Preprint
Review

Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods

Altmetrics

Downloads

5499

Views

907

Comments

0

Submitted:

16 August 2019

Posted:

20 August 2019

You are already at the latest version

Alerts
Abstract
The conventional machine learning (ML) algorithms are continuously advancing and evolving at a fast-paced by introducing the novel learning algorithms. ML models are continually improving using hybridization and ensemble techniques to empower computation, functionality, robustness, and accuracy aspects of modeling. Currently, numerous hybrid and ensemble ML models have been introduced. However, they have not been surveyed in a comprehensive manner. This paper presents the state of the art of novel ML models and their performance and application domains through a novel taxonomy.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated