Preprint
Article

CYGNSS Surface Heat Flux Product Development

Altmetrics

Downloads

281

Views

231

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 August 2019

Posted:

25 August 2019

You are already at the latest version

Alerts
Abstract
Ocean surface heat fluxes play a significant role in the genesis and evolution of various marine-based atmospheric phenomena, from the synoptic scale down to the microscale. While in-situ measurements from buoys and flux towers will continue to be the standard in regards to surface heat flux estimates, they commonly have significant gaps in temporal and spatial coverage. Previous and current satellite missions have filled these gaps; though they may not observe the fluxes directly, they can measure the variables needed (wind speed, temperature, and humidity) to estimate latent and sensible heat fluxes. However, current remote sensing instruments have their own limitations, such as infrequent coverage, signals attenuated by precipitation, or both. The Cyclone Global Navigation Satellite System (CYGNSS) mission overcomes these limitations over the tropical and subtropical oceans by providing improved coverage in nearly all weather conditions. While CYGNSS (Level 2) primarily estimates surface winds, when coupled with observations or estimates of temperature and humidity from reanalysis data, it can provide estimates of latent and sensible heat fluxes along its orbit. This paper describes the development of the Surface Heat Flux Product for the CYGNSS mission, its current results, and expected improvements and changes in future releases.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated