*, 241–264. doi:10.1017/S0954394500000569.

868 20. National Language Research Institute (NLRI), K.K.K. *Linguistic Atlas of Japan (Nihon gengo chizu)*; Printing
869 bureau, Ministry of Finance: Tokyo, 1966.

870 21. Gooskens, C. Norwegian dialect distances geographically explained. *Language Variation in Europe*.
871 Papers from the Second International Conference on Language Variation in Europe ICLAVE Vol. 2. 2004.;
872 Gunnarson, B.L.; Bergström, L.; Eklund, G.; Fridella, S.; Hansen, L.H.; Karstadt, A.; Nordberg, B.; Sundgren,
873 E.; Thelander, M., Eds.; , 2004; pp. 195–206.

874 22. Bouckaert, R.R.; Lemey, P.; Dunn, M.; Greenhill, S.J.; Alekseyenko, A.V.; Drummond, A.J.; Gray, R.D.;
875 Suchard, M.A.; Atkinson, Q.D. Mapping the origins and expansion of the Indo-European language family.
876 *Science (New York, N.Y.)* **2012**, *337*, 957–60. doi:10.1126/science.1219669.

877 23. Matsumae, H.; Savage, P.E.; Ranacher, P.; Blasi, D.E.; Currie, T.E.; Sato, T.; Tajima, A.; Brown, S.; Stoneking,
878 M.; Shimizu, K.K.K.; Oota, H.; Bickel, B. Exploring deep-time relationships between cultural and genetic
879 evolution in Northeast Asia. *bioRxiv* **2019**, p. 513929. doi:10.1101/513929.

880 24. Ladd, D.R.; Roberts, S.G.; Dedi, D. Correlational Studies in Typological and Historical Linguistics. *Annual*
881 *Review of Linguistics* **2015**, *1*, 221–241. doi:10.1146/annurev-linguist-030514-124819.

882 25. Derungs, C.; Sieber, C.; Glaser, E.; Weibel, R. Dialect borders—political regions are better predictors than
883 economy or religion. *Digital Scholarship in the Humanities* **2019**, *0*. doi:10.1093/llc/fqz037.

884 26. Séguy, J. La relation entre la distance spatiale et la distance lexicale. *Revue de Linguistique Romane* **1971**,
885 *35*, 335–357.

886 27. Goebel, H. *Dialektometrie: Prinzipien und Methoden des Einsatzes der Numerischen Taxonomie im Bereich der*
887 *Dialektgeographie*; 1982.

888 28. Nerbonne, J. Mapping aggregate variation. In *Language and Space. An international Handbook of Linguistic*
889 *Variation. Vol 1. Theories and Methods*; Mouton de Gruyter: Berlin/ New York, 2010; pp. 476 – 495.

890 29. Wieling, M.; Nerbonne, J. Advances in Dialectometry. *Annual Review of Linguistics* **2015**, *1*, 243 – 264.
891 doi:10.1146/annurev-linguist-030514-124930.

892 30. Nerbonne, J. Data-Driven Dialectology. *Language and Linguistics Compass* **2009**, *3*, 175–198.
893 doi:10.1111/j.1749-818X.2008.00114.x.

894 31. Levenshtein, V.I. Binary codes capable of correcting deletions, insertionss and reversals. *Doklady Akademii*
895 *Nauk SSSR* **1965**, *163*, 845–848.

896 32. Kessler, B. Computational dialectology in Irish Gaelic. Proceedings of the 7th Conference of the European
897 Chapter of the Association for Computational Linguistics; , 1995; Number 1971, pp. 60–66.

898 33. Heeringa, W. Measuring dialect pronunciation differences using Levenshtein distance. PhD thesis,
899 University of Groningen, 2004.

900 34. Goebel, H. "Stammbaum" und "Welle". *Zeitschrift für Sprachwissenschaft* **1983**, 2, 3–44.

901 35. Kumagai, Y. Development of a Way to Visualize and Observe Linguistic Similarities on a Linguistic Atlas.

902 36. Haag, K. *Die Mundarten des oberen Neckar- und Donaulandes (Schwäbisch-alemannisches Grenzgebiet: Baarmundarten)*; Buchdruckerei Hutzler: Reutlingen, 1898.

903 37. Maurer, F. *Oberrheiner, Schwaben, Südalemmen: Räume und Kräfte im geschichtlichen Aufbau des deutschen Südwestens*; Hünenburg: Strassburg, 1942.

904 38. Kurath, H. *Studies in Area Linguistics*; Indiana University Press: Bloomington/London, 1972.

905 39. Heeringa, W.; Nerbonne, J. Dialect areas and dialect continua. *Language Variation and Change* **2001**, 13, 375–400. doi:10.1017/S0954394501133041.

906 40. Nerbonne, J.; Heeringa, W.; Kleiweg, P. Edit Distance and Dialect Proximity. In *Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison*; Sankoff, D.; Kruskal, J., Eds.; Cent. Study Lang. Inf.: Stanford, CA, 1999; p. v–xv.

907 41. Spruit, M.R. Measuring syntactic variation in Dutch dialects. *Literary and Linguistic Computing* **2006**, 21, 493–505. doi:10.1093/llc/fql043.

908 42. Kellerhals, S. Dialektometrische Analyse und Visualisierung von schweizerdeutschen Dialekten auf verschiedenen linguistischen Ebenen. PhD thesis, Universität Zürich, 2014.

909 43. Shackleton, R.G.J. English-American Speech Relationships: A Quantitative Approach. *Journal of English Linguistics* **2005**, 33, 99–160. doi:10.1177/0075424205279017.

910 44. Nerbonne, J. Identifying linguistic structure in aggregate comparison. *Literary and Linguistic Computing* **2006**, 21, 463–475. doi:10.1093/llc/fql041.

911 45. Pröll, S.M. Detecting structures in linguistic maps—Fuzzy clustering for pattern recognition in geostatistical dialectometry. *Literary and Linguistic Computing* **2013**, 28, 108–118. doi:10.1093/llc/fqs059.

912 46. Pröll, S.M.; Pickl, S.; Spettl, A. Latente Strukturen in geolinguistischen Korpora. In *Deutsche Dialekte. Konzepte, Probleme, Handlungsfelder. Akten des 4. Kongresses der Internationalen Gesellschaft für Dialektologie des Deutschen (IGDD) in Kiel. (Zeitschrift für Dialektologie und Linguistik, Beihefte, 158.)*; Elmentaler, M.; Hundt, M.; Schmidt, J.E., Eds.; Steiner: Stuttgart, 2014; pp. 247–258.

913 47. Prokić, J.; Nerbonne, J. Recognising groups among dialects. *International Journal of Humanities and Arts Computing* **2008**, 1, 153–172. doi:10.3366/e1753854809000366.

914 48. Grieve, J.; Speelman, D.; Geeraerts, D. A statistical method for the identification and aggregation of regional linguistic variation. *Language Variation and Change* **2011**, 23, 1–29. doi:10.1017/S095439451100007X.

915 49. Holman, E.W.; Schulze, C.; Stauffer, D.; Wichmann, S. On the relation between structural diversity and geographical distance among languages: Observations and computer simulations. *Linguistic Typology* **2007**, 11, 393–421. doi:10.1515/LINGTY.2007.027.

916 50. Wright, S. Isolation by distance. *Genetics* **1943**, 28. doi:10.5194/isprs-Archives-XLII-5-W1-419-2017.

917 51. Nerbonne, J.; Kleiweg, P. Toward a dialectological yardstick. *Journal of Quantitative Linguistics* **2007**, 14, 148–167.

918 52. Szmrecsanyi, B. Geography is overrated. In *Dialectological and Folk Dialectological Concepts of Space - Current Methods and Perspectives in Sociolinguistic Research on Dialect Change*; Hansen, S.; Schwarz, C.; Stoeckle, P.; Streck, T., Eds.; De Gruyter: Berlin, Boston, 2012; pp. 215–231.

919 53. Jeszenszky, P.; Stoeckle, P.; Glaser, E.; Weibel, R. Exploring global and local patterns in the correlation of geographic distances and morphosyntactic variation in Swiss German. *Journal of Linguistic Geography* **2017**, 5, 86–108. doi:10.1017/jlg.2017.5.

920 54. Tobler, W.R. A computer movie simulating urban growth in the Detroit region. *Economic Geography* **1970**, 46, 234–240.

921 55. Shackleton, R.G.J. Phonetic Variation in the Traditional English Dialects: A Computational Analysis. *Journal of English Linguistics* **2007**, 35, 30–102. doi:10.1177/0075424206297857.

922 56. Inoue, F. Year of first attestation of Standard Japanese Forms and Gravity Centre by Railway Distance. *Dialectologia et Geolinguistica* **2009**, 17, 118–133. doi:10.1515/DIG.2009.007.

948 57. Stanford, J.N. One size fits all? Dialectometry in a small clan-based indigenous society. *Language Variation*
949 and *Change* **2012**, *24*, 247–278. doi:10.1017/S0954394512000087.

950 58. Lameli, A.; Nitsch, V.; Südekum, J.; Wolf, N. Same same but different: Dialects and trade. *German Economic*
951 *Review* **2015**, *16*, 290–306. doi:10.1111/geer.12047.

952 59. van Gemert, I. Het geografisch verklaren van dialectafstanden met een geografisch informatiesysteem
953 (GIS): Master's thesis, 2002.

954 60. Nerbonne, J.; Heeringa, W. Geographic distributions of linguistic variation reflect dynamics of
955 differentiation. In *Roots: Linguistics in Search of its Evidential Base*; Featherston, S.; Sternefeld, W., Eds.;
956 Mouton de Gruyter: New York, 2007; pp. 267–297.

957 61. Kürschner, S.; Gooskens, C. Verstehen nah verwandter Varietäten über Staatsgrenzen hinweg. Dynamik
958 des Dialekts - Wandel und Variation. Akten des 3. Kongresses der Internationalen Gesellschaft für
959 Dialektologie des Deutschen (IGDD); Glaser, E.; Schmidt, J.E.; Frey, N., Eds.; Steiner: Stuttgart, 2011.

960 62. Pickl, S. Probabilistische Geolinguistik. PhD thesis, University of Salzburg, 2013.

961 63. Scholz, J.; Lampoltshammer, T.J.; Bartelme, N.; Wandl-Vogt, E. Spatial-temporal Modeling of Linguistic
962 Regions and Processes with Combined Intermediate and Crisp Boundaries. In *Progress in Cartography: EuroCarto 2015*; Gartner, G.; Jobst, M.; Huang, H., Eds.; Springer International Publishing, 2016; pp. 133–151.
963 doi:10.1007/978-3-319-19602-2_9.

964 64. Yanagita, K. Kagyuukou [On the Dialectal Lexicon of Snail]. *Jinrui-gaku zasshi [Anthropology Journal]* **1927**,
965 42.

966 65. Mase, Y. The distribution and the interpretation of the dialect of mompe (some kinds of trousers) in a
967 mountain village. *Kokugogaku* **1964**, *59*, 40–52.

968 66. Fukushima, C. Interplay of Phonological, Morphological, and Lexical Variation: Adjectives in Japanese
969 Dialects. *Languages* **2019**, *4*.

970 67. Tanaka, A. Hyōjungo: Kotoba no komichi [Standard language: A lane of speech]. In *Seibundō Shinkōsha*;
971 1991.

972 68. Takada, M. Kotoba no chiri: Nihon gengo chizu kara [Geography of words, Kyuushuu district: An
973 observation by using the LAJ]. *Gengo seikatsu* **1969**, *216*, 30–38.

974 69. Hondo, H. Gendai hyoujun nihongo no bunpu: Nihon gengo chizu de mite [Distribution of modern
975 standard Japanese: An observation by using the LAJ]. In *Sato shigeru Kyoju taikan kinen ronshu kokugogaku*;
976 Sato, S., Ed.; Ohfusha: Tokyo, 1980; p. 479–498.

977 70. Kasai, H. Hyoujun gokei no zenkoku bunpu [Nationwide distribution of standard forms]. *Gengo seikatsu*
978 **1981**, *354*, 52–54.

979 71. Ichii, T. *Hougen to keiryu bunseki [Dialect and quantitative analysis]*; Shintensha: Tokyo, 1993.

980 72. Inoue, F. *Keiryouteiki hougen kukaku [Quantitative dialect division]*; Meiji shoin: Tokyo, 2001.

981 73. Inoue, F. Hyōjun-go shiyōsotsu to tetsudō kyori ni miru komyunikeshon no chiri-teki yōin [Geographical
982 Factors of Communication on the Basis of Usage Rate of the Standard Japanese Forms and Railway
983 Distance]. *The Japanese Journal of Language in Society* **2004**, *7*, 19–29. doi:10.19024/jajls.7.1_19.

984 74. Kumagai, Y. Developing the Linguistic Atlas of Japan Database and advancing analysis of geographical
985 distributions of dialects. In *The Future of Dialects. Selected Papers from Methods in Dialectology XV*;
986 Cote, M.H.; Knooihuijzen, R.; Nerbonne, J., Eds.; Language Science Press: Berlin, 2016; pp. 333–362.
987 doi:10.17169/langsci.b81.159.

988 75. Inoue, F.; Kasai, H. Dialect classification by standard Japanese forms. *Japanese Quantitative Linguistics* **1989**,
989 *39*, 220–235.

990 76. Lee, S.; Hasegawa, T. Bayesian phylogenetic analysis supports an agricultural origin of Japonic languages.
991 *Proceedings of the Royal Society B: Biological Sciences* **2011**, *278*, 3662–3669. doi:10.1098/rspb.2011.0518.

992 77. Sato, K.; Sanada, S.; Sawaki, M. NHK Japanese dialects [NHK Nihon no hōgen], 1980.

993 78. Hamano, K. *Historical demographics of the Edo-era Japan [Rekishi jinkōgaku de yomu Edo Nihon]*; Yoshikawa
994 Koubunkan: Tokyo, 2011.

995 79. Chambers, J.K.; Trudgill, P. *Dialectology*, 2nd ed.; Cambridge University Press: Cambridge, 1998; p. 198.

996 80. Magué, J.p. Semantic Changes in Apparent Time. 32nd Annual Meeting of the Berkeley Linguistics
997 Society; , 2006.

998

999 81. Willis, D. Investigating geospatial models of the diffusion of morphosyntactic innovations: The
1000 Welsh strong second-person singular pronoun chdi. *Journal of Linguistic Geography* 2017, 5, 41–66.
1001 doi:10.1017/jlg.2017.1.

1002 82. Longobardi, G.; Guardiano, C. Evidence for syntax as a signal of historical relatedness. *Lingua* 2009,
1003 119, 1679–1706. doi:10.1016/j.lingua.2008.09.012.

1004 83. Uiboaed, K.; Hasselblatt, C.; Lindström, L.; Muischnek, K.; Nerbonne, J. Variation of verbal constructions
1005 in Estonian dialects. *Literary and Linguistic Computing* 2013, 28, 42–62. doi:10.1093/llc/fqs053.

1006 84. Epskamp, S.; Schmittmann, V.D.; Borsboom, D. qgraph: Network Visualizations of Relationships in
1007 Psychometric Data. *Journal of Statistical Software* 2012, 48. doi:10.18637/jss.v048.i04.

1008 85. Kretzschmar, W.A. Variation in the Traditional Vowels of the Eastern States. *American Speech* 2012,
1009 87, 378–390. doi:https://doi.org/10.1215/00031283-2077579.

1010 86. Scherrer, Y.; Leemann, A.; Kolly, M.J.; Werlen, I. Dialäkt Äpp - A smartphone application for Swiss German
1011 dialects with great scientific potential. SIDG, Wien; SIDG 2012, Wien: Wien, 2012; Number July 2012, p. 29.

1012 87. Meng, X.L.; Rosenthal, R.; Rubin, D.B. Comparing Correlated Correlation Coefficients. *Psychological
1013 Bulletin* 1992, 111, 172–175. doi:10.1037/0033-2909.111.1.172.

1014 88. Diedenhofen, B. Cocor: Comparing Correlations, 2016.

1015 89. Nychka, D.; Furrer, R.; Paige, J.; Sain, S. Fields: Tools for spatial data, 2006. doi:10.5065/D6W957CT.

1016 90. ESRI Japan. ArcGIS Data Collection Road Network, 2016.

1017 91. Gooskens, C. Travel time as a predictor of linguistic distance. *Dialectologia et Geolinguistica* 2005, 13, 38–62.
1018 doi:10.1515/DIALECT.2006.003.

1019 92. Giraud, T. Interface Between R and the OpenStreetMap-Based Routing Service OSRM, 2019.

1020 93. Geospatial Information Authority of Japan. Fundamental Geospatial Data.

1021 94. Tobler, W.R. Three Presentations on Geographical Analysis and Modeling: Non- Isotropic Geographic
1022 Modeling; Speculations on the Geometry of Geography; and Global Spatial Analysis (93-1). Technical
1023 report, UC, Santa Barbara, Santa Barbara, 1993.

1024 95. Magyari-Sáska, Z.; Dombay, S. Determining minimum hiking time using DEM. *Geographia Napocensis* 2012,
1025 VI, 124–129.

1026 96. Lionel Casson. Speed under Sail of Ancient Ships. *Transactions and Proceedings of the American Philological
1027 Association* 1951, 82, 136–148.

1028 97. Saito, Y. Navigation area of the Kitamae, Oshu and Okusaji vessels in the 19th century [19 seiki ni okeru
1029 kitamaebune, bishuukaisen (utsumi bune), okusaji kaisen no koukai-ken]. *Tohoku Electric Power [Tohoku
1030 Denryoku]* 2004.

1031 98. Vargha, A.; Delaney, H.D. A Critique and Improvement of the CL Common Language Effect Size
1032 Statistics of McGraw and Wong. *Journal of Educational and Behavioral Statistics* 2000, 25, 101–132.
1033 doi:10.3102/10769986025002101.

1034 99. Mangiafico, S.S. *Summary and Analysis of Extension Program Evaluation in R*, 1.17.11 ed.; Vol. 125, 2016; pp.
1035 16–22.

1036 100. Jones, P.J.; Mair, P.; McNally, R.J. Visualizing psychological networks: A tutorial in R. *Frontiers in Psychology*
1037 2018, 9, 1–12. doi:10.3389/fpsyg.2018.01742.

1038 101. Goebl, H. *Dialektometrie*; Österreichische Akademie der Wissenschaften: Wien, 1982.

1039 102. Hudson, M. The Linguistic Prehistory of Japan: Some Archaeological Speculations. *Anthropological Science*
1040 1994, 102, 231–255.

1041 103. Hikosaka, Y. Expressing will in Japanese dialects: Discussion and differentiation of speculative expressions
1042 [Nihongo hōgen ni okeru ishi suiryōhōgen no kōshō to bunka]. In *Japanese Language Research 9. - Topological
1043 research of the present age*; Sato, K., Ed.; Meiji Shoin: Tokyo, 2002; Vol. 9.

1044 104. Fujiwara, Y. *The Seto Inland Sea Language Scrolls: Volume I*; Hiroshima Dialect Research Institute: Hiroshima,
1045 1974.

1046 105. Torchiano, M. Package 'effsize', 2018.

1047 106. Onishi, T., Ed. *Shin Nihon Gengo Chizu* [New Linguistic Atlas of Japan: NLJ]; Asakura Shoten: Tokyo, 2016.

1048 107. Cheshire, J.A.; Longley, P.A.; Yano, K.; Nakaya, T. Japanese surname regions. *Papers in Regional Science*
1049 2014, 93, 539–555. doi:10.1111/pirs.12002.

1050 108. Sound Archives at the Institute for Musicology. In *Hungaricana* (zti.hungaricana.hu/en/); Institute for
1051 Musicology at the Hungarian Academy of Sciences: Budapest, 2019.