Coffee and caffeine have been used as solar absorbers and also to increase the thermal stability and efficiency of perovskite solar cells. In this work, we report the sensing of extremely alkaline pH by colloidal coffee solution aided by generation of an optical absorption band in the near-UV region. This generation of absorption band could be explained by the orientation induced dipole-dipole interactions arising from differing caffeine-solvent interactions with varying pH. Such a generation leads to the lowering of direct as well as indirect bandgaps from 4 eV-->2.8 eV& 3.4 eV-->2.5 eV, respectively. We also estimate the changes in optical energy storage efficiency, inferring it to be highest for pH 11 having the highest intensity of the generated absorption band (λ_abs≈360 nm). With these observations and further deductions, the work reported in this paper would be of immense interest to the researchers working in the field of development of chemical pH sensors and also in the development of novel UV absorbers.
Keywords:
Subject: Chemistry and Materials Science - Applied Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.