Preprint
Article

A QoS-aware Secured Communication Scheme for IoT-based Networks

Altmetrics

Downloads

450

Views

405

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 August 2019

Posted:

23 August 2019

You are already at the latest version

Alerts
Abstract
The Internet of Things (IoT) is an emerging technology that aims to enable the interconnection of a large number of smart devices and heterogeneous networks. Ad hoc networks play an important role in the designing of IoT-enabled platforms due to their efficient, flexible, low-cost, and dynamic infrastructures. These networks utilize the available resources efficiently to maintain the Quality of Service (QoS) in a multi-hop communication. However, in a multi-hop communication, the relay nodes can be malicious, thus requiring a secured and reliable data transmission. In this paper, we propose a QoS-aware secured communication scheme for IoT-based networks (QoS-IoT). In QoS-IoT, a Sybil attack detection mechanism is used for the identification of Sybil nodes and their forged identities in multi-hop communication. %by high-power and mobile nodes. After Sybil nodes detection, an optimal contention window (CW) is selected for QoS provisioning, i.e., to achieve per-flow fairness and efficient utilization of the available bandwidth. In a multi-hop communication, the MAC layer protocols do not perform well in terms of fairness and throughput, especially when the nodes generate a large amount of data. It is because the MAC layer has no capability of providing QoS to prioritized or forwarding flows. We evaluate the performance of QoS-IoT in terms of Sybil attack detection, fairness, throughput, and buffer utilization. The simulation results show that the proposed scheme outperforms the existing schemes and significantly enhances the performance of the network with a large volume of data. Moreover, the proposed scheme is resilient against Sybil attack.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated