The noble metals palladium and silver find use in many high performance applications, and their alloys (PdAg), known for more than sixty years, are industrially important, finding use in many fields including hydrogen purification and separation, numerous facets of catalysis, and in fuel cells. In recent years, interest in these materials has grown significantly, particularly in energy generating applications and due to their performance as solid-state chemical sensors for a range of small molecules. PdAg thin films can be prepared using traditional physical methods such as cold rolling, or more modern and controllable chemical or physical deposition techniques such as electrodeposition or chemical vapour deposition. Despite the wide-reaching uses of PdAg, several recent advancements in materials preparation, such as additive manufacturing, better known as 3-D printing, remain unexplored for this material due to the differing chemistries of the two elements. In this review, we explore the manufacturing methods commonly employed for the preparation of PdAg thin films, the common and niche applications of these materials, and opportunities for the future development of these two aspects, with an emphasis on how preparation of thin films can utilise additive manufacturing approaches.
Keywords:
Subject: Chemistry and Materials Science - Surfaces, Coatings and Films
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.