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Abstract. The article is devoted to applications of 2-dimensional hyperbolic numbers and 

their algebraic 2n-dimensional extensions in modeling some genetic phenomena. 

Mathematical properties of hyperbolic numbers and their matrix representations are described 

in a     connection with alphabets of DNA nucleobases, with inherited phyllotaxis phenomena 

and with the Weber-Fechner law. New methods of algebraic analysis of the harmony of 

musical works are proposed, taking into account the innate predisposition of people to music. 

Known data on using hyperbolic rotations, which are particular cases of hyperbolic numbers, 

in  physics and in some biological phenomena, including phyllotaxis laws and structural 

features of   locomotions, are discussed. The hypothesis is put forward that alphabets of 

eigenvectors of matrix representations of basis units of 2n-dimensional hyperbolic numbers 

play a key role in transmitting biological information and that they can be considered as a 

foundation of coding information at different levels of biological organization. The proposed 

algebraic approach is connected with the theme of a grammar of biology. Applications of 

hyperbolic numbers reveal hidden interrelations between structures of different biological and 

physical phenomena. They lead to new approaches in mathematical modeling genetic 

phenomena and innate biological structures.  
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1 Introduction  

The main task of the mathematical natural sciences is the creation of mathematical    

models of natural systems. Development of models and formalized theories depends highly 

on those mathematical notions and instruments, on which they are based. Modern science 

knows that different natural systems could possess their own individual geometries and their 

own individual arithmetic [Kline, 1982]. Various kinds of multi-dimensional numbers – 

complex numbers, hyperbolic numbers, dual numbers, quaternions and other hypercomplex 

numbers – are used in different branches of modern science. They have played the role of the 

magic tool for development of theories and calculations in problems of heat, light, sounds, 

fluctuations, elasticity, gravitation, magnetism, electricity, current of liquids, quantum-

mechanical phenomena, special theory of relativity, nuclear physics, etc. For example, in 

physics thousands of works - only in XX century – were devoted to quaternions of Hamilton 

(their bibliography is in [Gsponer, Hurni, 2008]. 

     The idea about special mathematical peculiarities of living matter exists long ago. For   

example V.I. Vernadsky put forward the hypothesis on a non-Euclidean geometry of living 

nature [Vernadsky, 1965]. It seems an important task to investigate what systems of          

multi-dimensional numbers are connected or can be connected with ensembles of parameters 

of the genetic code and inherited biological peculiarities. Some results of such investigation 

are presented in this article. They are connected with hyperbolic numbers and their algebraic 

extensions, matrix forms of which give a new class of mathematical models in biology.     

Author’s results described in this article are related in particularly to works by O. Bodnar 

who noted that ontogenetic transformations of phyllotaxis lattices in plants can be formaly 

modelled by hyperbolic rotations, which are particular cases of hyperbolic numbers and are 

well known in the special theory of relativity (Lorentz transformations) [Bodnar, 1992, 

1994]. On this basis he stated that geometry of living bodies has structural relations with the 

Minkovsky geometry. Another evidence in favor of structural relaltions of inherited biologi-

cal phenomena with hyperbolic rotations was shown in the work [Smolyaninov, 2000], which 

analyzed problems of locomotion control and put forward ideas of the “locomotor theory of 

relativity”. 

It is obvoius that all physiological systems must be argued with a genetic coding system in 

order to be genetically encoded for their survival and inheritance into next generations. For 

this reason, the structural organization of physiological systems can bear the imprint of the 

structural features of molecular genetic systems. Our study aims to identify such relationships 

of inherited physiological structures with the molecular genetic system. Taking into account 

known data about ratios of musical harmony in parametric organization of DNA molecules, 

new algebraic approaches are proposed for analyzing hidden harmony of musical pieces. 
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2    Matrix representations of DNA alphabets and hyperbolic numbers 

 

In DNA molecules DNA genetic information is written in sequences of 4 kinds of             

nucleobases: adenine A, cytosine C, guanine G and thymine T. They form a DNA alphabet of 

4 monoplets. In addition, DNA alphabets of 16 doublets and 64 triplets also exist. It is known 

[Fimmel, Danielli, Strüngmann, 2013; Petoukhov, 2008; Petoukhov, He, 2010; Stambuk, 

1999] that these four nucleobases A, C, G and T are interrelated due to their symmetrical  

peculiarities into the united molecular ensemble with its three pairs of binary-oppositional 

traits or indicators (Fig. 2.1):   

1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the 

standpoint of these binary-oppositional traits one can denote C = T = 0, A = G = 1; 

2) Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and 

T). From the standpoint of these traits one can designate A = C = 0, G = T = 1;  

3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds, 

respectively. From the standpoint of these binary traits, one can denote C = G = 0,          

A = T = 1.  

 

 

№  Binary Symbols   C A G T/U 

1 01 — pyrimidines 

11 — purines  

01 11 11 01 

2 02 — amino 

12 — keto 

02 02 12 12 

3 03 — three hydrogen bonds; 

13 — two hydrogen bonds 

03 13 03 13 

 

 
Fig. 2.1.  Left: the four nitrogenous bases of DNA: adenine A, guanine G, cytosine C, and 
thymine T. Right: three binary sub-alphabets of the genetic alphabet on the basis of 
three pairs of binary-oppositional traits or indicators.  
 

Taking into account the phenomenological fact that each of DNA-letters C, A, T and G is 

uniquely defined by any two kinds of mentioned binary-oppositional indicators (Fig. 2.1), 

these genetic letters can be represented by means of corresponding pairs of binary symbols, 

for example, from the standpoint of two first binary-oppositional indicators. It is convenient 

for us - for the further description - use at the first position of each of letters its binary symbol 

from the second pair of binary-oppositional indicators (the indicator "amino or keto": 

C=A=0, T=G=1) and at the second positions of each of letters its binary symbol from the first 

pair of binary-oppositional indicators (the indicator "pyrimidine or purine": C=T=0, A=G=1). 

In this case the letter C is represented by the binary symbol 0201 (that is as 2-bit binary   

number), A – by the symbol 0211, T – by the symbol 1201, G – by the symbol 1211. Using  

these representations of separate letters, each of 16 doublets is represented as the concatena-

tion of the binary symbols of its letters (that is as 4-bit binary number): for example, the  
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doublet CC is represented as 4-bit binary number 02010201, the doublet CA – as 4-bit binary 

number 02010211, etc. By analogy, each of 64 triplets is represented as the concatenation of 

the binary symbols of its letters (that is as 6-bit binary number): for example, the triplet CCC 

is represented as 6-bit binary number 020102010201, the triplet CCA – as 6-bit binary number 

020102010211, etc. In general, each of n-plets is represented as the concatenation of the binary 

symbols of its letters (below we will not show these indexes 2 and 1 of separate letters in  

binary representations of n-plets but will remember that each of positions corresponds to its 

own kind of indicators from the first or from the second set of indicators in Fig. 2.1). 

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, … 

4n n-plets in a form of appropriate square tables (Fig. 2.2), which rows and columns are    

numerated by binary symbols in line with the following principle. Entries of each column are 

numerated by binary symbols in line with the first set of binary-oppositional indicators in Fig. 

2.1 (for example, the triplet CAG and all other triplets in the same column are the 

combination “pyrimidine-purin-purin” and so this column is correspondingly numerated 

011). By contrast, entries of each of rows are numerated by binary numbers in line with the 

second set of indicators (for example, the same triplet CAG and all other triplets in the same 

row are the combination “amino-amino-keto” and so this row is correspondingly numerated 

001). In such tables (Fig. 2.2), each of 4 letters, 16 doublets, 64 triplets, … takes 

automatically its own individual place and all components of the alphabets are arranged in a 

strict order. 

It is essential that these 3 separate genetic tables form the joint tensor family of matrices 

since they are interrelated by the known operation of the tensor (or Kronecker) product of 

matrices [Bellman, 1960]. So they are not simple tables but matrices. By definition, under 

tensor multiplication of two matrices, each of entries of the first matrix is multiplied with the 

whole second matrix. The second tensor power of the (2*2)-matrix [C, A; T, G] of 4 DNA-

letters gives automatically the (4*4)-matrix of 16 doublets; the third tensor power of the same 

(2*2)-matrix of 4 DNA-letters gives the (8*8)-matrix of 64 triplets with the same strict     

arrangement of entries as in Fig. 2.2. In this tensor construction of the tensor family of genet-

ic matrices, data about binary-oppositional traits of genetic letters C, A, T and G are not used 

at all. So, the structural organization of the system of DNA-alphabets is connected with the 

algebraic operation of the tensor product. It is important since the operation of the tensor 

product is well known in mathematics, physics and informatics, where it gives a way of    

putting vector spaces together to form larger vector spaces. The following quotation speaks 

about the crucial meaning of the tensor product: «This construction is crucial to understand-

ing the quantum mechanics of multiparticle systems» [Nielsen, Chuang, 2010, p. 71]. 

 

 

 

 

 

 

 

 

 0 1 

0 C A 

1 T G 
 

  00 01 10 11 

00 CC CA AC AA 

01 CT CG AT AG 

10 TC TA GC GA 

11 TT TG GT GG 
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 000  001 010  011 100 101 110 111 

000  CCC CCA CAC CAA ACC ACA AAC AAA 

001  CCT CCG CAT CAG ACT ACG AAT AAG 

010  CTC CTA CGC CGA ATC ATA AGC AGA 

011  CTT CTG CGT CGG ATT ATG AGT AGG 

100  TCC TCA TAC TAA GCC GCA GAC GAA 

101 TCT TCG TAT TAG GCT GCG GAT GAG 

110 TTC TTA TGC TGA GTC GTA GGC GGA 

111 TTT TTG TGT TGG GTT GTG GGT GGG 

 

Fig. 2.2. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and                   
64 triplets with a strict arrangement of all components. Each of tables is constructed in 
line with the principle of binary numeration of its column and rows on the basis of bina-
ry-oppositional traits of the nitrogenous bases (see explanations in the text).  

 

In the DNA double helix, complementary nucleobases C and G are connected by 3 hydro-

gen bonds and complementary nucleobases A and T are connected by 2 hydrogen bonds. One 

can denote their typical connections with hydrogen bonds by expressions C=G=3 and 

A=T=2. Replacing in the (2*2)-matrix [C, A; T, G] (Fig. 2.2) symbols C, A, T and G by their 

numbers of hydrogen bonds 3 and 2,  a numeric matrix [3, 2; 2, 3] appears (Fig. 2.3). The 

second and the third tensor powers of this matrix [3, 2; 2, 3](n), where n = 2, 3, generate    

numeric (4*4)- and (8*8)-matrices in Fig. 2.3, which automatically represent symbolic      

matrices of 16 doublets and 64 triplets in Fig. 2.2 from the standpoint of the product of their 

numbers of hydrogen bonds. For example the doublet CA is replaced by number 3*2=6 and 

the triplet AGT is replaced by number 2*3*2=12. These genetic matrices are closely           

connected by their structures with so called matrices of dyadic shifts, which are known in 

digital information technology of noise immune coding and which are described below in the 

Appendix I. 

 

 

 

 

 

 

 

3 2 

2 3 
 

 9 6 6 4 

6 9 4 6 

6 4 9 6 

4 6 6 9 
 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 September 2019                   doi:10.20944/preprints201908.0284.v2

https://doi.org/10.20944/preprints201908.0284.v2


6 

27 18 18 12 18 12 12 8 

18 27 12 18 12 18 8 12 

18 12 27 18 12 8 18 12 

12 18 18 27 8 12 12 18 

18 12 12 8 27 18 18 12 

12 18 8 12 18 27 12 18 

12 8 18 12 18 12 27 18 

8 12 12 18 12 18 18 27 

 

Fig. 2.3. Numeric representations of the tensor family of symbolic matrices (Fig. 2.2) of    

4 monoplets, 16 doublets and 64 triplets from the standpoint of their numeric characteristics 

of hydrogen bonds C=G=3 and A=T=2. 

 

 Fig. 2.4 shows that the matrix [3, 2; 2, 3] is decomposed into sum of two sparse     

matrices, one of which is the identity matrix (j0 = [1, 0; 0, 1]) and the second matrix                                

j1 = [0, 1; 1, 1]) represents imaginary unit of hyperbolic numbers since j1
2 = j0. The set of 

these matrices j0 and j1 is closed relative to multiplication and defines the multiplication table 

of algebra of hyperbolic numbers (Fig. 2.4, right). 

 

3, 2 

2, 3 

 

= 3* 

1, 0 

0, 1 

 

+ 2* 

0, 1 

1, 0 

 

= 3*j0 +2*j1; 

 
 

    Fig. 2.4. The decomposition of the matrix [3, 2; 2, 3] into two sparse matrices, where    

matrices j0 and j1 are matrix representations of real and imaginary units of algebra of 

hyperbolic numbers with the shown multiplication table of these units. 

  

    Here we should remind that two-dimensional hyperbolic numbers are written in linear   

notation as m1 = a*1+b*j (where 1 is the real unit; j is the imaginary unit with the property        

j ≠ ±1 but j2 = 1; a, b are real coefficients). These numbers are used in physics and mathemat-

ics and they have also synonimical names: "split-complex numbers", "perplex numbers" and 

"double numbers". The collection of all hyperbolic numbers forms algebra over the field of 

real numbers [Harkin, Harkin, 2004; Kantor, Solodovnikov, 1989]. The algebra is not a      

division algebra or field since it contains zero divisors. Addition and multiplication of       

hyperbolic numbers are defined by (2.1):  

 

                         (x+jy)+(u+jv)=(x+u)+j(y+v);     (x+jy)(u+jv)=(xu+yv)+j(xv+yu)            (2.1)  
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This multiplication is commutative, associative and distributes over addition.  

A hyperbolic number has its matrix form of representation: [a, b; b, a] = a*[1, 0; 0, 1] 

+b*[0, 1; 1, 0] where [1, 0; 0, 1] is the identity matrix representing real basis unit;  [0, 1; 1, 0] 

represents imaginary basis unit. Fig. 2.4 shows the matrix representation of hyperbolic num-

bers a*1+b*j for the case a = 3 and b = 2. The symmetric matrices [1, 0; 0, 1] and [0, 1; 1, 0] 

representing these real and imaginary unites are orthogonal matrices.  

If a2-b2 = 1, then the matrix [a, b; b, a] defines hyperbolic rotations known in the    

special theory of relativity as Lorentz transformations. Hyperbolic rotations are usually     

expressed by a symmetric matrix (2.2) through hyperbolic cosine «cosh» and hyperbolic sine 

«sinh» since cosh2x– sinh2x= 1 [Collins Concise Dictionary, 1999; Shervatov, 1954; Stakhov, 

2009]: 

cosh2 a,   sinh2 b 

sinh2 b,   cosh2 a 

 

                                            (2.2) 

 

       Symmetric matrices that represent hyperbolic numbers have real eigenvalues and       

orthogonal eigenvectors (which distinguishes them from non-symmetic matrix representa-

tions of complex numbers). Such symmetric matrices form the basis of the theory of          

resonances of oscillatory systems with many degrees of freedom, and are also metric tensors 

from the point of view of Riemannian geometry. 

The second tensor power of the bisymmetric matrix [a, b; b, a], which represents   

hyperbolic numbers, is decomposed into 4 sparse matrices e0, e1, e2 and e3 with real            

coefficients aa, ab ba and bb (Fig. 2.5). The used decomposition is based on the known   

principle of dyadic shifts described below in the Appendix I. 

 The set of matrices e0, e1, e2 and e3 is closed relative to multiplication and satisfies to 

the multiplication table in Fig. 2.5. The set of these (4x4)-matrices corresponds to algebra of 

4-dimensional numbers aa*e0 + ab*e1 + ba*e2 + bb*e3, where the matrix e0 represents the 

real unit 1 and matrices e1, e2 and e3 represent imaginary units. These 4-dimensional numbers 

are algebraic extensions of 2-dimensional hyperbolic numbers and for simplicity they can be 

termed “4-dimensional hyperbolic numbers” (in our previous publications we termed them 

“hyperbolic matrions” [Petoukhov, 2008; Petoukhov, He, 2010]). Each of matrices e0, e1, e2 

and e3 is an orthogonal matrix with its determinant +1. 

    By comparing Fig. 2.3 and Fig. 2.5, one can see that the numeric (4*4)-matrix of hydrogen 

bonds in Fig. 2.3 represents 4-dimensional hyperbolic number 9e0+6e1+6e2+4e3 where e0 is 

the identity matrix representing real unit 1. By analogy, the numeric (8*8)-matrix in Fig. 2.3 

represents 8-dimensional hyperbolic number 27j0+18j1+18j2+12j3+18j4+12j5+12j6+8j7 where 

jk are basis units of 8-dimensional hyperbolic niumbers. 
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Fig. 2.5. The decomposition of the matrix [a, b; b, a](2), representing 4-dimensional               

hyperbolic numbers, into 4 sparse matrices, the set of which is closed relative to                    

multiplication. The multiplication table for this set is shown at the right. The symbol 1      

denotes the identity matrix e0. 

In a general case, 2n-dimensional hyperbolic numbers are hypercomplex numbers and they 

possess, by definition, the following features. They contain 2n basis units ek (one real unit and 

2n-1 imaginary units), which are interrelated by a symmetric table of their mutual multiplica-

tion where all ek
2 = +1 (k = 0, 1, 2,..., 2n-1). 

By analogy with Figs. 2.4 and 2.5, the higher tensor powers n = 3, 4, 5, … of the bisym-

metric matrix [a, b; b, a] produce bisymmetric matrices [a, b; b, a](n), which can be also     

decomposed into 2n sparse matrices, the set of which is closed relative to multiplication and 

which define appropriate multiplication tables of algebras of 2n-dimensional hypercomplex 

numbers mn (which were termed “hyperbolic matrions” of the order n in our previous           

publications [Petoukhov 2008; Petoukhov, He, 2010]). These decompositions use a structural 

similarity of the matrices [a, b; b, a](n) with matrices of dyadic shifts described below in the 

Appendix I. 

It is useful to rewrite the multiplication table in Fig. 2.5 into a form where all decimal in-

dexes of basis units e0, e1, e2 and e3 are shown in their binary notations: e00, e01, e10 and e11 

(Fig. 2.6).  

* e00 e01 e10 e11 

e00 e00 e01 e10 e11 

e01 e01 e00 e11 e10 

e10 e10 e11 e00 e01 

e11 e11 e10 e01 e00 

 

Fig. 2.6. The multiplication table in algebra of 4-dimensional hyperbolic numbers where   

indexes of basis units are shown in their binary notations e00, e01, e10 and e11 in contrast to 

their decimal notations e0, e1, e2 and e3 in Fig. 2.5. 

 

One can see from Fig. 2.6 that in all cases a result of the product of two basis units        

(ep*ek = es) is equal to that basis unit es whose binary index s is equal to a result of modulo-2 

addition for binary indexes p and k of the factors ep and ek (under the operation of modulo-2 

addition the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1). In other words the    

following equation (2.3) for bimary indexes is true: 
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                                                        ep*ek = ep+k                                                            (2.3) 

 

For example, a result of the product e2*e3 is equal to e1 since decimal indexes 2 and 3 are 

expressed by binary numbers 10 and 11 whose modulo-2 addition gives the binary number 01 

refered to decimal number 1. This method of binary operations with indexes to calculate a 

result of the product of any two basis units is true not only for 4-dimensional hyperbolic 

numbers but also for other 2n-dimensional hyperbolic numbers. The equation (2.3) is espe-

cially useful in cases of high values n when it is difficult to address to multiplication tables 

having 2n*2n sizes each time when you need to know a result es of the product of basis units 

ep*ek = es.  

For this you should represent indexes p and k in their binary notation (inside a complete set 

of n-bit binary numbers) and calculate their binary sum p+k on the basis of the known opera-

tion of modulo-2 addition where the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1. 

The result of such modulo-2 addition is a searched index s in its binary notation. For exam-

ple, if you multiplicate two 23-dimensional hyperbolic numbers each other, the complete set 

of 3-bit binary numbers is the following: 000, 001, 010, 011, 100, 101, 110, 111 (they        

correspond decimal numbers 0, 1, 2, 3, 4, 5, 6, 7). To calculate a result of multuplication of 

basis units e3*e5, you take decimal indexes 3 and 5 in their binary notation 011 and 101. 

Their modulo-2 addition gives binary number 110, which corresponds decimal number 6. In 

such way we get the search result: e3*e5=e6. 

 

3 Hyperbolic and Fibonacci numbers in phyllotaxis modeling 

 

Fibonacci numbers Fn form an additive sequence such that each number is the sum of the two 

preceding ones: Fn = Fn-1 + Fn-2  (Table 3.1).  

 

                                   Table 3.1. The Fibonacci sequence. 

n 1 2 3 4 5 6 7 8 9 10 … 

Fn 1 1 2 3 5 8 13 21 34 55 … 

 

Fibonacci numbers are strongly related to the golden ratio φ = (1+50.5)/2. Binet’s formula 

(3.1) expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that 

the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases: 

 

                                               Fn = (φn – (-φ-1))/50.5                                                            (3.1) 

 

In biology, it has long been known that, for example, in many plant objects the spiral        

arrangement of their bioorganisms form ordered patterns (shoots of plants and trees, seeds in 

the heads of sunflowers, scales of coniferous cones and pineapples, etc.). These patterns are 

determined by overlapping left and right oriented spiral lines - parastichies. To characterize 

phyllotaxis of such botanical objects, usually indicate two parameters: number of left spirals 

and number of right spirals, which are observed on the surface of phyllotaxis objects.      
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Phyllotaxis of structures with such patterns is described by ratios of neighboring Fibonacci 

numbers: 

                             Fn+1/Fn :    2/1, 3/2, 5/3, 8/5, 13/8, 21/13, 34/21, …                             (3.2)  

 

                (Fn+1/Fn) → (Fn+2/Fn+1): 2/1 → 3/2 → 5/3 → 8/5 → 13/8 → 21/13 →…         (3.3) 

 

The sequence (3.2) is termed the “parastichic sequence” [Jean ,2006; Petoukhov, 1981]. It 

seems natural to use 2-dimensional hyperbolic numbers for modeling these 2-parametric pat-

terns in phyllotaxis objects and their ontogenetic transformations. In this approach, proposed 

by the author, the sequence (3.2) of phyllotaxis ratios is transformed into additive sequences  

(3.4, 3.5) reflecting linear notation of appropriate hyperbolic numbers and their matrix repre-

sentations (we call sequences (3.4, 3.5) as parastichic sequences of hyperbolic numbers): 

 

           Fn+1 + jFn :  2 + j, 3 +j2, 5 + 3j, 8 + 5j, 13 +8j, 21 + 13j, 34 + 21j, ….                  (3.4)   

 

Fn+1, Fn 

Fn,  Fn+1 

 

: 

2, 1 

1, 2 

 

, 

3, 2 

2, 3 

 

, 

5, 3 

3, 5 

 

, 

8, 5 

5, 8 

 

, 

13, 8 

 8, 13 

 

… 

 

                    (3.5) 

         

In this approach, to define a hyperbolic number u+jv, which transforms a hyperbolic number 

Fn+1 + jFn into its neighboring hyperbolic number Fn+2 + jFn+1 from the sequence (3.4), the    

following simple equation (3.6) should be solved: 

 

                                    (Fn+1 + jFn)(u + jv) = (Fn+2 + jFn+1)                                               (3.6) 

 

The solution to this equation (3.6) gives the following expressions (3.7) for components of 

the desired hyperbolic number u + jv: 

 

           u = Fn+1/Fn + (-1)n+1*Fn-1 / (Fn*(Fn
2 – Fn-1

2)),    v =  (-1)n / (Fn
2 – Fn-1

2)                 (3.7)                                            

 

In the case of such components (3.7), u2 – v2 ≠ 1 and the appropriate matrix [u, v; v, u] does 

not present a hyperbolic rotation in the sense of expression (2.2). But this matrix can be    

rewriting into the form (10) where the matrix of a hyperbolic rotation (in the sense of        

expression (2.2)) is multiplied by a coefficient (u2 - v2)0.5:  

 

        [u, v; v, u] =  (u2 - v2)0.5 [u(u2 - v2)-0.5, v(u2 - v2)-0.5; v(u2 - v2)-0.5, u(u2 - v2)-0.5]        (3.8) 

 

Now let us describe results of the author’s study of eigenvalues of the symmetric   

matrices in the parastichic sequence (3.5). Each of these matrices [Fn+1, Fn; Fn, Fn+1] has two 

eigenvalues, which are equal to two Fibonacci numbers again: Fn+2 and Fn-1. One can noted 

that these eigenvalues are the sum and the difference of the Fibonacci components of the 
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original hyperbolic number Fn+1+ jFn since Fn+2 = Fn+1 + Fn and Fn-1 = Fn+1 - Fn. The ratio 

Fn+2/Fn-1 of such eigenvalues defines a new sequence (11) of Fibonacci ratios, which tend to 

φ3 as n increases: 

                                    Fn+2/Fn-1 :    3/1, 5/1, 8/2, 13/3, 21/5, 34/8, 55/13, ….                    (3.9) 

   

By analogy with expressions (3.2, 3.4, 3.5) such pair of eigenvalues Fn+2 and Fn-1 can be   

considered as components of a new hyperbolic number Fn+2 + jFn-1. In this case the sequence 

of ratios (3.9) is transformed into additive sequences (3.10, 3.11) reflecting linear notation of 

appropriate hyperbolic numbers and their matrix presentations: 

 

                  Fn+2 + jFn-1 :    3 + j, 5 + j, 8 + j2, 13 + j3, 21 + j5, 34 + j8, 55 + j13, ….        (3.10) 

   

Fn+2, Fn-1 

 Fn-1, Fn+2 

 

: 

3, 1 

1, 3 

 

, 

5, 1 

1, 5 

 

, 

8, 2 

2, 8 

 

, 

13, 3 

3, 13 

 

, 

21, 5 

 5, 21 

 

… 

 

       (3.11) 

                   

Each of symmetric matrices [Fn+2, Fn-1; Fn-1, Fn+2] of the sequence (3.11) has two eigenvalues, 

which are again equal to two Fibonacci numbers multiplied by a factor 2 (twice the Fibonacci 

numbers): 2Fn+1 and 2Fn. Ratios 2Fn+1/2Fn of such eigenvalues form a sequence, which is 

identical to the initial parastichic sequence (3.2). Using the Binet’s formula (3.1), all mem-

bers of these sequences can be additionally expressed through the golden ratio φ in integer 

powers. This procedure of analysis of the eigenvalues of new and new sequences of        

symmetric matrices, representing hyperbolic numbers by analogy with sequences (3.4, 3.5, 

3.10, 3.11), can be repeated as long as desired, obtaining a hierarchy of eigenvalues of the 

matrices based on Fibonacci numbers multiplied by a factor 2 at corresponding steps of the 

iterative procesure.  

The following important point should be emphasized. In contrast to the traditional  

additive series of one-dimensional Fibonacci numbers, the author introduces an additive   

series of two-dimensional hyperbolic numbers and an additive series of (2*2)-matrices      

representing these numbers and defining an additional additive series of eigenvalues of these 

matrices (3.4, 3.5, 3.10, 3.11). As far as we know, such Fibonacci series of two-dimensional 

numbers have not been described in the literature by anyone, and therefore they can be     

considered new in the extensive subject matter of Fibonacci numbers and their applications 

(some of author's results of the study of additive series of 4-dimensional hyperbolic Fibonacci 

numbers will be presented below). 

Similar results are obtained by considering the additive series of two-dimensional   

hyperbolic Lucas numbers and the additive series of their matrix representations, which    

determine the additive series of eigenvalues of these symmetric matrices (these results are 

been publishing in a separate article). Here one can remind that one-dimensional Lucas   

numbers form the series Ln+2 =Ln +Ln+1: 2, 1, 3, 4, 7, 11, 18, ... , which is also known in   

phyllotaxis laws [Jean, 2006]. А study of additive series of complex numbers, whose      
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components are Fibonacci numbers, and of their ordinary representations by non-symmetric        

matrices gives also interesting additive series of their eigenvalues but in form of complex 

numbers. 

It should be noted that the study of the eigenvalues of symmetric matrices has special 

meaning due to the fact that in the theory of oscillations symmetric matrices are matrix      

representations of oscillatory systems with many degrees of freedom. Moreover, the          

eigenvalues of such a matrix determine the resonant frequencies of the corresponding        

oscillatory system. The described results on the properties of inherited phyllotaxis                

phenomena with their Fibonacci ratios, represented by symmetric matrices and their matrix                

eigenvalues, are important, in particular, for the concept of multi-resonance genetics, which 

connects structural features of molecular-genetic systems with resonances of oscillatory    

systems [Petoukhov, 2016]. 

4     Fibonacci sequences of 2n-dimensional hyperbolic numbers 

This Section continues the theme of additive series of hyperbolic numbers, coordinates of 

which are Fibonacci numbers. Now we turn to algebraic extensions of hyperbolic numbers in 

forms of 2n-dimensional hyperbolic numbers. Let us consider an additive sequence (4.1) of      

4-dimensional hyperbolic numbers Fn+3e0+Fn+2e1+Fn+1e2+Fne3 with Fibonacci coordinates 

from (Table 3.1). In this sequence, each member is equal to the sum of two previous      

members: 

             3e0+2e1+1e2+1e3; 5e0+3e1+2e2+1e3; 8e0+5e1+3e2+2e3; 13e0+8e1+5e2+3e3; …      (4.1) 

 

 A corresponding matrix representation of each member from (4.1) has 4 eigenvalues, which 

can be considered again as coordinates of a new 4-dimensional hyperbolic number. The au-

thor reveals that these new 4-dimensional hyperbolic numbers form a new additive sequence 

(4.2): 

      1e0+1e1+3e2+7e3; 1e0+3e1+5e2+11e3; 2e0+4e1+8e2+18e3; 3e0+7e1+13e2+29e3;…        (4.2) 

 

    The sequence (4.2) combines Fibonacci and Lucas sequences in the following sense. In its    

4-dimensional hyperbolic numbers, coordinates of basis elements e0 and e2 are Fibonacci 

numbers and coordinates of basis elements e1 and e3 are Lucas numbers: 3, 1, 4, 7, 11, 18, 29, 

… . Such aggregation of Fibonacci and Lucas numbers resembles a phyllotaxis-like locations 

of amino acid residues in the helices of polypeptides for various molecular chains - 11/3, 

18/5, 29/8, 47/13; here fraction numerators are Lucas numbers and fraction denominators are 

Fibonacci numbers. These bio-molecular phenomena of polypeptides configurations are de-

scribed in the fundamental book [Frey-Wissling, Muhlethaler, 1965].  

A matrix representation of each member of the sequence (4.2) has 4 eigenvalues, 

which can be considered again as coordinates of a new 4-dimensional hyperbolic number. 

These 4-dimensional hyperbolic numbers form a new additive sequence (4.3): 
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 -8e0-4e1+4e2+12e3; -12e0-8e1+4e2+20e3; -20e0-12e1+8e2+32e3; -32e0-20e1+12e2+32e3;.. (4.3)  

 

    Comparing sequences (4.1) and (4.3) reveals that a set of coordinates of each member of 

the sequence (4.3) repeats - with a factor 4 - a set of coordinates of the corresponding mem-

ber of the sequence (4.1) with accuracy up to signs and a cyclic permutation of coordinates. 

For example, the first member of (4.1) contains coordinates 3, 2, 1, 1 and the first member of 

(4.3) contains coordinates -4*2, -4*1, 4*1, 4*3. This procedure of calculating repeating addi-

tive sequences of 4-dimensional hyperbolic numbers associated with Fibonacci and Lucas 

numbers can be repeated as long as desired. Similar results are received for additive sequenc-

es of 2n-dimensional hyperbolic numbers with Fibonacci coordinates in cases n = 3, 4, … .  

5     Hyperbolic numbers and the Weber-Fechner law  

It is profitable for an organism, which is a single whole, to have the same typical             

algorithms at different levels of its functioning for a mutual optimal coordination of its parts. 

By this reason we study possibilities to simulate differentinnate phenomena on the general 

basis of hyperbolic numbers and its algebraic extensions. This Section is devoted to the main       

psychophysical law by Weber-Fechner and its structural connection with phyllotaxis laws 

through hyperbolic numbers. The innate Weber-Fechner law states that the intensity of the 

perception is proportional to the logarithm of stimulus intensity; it is expressed by the      

equation (5.1):  

 

                                    p = k*ln(x/x0) = k*{ln(x) - ln(x0)}                                              (5.1)  

 

where p - the intensity of perception, x – stimulus intensity, x0 - threshold stimulus,              

ln – natural logarithm, k – a weight factor. It is known that different types of inherited         

sensory perception are subordinated to this law: sight, hearing, smell, touch, taste, etc.       

Because of this law, the power of sound in physics and engineering technologies is measured 

on a logarithmic scale in decibels.  

One can suppose that the innate Weber–Fechner law is the law especially for nervous    

system. But it is not so since its meaning is much wider because it holds true in many kinds 

of lower organisms without a nervous system in them: “this law is applicable to chemo-

tropical, helio-tropical and geo-tropical movements of bacteria, fungi and antherozoids of 

ferns, mosses and phanerogams ... . The Weber-Fechner law, therefore, is not the law of the 

nervous system and its centers, but the law of protoplasm in general and its ability to respond 

to stimuli" [Shults, 1916, p.126]   

Let us show that hyperbolic numbers are related to the Weber-Fechner law, which is based 

on the natural logarithm (5.1). Historically the natural logarithm was formerly termed the 

hyperbolic logarithm, as it corresponds to the area under a hyperbola [Klein, 2004;         

Shervatov, 1954]. History of hyperbolic logarithms is described for example in the book 

[Klein, 2004]. As known, the natural logarithm can be defined for any positive real number 

“a” as the area under the hyperbola y = 1/x from 1 to a (Fig. 5.1, left). It means that two 

points of the hyperbola with their coordinates (x, 1/x) and (x0, 1/x0), where x > 1 and x0 > 1, 
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define values of natural logarithms ln(x) and ln(x0). Subtraction ln(x) − ln(x0) = ln(x/x0)     

expresses the intensity of perception p in the expression (5.1) of the Weber–Fechner law    

(Fig. 5.1, right).  
 

 
 

Fig. 5.1. Natural logarithm as the area under the hyperbola y = 1/x. Left: ln(a) is equal to 

the area under the hyperbola from 1 to a. Right: ln(x/x0) is equal to the area under the          

hyperbola from x0 to x. 

 

A plane of the hyperbola y=1/x can be naturally considered as the hyperbolic plane 

where points (x, 1/x) and (x0, 1/x0) on this hyperbola are defined as hyperbolic numbers 

x+j1/x and x0+j1/x0. From the standpoint of the expression (5.1) of the Weber-Fechner law, 

any transformation of a stimulus intensity x (x > x0) into a new stimulus intensity x2 (x2 > x0) 

corresponds to the case that the hyperbolic number x+j1/x is transformed into a new          

hyperbolic number x2+j1/x2 on the same hyperbola y=1/x by means of multiplication of the 

first hyperbolic number with another hyperbolic number u+jv that is (x+j1/x)(u+jv)=x2+j1/x2 

where u=(x2
2x3–x)/(x2(x

4-1)), v=x(x2
2-x2)/(x2(1-x4)).  

This analysis gives evidences that our sensory perception obeys the same structural          

principles as morphogenesis with its phyllotaxis laws and that these principles can be        

effectively modelling on the basis of hyperbolic numbers. 

 

 

6       The alphabets of orthogonal vector bases associated with basis units of                            

         2n-dimensional hyperbolic numbers 

 
Let us remind the essence of the eigenvalues and eigenvectors by means of the matrix 

A on Fig. 6.1, which acts on vectors [x, y]. In this case almost any vector is transformed into 

a new vector [x, y]*A with changing its direction. The exceptions are those vectors [x, y], 

which belong to two orthogonal dotted lines and are called "eigenvectors" of the matrix A; 

they conserve their direction under action of the matrix A, but their lengths are scaled with 

factors λi, which are called “eigenvalues” of the matrix A (each eigenvalue corresponds to its 

own direction of eigenvectors). 
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Fig. 6.1. Illustration of actions of the matrix A on vectors [x, y] (from [Zharov, 2002]) 

Еасh basis unit of 2n-hyperbolic numbers is represented by a corresponding symmetric 

(2n*2n)-matrix, which is an orthogonal matrix and has its own set of orthogonal eigenvectors. 

This orthogonal set is a corresponding vector basis of 2n-dimensional space. For example in 

the case of any 2-dimensional hyperbolic number a*j0 +b*j1 (Fig. 2.4) its real component aj0 

is presented by the matrix a*[1, 0; 0 1], which has two orthogonal eigenvectors [1, 0] and   

[0, 1] independently on value of the coefficient a (a  0). This pair of eigenvectors defines 

the first vector basis of the 2-dimensional space of existance of hyperbolic numbers. The        

imaginary term bj1 is presented by the matrix b*[0, 1; 1, 0] (Fig. 2.4), which has another pair 

of orthogonal eigenvectors [-2-0.5, 2-0.5], [2-0.5, 2-0.5] independently on value of the coefficient 

b (b  0). This pair of eigenvectors defines the second vector basis of the considered             

2-dimensional space. In other words, the pairs of eigenvectors are determined only by basis 

units j0 and j1. These two pairs of eigenvector bases can be considered as a two-term vector 

alphabet of basis units of hyperbolic numbers in case of 2-dimensional space. 

A similar situation is true for cases of other 2n-dimensional hyperbolic numbers and        

eigenvectors of their matrix representations. For example, in the case of 4-dimensional      

hyperbolic numbers ae0 + b*e1 + c*e2 + d*e3, matrix representations of their basis units (see 

Fig. 2.5) have the following eigenvectors:  

• The (4*4)-matrix [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1] representing the real unit 

e0 has 4 eigenvectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]; 

• The (4*4)-matrix [0, 1, 0 0; 1, 0, 0, 0; 0, 0, 0, 1; 0, 0, 1, 0] representing the first           

imaginary unit e1 has 4 eigenvectors [-2-0.5, 2-0.5, 0, 0], [0, 0, -2-0.5, 2-0.5],                       

[0, 0, 2-0.5, 2-0.5], [2-0.5, 2-0.5, 0, 0]; 

• The (4*4)-matrix [0, 0, 1, 0; 0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 0] representing the second 

imaginary unit e2 has 4 eigenvectors [-2-0.5, 0, 2-0.5, 0], [0, 2-0.5, 0, -2-0.5],                    

[0, 2-0.5, 0, 2-0.5], [-2-0.5, 0, -2-0.5, 0]; 

• The (4*4)-matrix [0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0; 1, 0, 0, 0] representing the third    

imaginary unit e3 has 4 eigenvectors [0, -2-0.5, 2-0.5, 0], [2-0.5, 0, 0, -2-0.5],                       

[2-0.5, 0, 0, 2-0.5], [0, 2-0.5, 2-0.5, 0]. 

Correspondingly in the case of 4-dimensional hyperbolic numbers and their space, the       

4-term eigenvector alphabet of their 4 basis units exists. In a general case of 2n-dimensional 

hyperbolic numbers, the 2n-term eigenvector alphabet of their 2n basis units exists. Each 

member of such alphabet is a set of 2n orthogonal vectors. The author briefly calls such 

alphabets of eigenvector bases of matrix representations of basis units of 2n-dimensional 

hyperbolic numbers as «hyperbolic eigenvector alphabets» or simply «hyper-alphabets». 

Here the prefix "hyper" is the beginning of the word "hyperbolic" and its use is additionally 
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justified by the fact that each member of such  hyper-alphabet contains in itself another 

alphabet of a set of eigenvectors of the corresponding basis unit. 

Any transformation of one such eigenvector basis into another (that is a transformation of 

one member of a hyper-alphabet into another) is provided by means of an orthogonal matrix 

(orthogonal operator), that is, a real unitary matrix (previously, the structural connection of 

DNA alphabets with orthogonal matrices was shown by the author in [Petoukhov, 2018a]; 

unitary operators play a great role in quantum mechanics and quantum computing; for 

example, all calculations in quantum computers are based on unitary operators). Orthogonal 

operators preserve the space metric and define transformations of proper and improper 

rotations. Any sequence of basis units (or their sums) of 2n-dimensional hyperbolic numbers 

corresponds to a certain sequence of eigenvector bases of these units, and also to a sequence 

of orthogonal matrices transforming successively these bases. Such algebraic sequences can 

be used for transmitting information. Taking into account some results of his previous 

published studies, the author supposes that genetic sequences are related with such algebraic 

sequences. 

Moreover, the author puts forward the hypothesis that alphabets of eigenvectors of matrix 

representations of basis units of 2n-dimensional hyperbolic numbers play a key role in 

transmitting biological information and that they can be considered as a foundation of        

coding information at different levels of biological organization. The corresponding 

languages using such alphabets define many inherited phenomenological structures in 

biology including molecular-genetic structures.  

As known, the principle of transmitting information in the form of certain texts composed 

on the basis of certain “alphabets” is widely used in living organisms: genetic information is 

recorded in DNA molecules in the form of texts based on the DNA alphabet; music is a 

sequence of sound frequencies of one or another musical scale (that is, the "alphabet" of 

note sound frequencies of one octave); literary texts are written on the basis of literary 

alphabets, etc. The author believes that various alphabets and texts in these bioinformational 

fields can be effectively modeled and studied on the basis of the presented hidden algebraic 

alphabets as their joint algebraic foundation. This approach is connected with the theme of a  

«grammar of biology», which term was introduced by E.Chargaff in the title of his article 

on DNA peculiarities «Preface to a Grammar of Biology» [Chargaff, 1971] (see also the 

book [Yamagishi, 2017]).  

Since alphabets are used as foundations of corresponding languages, each algebraic 

hyper-alphabet in 2n-dimensional spaces with a concrete number n can be considered as a 

foundation of a corresponding algebraic language. From this point of view, many such 

algebraic languages using these hyper-alphabets exist in biology. 

7        Quint ratios in DNA parameters and musical harmony  

 

As known, thoughts about the key significance of musical harmony in the organization of 

the world exist from ancient time. For example, one can quote here a classical work of     

Chinese literature “Spring and Autumn” by Lu Bu We about the fundamental role of music 

and numbers 3 and 2 as numbers of Heaven and Earth: “The origins of music lie far back in 

the past. Music arises from Measure and is rooted in the great Oneness. … Music is founded 
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on the harmony between Heaven and Earth” (this citation is taken from the book [Hesse, 

2002]. In Ancient China the ratio 3/2, traditionally termed as the quint ratio (or the pure     

perfect fifth), was used as the fundament of quint music scales. After Ancient Chinese,     

Pythagoreans also considered numbers 2 and 3 as the female and male numbers (or Yin and 

Yang numbers), which can give birth to new musical tones in their interconnection. Ancient 

Greeks attached an extraordinary significance to search of the quint 3:2 in natural systems 

because of their thoughts about musical harmony in the organization of the world. For exam-

ple, Archimedes considered as the best result of his life a detection of the quint 3/2 between 

volumes and surfaces of a cylinder and a sphere entered in it.  

Science has been dealing with the physiological mechanisms of music perception for a 

long time [Weinberger, 2004]. There is no specialized center of music in the human brain, a 

sense of love for music can be considered dispersed throughout the body, similar to the        

dispersion of genetic DNA molecules throughout all of its cells. More than 30 thousand years 

ago, long before the advent of arithmetic, our ancestors already played stone flutes and bone 

harps. For example, the bone flute found in France is at least 32 thousand years old. The      

enjoyment of music is usually explained by the fact that it gives rise to emotions and feelings. 

Aristotle tried to understand how rhythms and melodies, being only sounds, resemble states 

of mind. Available data indicate that our affinity for music and musical creativity is biologi-

cal in nature and the sense of musical harmony is based on innate mechanisms. Therefore, 

one should look for a connection between the genetic system and musical harmony. 

       For Europeans the idea of musical harmony is basically connected with the name      

Pythagoras. The Pythagorean musical scales, which are based on the quint ratio 3/2, played 

the main role in the Pythagorean’s doctrine about a cosmic meaning of musical harmony. Fig. 

7.1 shows the known interconnection of sound frequencies of notes of Pythagorean 7-stages 

scale (a heptatonic scale) on the basis of the ratio 3/2 when notes are spaced in the                

appropriate octaves.  
 

fa (F) do (C) sol (G) re (D1) la (A1) mi (E2) si (B2) 

87 130 196 293 440 660 990 

(3/2)-3 (3/2)-2 (3/2)-1 (3/2)0 (3/2)1 (3/2)2 (3/2)3 
 

Fig. 7.1. The quint sequence of the 7 notes of the Pythagorean musical scale is presented. The 

upper row shows the notes. The second row shows their frequencies. The third row shows the 

ratios between the frequencies of these notes to the frequency 293 Hz of the note    re (D1). 

The designation of notes is given on Helmholtz system. Values of frequencies are                 

approximated to integers.       
 

Pythagoras created the mathematical foundations of ancient Greek music, borrowing in a 

certian degree some ancient knowledge on musical harmony. His theory used the discovery 

that the frequency of a vibrating string is inversely proportional to its length and that musical 

consonances can be represented by the ratios of small integer numbers, first of all the octave 

ratio 2:1 and the quint ratio 3:2. These ideas became the basic fundamental ones of all music 

theory from antiquity to even modern times. For most Europeans from antiquity, quint scales 

in music are connected with this Pythagorean mathematical theory of musical harmony and 

with divisions of vibrating strings in the quint ratio 3:2.  
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In a general case, the Pythagorean scale is any scale, which can be constructed from only 

quint ratios 3:2 and octaves 2:1 [Sethares, 2005, p. 163]. One of known Pythagorean scales 

is a pentatonical scale, which is a five-stages music scale, all the sounds of which can be   

arranged in quint ratios. Its example is the set of the following 5 notes with their sound     

frequencies from Fig. 7.1: do(C)-sol(G)-re(D1)-la(A1)-mi(E2) or respectedly 130-196-293-

440-660 Hz. Other examples of Pythagorean scales are tetratonic and tritonic scales, which 

are correspondingly 4-stages and 3-stages music scales, all the sounds of which can be      

arranged by the quint ratio, for instance, 130-196-293-440 Hz for the tetratonic scale and 

130-196-293 Hz for the tritonic scale. 

The historical fact is that these Pythagorean musical scales on the basis of the quint ratio 

were used by different civilisations around the world long before Pythagoras without 

knowledge of any mathematical laws [Apel, 1969; Day-O'Connell, 2007; Christidis, Arapo-

poulou, Christi, 2007;  Olsen, Sheehy, 1998; Todd Titon, 1996]. For example, the pentatoni-

cal scale is the foundation of traditional music of the Chinese, Vietnamese, Mongols, Turkic 

peoples (Bashkirs, Tatars, Chuvashes, etc.), the Inca Empire and the peoples of the South 

Andes in general. Pentatonics is also found in European musical folklore and in the oldest 

layers of the Russian folk song (especially in the so-called calendar ritual songs). Tetratonic 

music was noted as common in Polynesia and Melanesia. Tetratonic scales were known for 

example among the Plains Indians, the Arapaho, Blackfoot, Crow, Omaha, Kiowa, Pawnee, 

Sioux, some Plateau tribes, the Creek Indians, and in the Great Basin region among the 

Washo, Ute, Paiute, and Shoshone. In the Southwest, the Navajo people also largely used the 

pentatonic and tetratonic, occasionally also tritonic scales. Tetratonic, as well as tritonic 

scales, were commonly used by the tribal peoples of India, such as the Juang and Bhuyan of 

Orissa state [Sudhibhushan Bhattacharya, 1968]. Tetratonic scales are generally associated 

with prehistoric music [Baines, 1991].  

G.Leibniz declared that music is arithmetic of soul, which computes without being aware 

of it. But what is there in living organisms that determines the special attraction of musical 

scales on the basis of the quint ratio 3/2 for representatives of various civilizations and 

epochs? A possible answer lies in the structural features of DNA molecules that are carriers 

of genetic information in humans and other living organisms. The author has paid attention to 

the fact that the parametric structure of DNA molecules is connected in many ways with the 

quint ratio 3/2 and with numbers 3 and 2 at various levels of their parametric organization 

[Petoukhov, 2008; Petoukhov, He, 2010]. Let us briefly say now about this relation between 

the musical harmony and structures of genetic molecules. 

Molecules of heredity - DNA and RNA – contain sequences of 4 “letters” or nucleobases: 

adenine (A), cytosine (C), guanine (G), thymine (T) (or uracil U in RNA). Letters A-T(U) 

and C-G form complementary pairs with 2 and 3 hydrogen bonds in them, respectively. From 

the standpoint of its sequence of two and three hydrogen bonds, each DNA molecule is a long 

chain of numbers 2 and 3 of a type 32232332 .... 

    The genetic code encodes sequences of 20 amino acids in proteins by means of 64 triplets 

(three-letter words) that represent all possible combinations of these four letters (ATC, TTA, 

...). Since A = T = 2, C = G = 3, each triplet has a numeric representation as a product of 

number of hydrogen bonds of its constituent letters. For example, the triplet ACT is               

represented by number 2*3*2 = 12. Each of 64 triplets is represented by one of such numbers 

of hydrogen bonds 23=8, 22*3=12, 2*32=18, 33=27, the pairwise relations between which are 
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equal to the quint 3/2 in varying integer degrees (by analogy with music tetratonic scales), for 

example, 27/8 = (3/2)3, 18/8 = (3/2)2, etc.  

Under considering pairs of adjacent triplets, then DNA molecule appears as a quint         

sequence of 7 kinds of numbers of hydrogen bonds with the following numeric 

representation: 26=64, 25*3=96, 24*32=144, 23*33=216, 22*34=324, 2*35=486, 36=729.       

Pairwise ratios in this series of numbers are equal to the quint 3/2 in the same powers as in 

the Pythagoras 7-stage scale in Fig. 7.1. If, for example, the frequency of 87 Hz of the note 

"F" is compared with the first number 64 of this series, then all other numbers of this series 

will correspond precisely to the other frequencies of the Pythagoras scale. Then any sequence 

of triplets (eg, insulin gene GGC-ATC-GTT-GAA-CAG-TGT- ...) can be associated uniquely 

with a sequence of notes of Pythagoras 7-stages scale (figuratively speaking, we have “music 

of genes in the Pythagoras scale”). 

Accordingly, each DNA molecule as a chain of hydrogen bonds is characterized by its own 

sequences of the quint 3/2 in different integer degrees. By analogy with quint musical scales, 

depending on the chosen lengths of nucleobase fragments of DNA, we have – on the basis of 

considered hydrogen bonds - various systems for transmitting information signals with         

quint-power relations between signals. 

The quint ratios are realized in DNA not only for the hydrogen bonds of complementary 

nucleobases, but also for several other parameters, such as sums of atoms in the rings of     

purines and pyrimidines (numbers 9 and 6 with their ratio 3/2), or sums of protons in the 

rings of complementary nitrogenous bases (numbers 60 and 40 with their ratio 3/2), and      

others. Chains of these parameters in DNA form their own sequences of quint ratios, which 

are similar to sequences of note frequencies in quint scales of music. In other words, Nature   

created DNA as a plexus of various sequences of quint ratios (“a quint polyphony of DNA”). 

The harmony of the parametric organization of the genetic system is akin to the musical  

harmony of the Pythagorean scales. 

As it was reminded above, over the centuries from Ancient China to antiquity, the numbers 

2 and 3 were considered respectively as female and male numbers (that is as Yin and Yang 

numbers) forming the important pair. The author proposes their consideration not as separate 

one-dimensional numbers but as two separate parts of two-dimensional number. Mathematics 

knows 3 main kinds of two-dimensional numbers: complex numbers, hyperbolic (or double) 

numbers and dual numbers [Kantor, Solodovnikov, 1989]. Taking into account a set of our 

results on relations of genetic system and inherited physiological phenomena with hyperbolic 

numbers, we choice namely hyperbolic numbers for a presentation of these historically 

known numbers 3 and 2 as two interrelated parts of single two-dimensional number             

G2 = 3+2j, where j is imaginary unit with its feature j2 = +1; the index 2 refers                           

2-dimensionality of the number G2. This hyperbolic number can be expressed as a point or a 

vector on a hyperbolic plane with Cartesian coordinates, in which the axis of abcissus is con-

sidered the axis of Yang-numbers, and the axis of ordinates is considered the axis of            

Yin-numbers. Fig. 7.2 shows this coordinate system and also the matrix form of presentation 

of hyperbolic numbers with its decomposition into 2 sparse matrices playing the role of real 

and imaginary basis units of hyperbolic numbers. This matrix [3, 2; 2, 3] is conditionally 

termed “quint matrix” since its components 3 and 2 give the ratio 3/2. (The same quint matrix         

[3, 2; 2, 3] appears under a consideration of DNA alphabet C, A, T, G and its three binary 

sub-alphabets [Petoukhov, 2008, Chapter 2;  Petoukhov, He, 2010, Chapter 4].  
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3, 2 

2, 3 

 

 

= 3* 

 

1, 0 

0, 1 

 

 

+ 2* 

 

0, 1 

1, 0 

 

 

; 
 

 

Fig. 7.2. The graphical and matrix presentation of 2-dimensional hyperbolic number            

G2 = 3 + 2j1 (by analogy with Fig. 2.4). The first sparse matrix [1, 0; 0, 1] is the identity    

matrix, the second sparse matrix [0, 1; 1, 0] presents imaginary unit j1 having the property                   

[0, 1; 1, 0]2 = [1, 0; 0, 1]. The multiplication table of these sparse matrices, where 1 refers the 

matrix [1, 0; 0, 1], is also shown at right.  
 

8     Applications of algebras of 2n-dimensional hyperbolic numbers in musicology  
 

This Section is devoted to relations of Pythagorean musical scales with 2n-dimensional  

hyperbolic numbers and also to a possibility of using hyper-alphabets of eigenvectors of    

matrix representations of their basis units for progress in mathematical musicology (see 

mathematical explanations above in Sections 2 and 6). It should be emphasized an important 

differencу between a traditional using in musicology one-dimensional numbers (which     

provide a comparison numeric analysis of sound frequencies of various notes) and the      

proposed using the multi-dimensional numbers. In the case of using the described multi-

dimensional numbers, cardinally new personages come into play: matrix representations of 

these numbers with orthogonal systems of eigenvectors of their  basis units, sets of which 

form hyper-alphabets described above in Section 6. These new personages allow significantly 

encreasing analytical possibilities in musicology by means of those mathematical tools, 

which are effectively used in many scientific and technology fields. 

Let us show now that exponentiation of the quint matrix [3, 2; 2, 3] into tensor powers           

n = 2, 3, 4,… generate 2n-dimensional hyperbolic numbers, whose components form sets   

similar to the sets of sound frequencies of the Pythagorean quint scales in the following 

sense: ratios between any pair of their components are equal to the ratio 3/2 in integer     

powers. The tensor product of matrices [Bellman, 1960] is widely applied in mathematics, 

physics, informatics, etc. It is used for algorithmic generation of higher dimensional spaces 

on the basis of spaces with smaller dimensions. By definition, the tensor product of two 

square matrices V and W of the orders m and n respectively is the matrix Q = V⊗W= 

||vij*W|| with the order m*n. For example, the second tensor power of the initial (2*2)-matrix              

[3, 2; 2, 3](2) gives the (4*4)-matrix [9, 6, 6, 4; 6, 9, 4, 6; 6, 4, 9, 6; 4, 6, 6, 9], representing the 

4-dimensional hyperbolic number 9e0+6e1+6e2+4e3 where e0, e1, e2, e3 are basis units from 

Fig. 2.5. The set of components of this hyperbolic number consists of numbers 4, 6, 9 with 

the following ratios between them: 9/6 = 3/2, 9/4 = (3/2)2, 6/4 = 3/2. The same ratios 

characterize the above mentioned tritonic musical scale 130-196-293 Hz: 293/196 = 3/2, 

293/130 = (3/2)2, 196/130 = 3/2.  

The third tensor power of (2*2)-matrix [3, 2; 2, 3](3) gives an appropriate (8*8)-matrix 

representing the 8-dimensional hyperbolic number 27+18s1+18s2+12s3+18s4 +12s5+12s6+8s7, 

where s1, s2, …, s7 are imaginary units. The set of components of this hyperbolic number 

consists of numbers 8, 12, 18, 27; pairwise ratios between them are identical to pairwise 

ratios between sound frequencies in the above mentioned Pythagorean tetratonic scale       

130-196-293-440 Hz. By analogy the sixth tensor power of (2*2)-matrix [3, 2; 2, 3](6) leads to 
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64-dimensional hyperbolic number, whose components form the set with the same values of 

pairwise ratios as in Pythagorean 7-stages scale in Fig. 7.1. 

Taking into account the described relations of Pythagorean musical scales with some         

2n-dimensional hyperbolic numbers, the author proposes using 2n-dimensional hyperbolic 

numbers joinly with their hyper-alphabets of eigenvectors their basis units (see above Section 

6) as a new mathematical tool in musicology for a possible revealing hidden regularities in 

products of musical creativity. The speech is that each of Pythagorean k-stages scales (k = 2, 

3, 4, 5, 6, 7,…) can be formally connected with an appropriate multi-dimensional hyperbolic 

number and its matrix representation. In other words, the author proposes to use mutual 

matching the members of the musical scale and the members of the hyper-alphabets of      

eigenvectors described above in Section 6. 

For example, the above mentioned Pythagorean tetratonic scale with sound frequencies of 

its notes 130-196-293-440 Hz can be formally expressed by a matrix form of 4-dimensional 

hyperbolic number 130e0+196e1+293e2+440e3 where e0, e1, e2 and e3 are basis units in their 

matrix representations from Fig. 2.5. In such case, musical notes of this Pythagorean scale 

have the following presentations using separate basis units of hyperbolic numbers: 

- the note do(C) with its frequency 130Hz is represented by the square matrix 130e0 

simultaneously with its 4 eigenvectors and corresponding eigenvalues λi: [1,0,0,0],    

λ0 =130; [0,1,0,0], λ1 =130; [0,0,1,0], λ2 =130; [0,0,0,1], λ3 =130; 

-  the note sol(G) with its frequency196 Hz is represented by the square matrix 196e1 

simultaneously with its 4 eigenvectors and their eigenvalues λi: [-0.7071, 0.7071, 0, 

0], λ0 = -196; [0, 0, -0.7071, 0.7071], λ1 = -196; [0, 0, 0.7071, 0.7071], λ2 = 196; 

[0.7071, 0.7071, 0, 0], λ3 = 196; 

- the note re (D1) with its frequency 293 Hz is represented by the square matrix 293e2 

simultaneously with its 4 eigenvectors and 4 eigenvalues λi: [-0.7071, 0, 0.7071, 0],        

λ0 = -293; [0, 0.7071, 0, -0.7071], λ1 = -293; [0, 0.7071, 0, 0.7071], λ2 = 293;                 

[-0.7071, 0, -0.7071, 0], λ3 = 293; 

- the note la (A1) with its frequency 440 Hz is represented by the square matrix 440e3 

simultaneously with its 4 eigenvectors and their eigenvalues λi: [0, -0.7071, 0.7071, 

0], λ0 = -440; [0.7071, 0, 0, -0.7071], λ1 = -440; [0.7071, 0, 0, 0.7071], λ2 = 440;        

[0, 0.7071, 0.7071, 0], λ3 = 440. 

One can see that in such presentation each note of the considered musical scale has its own 

orthogonal system of eigenvectors and eigenvalues in multi-dimensional configurational 

space of this scale. Accordingly, the sequence of sound members of this musical fragment 

can be considered as a sequence of transformations of the orthogonal system of eigenvectors 

and eigenvalues of a previous note into an orthogonal system of eigenvectors and eigenvalues 

of a subsequent note. The transition of one such system of eigenvectors to another system is 

carried out using orthogonal matrices representing proper or improper rotations in the          

considered multi-dimensional space.  

In the proposed algebraic approach, each chord can be represented by the sum of                

2n-dimensional hyperbolic numbers representing its notes. For example, in the considered 

tetratonic scale, a chord of notes with sound frequencies 130, 196 and 440 Hz can be          

represented by the aggregated hyperbolic number 130e0+196e1+440e3, which has the follow-

ing 4 eigenvectors and eigenvalues: [0.5,-0.5,0.5,-0.5], λ0 = -506;  [-0.5, -0.5, 0.5, 0.5],             

λ1 = -114;  [0.5, -0.5, -0.5, 0.5], λ2 = 374 ;  [-0.5, -0.5, -0.5, -0.5],  λ3 = 766. The described 

approach allows algebraic studying musical harmonу and it can be applied for cases of       
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various musical scales (including  “genetic scales” described in [Petoukhov, 2008;              

Petoukhov, He, 2010]).                          

Let us additionally explain a specificity of this approach by an example of its usage for 

modeling a short sequence of separate notes and musical chords in Fig. 8.1. We will assume 

that its note frequencies correspond to the case of Pythagorean 7-stages scale in Fig. 7.1. 

 

 
Fig. 8.1. An arbitrary example of a sequence of separate notes and musical chords. 

 

Inside the first octave, which begins from 260 Hz, the set of 7 notes of Pythagorean scale 

from Fig. 7.1 has sound frequencies shown in Fig.  8.2. 

 

do (C1) re (D1) mi (E1) fa (F1) sol (G1) la (A1) si (B1) 

260 293 330 348 392 440 495 

 

Fig. 8.2. Sound frequencies in Hz inside the first octave for 7 notes of the Pythagorean  

              musical scale from Fig. 7.1. 

 

In the considered approach, each of notes of this scale is connected with one of basis units 

of 8-dimensional hyperbolic number a0j0 + a1j1 + a2j2 + a3j3 + a4j4 + a5j5 + a6j6 + a6j6 + a7j7 for 

example in the following way:   

• The coefficient a0 corresponds to the sound frequency of the note “do (C)” in              

corresponding octave (a0 = 260 Hz for the case “do (C1)”). This note is expressed as               

8-dimensional hyperbolic number a0j0 with its matrix representation in a form of a 

sparce (8*8)-matrix; 

• The coefficient a1 corresponds to the sound frequency of the note “re (D)” in a           

corresponding octave (a1 = 293 Hz for the case “re (D1)”). This note is expressed as               

8-dimensional hyperbolic number a1j1; 

• The coefficient a2 corresponds to the sound frequency of the note “mi (E)” in a          

corresponding octave (a2 = 330 Hz for the case “mi (E1)”). This note is expressed as               

8-dimensional hyperbolic number a2j2; 

• The coefficient a3 corresponds to the sound frequency of the note “fa (F)” in a           

corresponding octave (a3 = 348 Hz for the case “fa (F1)”). This note is expressed as               

8-dimensional hyperbolic number a3j3; 

• The coefficient a4 corresponds to the sound frequency of the note “sol (G)” in a          

corresponding octave (a4 = 392 Hz for the case “sol (G1)”). This note is expressed as               

8-dimensional hyperbolic number a4j4; 

• The coefficient a5 corresponds to the sound frequency of the note “la (A)” in a          

corresponding octave (a5 = 440 Hz for the case “la (A1)”). This note is expressed as               

8-dimensional hyperbolic number a5j5; 
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• The coefficient a6 corresponds to the sound frequency of the note “si (B)” in a           

corresponding octave (a6 = 495 Hz for the case “si (B1)”). This note is expressed as               

8-dimensional hyperbolic number a6j6; 

• The coefficient a7 = 0 corresponds to the case of silence. 

 

All these representations of separate notes of the musical scale have also their matrix                      

represenations in a form of sparce (8*8)-matrices (Fig. 8.3) with their eigenvectors and     

eigenvalues. 

 

a0 0 0 0 0 0 0 0 

0 a0 0 0 0 0 0 0 

0 0 a0 0 0 0 0 0 

0 0 0 a0 0 0 0 0 

0 0 0 0 a0 0 0 0 

0 0 0 0 0 a0 0 0 

0 0 0 0 0 0 a0 0 

0 0 0 0 0 0 0 a0 

 0  a1 0  0  0 0  0  0 

a1 0  0  0  0 0  0  0 

0  0 0   a1 0 0  0  0 

0  0 a1 0   0 0  0  0 

0  0 0  0  0  a1 0  0 

0  0 0  0  a1 0  0  0 

0  0 0  0  0  0  0  a1 

0  0 0  0  0  0  a1 0 

 0  0  a2  0  0 0  0  0 

0  0   0  a2 0 0  0  0 

a2 0  0   0  0 0  0  0 

0  a2 0  0   0 0  0  0 

0  0  0  0  0  0  a2 0 

0  0  0  0  0  0  0  a2 

0  0  0  0  a2 0  0  0 

0  0  0  0  0  a2 0  0 

 0  0  0 a3 0  0 0  0 

0  0  a3 0 0  0 0  0 

0  a3 0  0 0  0 0  0 

a3 0  0  0 0  0 0  0 

0  0  0  0 0   0 0  a3 

0  0  0  0 0  0  a3 0 

0  0  0  0 0  a3 0   0 

0  0  0  0 a3  0 0  0 

 

0   0  0  0  a4 0  0  0 

0  0  0  0  0  a4  0  0 

0  0  0  0  0  0  a4  0 

0 0  0  0   0   0  0 a4 

a4 0  0  0  0   0  0  0 

0  a4 0  0  0  0   0  0 

0  0  a4 0  0  0  0   0 

0  0  0  a4 0  0  0  0 

 0  0  0  0  0  a5 0  0 

0  0  0  0  a5 0  0  0 

0  0  0  0   0  0 0  a5 

0  0  0  0   0  0  a5 0 

0  a5 0  0  0   0  0  0 

a5 0  0  0  0  0  0   0 

0  0  0  a5 0  0  0   0 

0  0  a5 0  0  0  0  0 

 0  0  0  0  0  0  a6 0 

0  0  0  0  0  0  0 a6 

0  0  0  0  a6 0  0  0 

0  0  0  0  0  a6 0  0 

0  0  a6 0  0  0  0  0 

0  0  0  a6 0  0  0  0 

a6 0  0  0  0  0  0   0 

0  a6 0  0  0  0  0  0 

 0  0  0  0  0  0 0  a7 

0  0  0  0  0  0 a7 0 

0  0  0  0  0  a7 0  0 

0  0  0  0  a7 0  0  0 

0  0  0 a7  0  0  0  0 

0  0  a7 0  0  0  0  0 

0  a7 0  0  0  0  0  0 

a7 0  0  0  0  0  0  0 

 

Fig. 8.3. Matrices a0j0, a1j, a2j2, a3j3, a4j4, a5j5, a6j6, a6j6 and a7j7, which represent separate notes  

           of the musical scale from Fig. 8.2 as components of 8-dimensional hyperbolic number.  

 

Returning to the musical fragment in Fig. 8.1, one can see that its first note “la (A1)” 

and its third note “mi (E1)” are now represented as 440j5 and 330j3 correspondingly. The 

chord of this fragment is represented by the sum of the three notes “mi (E2)”, “la (A2)” and 

“do (C3)” included in its composition that is by the 8-dimensional hyperbolic number 

660j3+880j5+1040j0. From this standpoint this fragment is the sequence (8.1) of                    

(8*8)-matrix representations of 8-dimensional hyperbolic numbers: 

 

   (440j5) → (660j3+880j5+1040j0) →  (330j3) →  (660j3+880j5+1040j0)                (8.1) 

 

Each (8*8)-matrix member of this sequence has an orthogonal  set of its                      

8 eigenvectors with appropriate eigenvalues. For example, the first member (440j5) has the 

following 8 eigenvectors: 

- [0,  -0.7071, 0, 0, 0.7071, 0, 0, 0] with eigenvalues: -440, 0,  0, 0, 0, 0, 0, 0; 

- [0, 0, 0, -0.7071, 0, 0, 0.7071, 0]  with eigenvalues:   0, -440, 0, 0, 0, 0, 0, 0;   

- [0.7071, 0,  0, 0, 0, -0.7071, 0, 0] with eigenvalues:   0, 0, -440, 0, 0, 0, 0, 0; 
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- [0, 0,  0.7071, 0, 0, 0, 0, -0.7071] with eigenvalues:   0, 0, 0, -440, 0, 0, 0, 0; 

- [0.7071, 0, 0, 0, 0, 0.7071, 0, 0]    with eigenvalues:   0, 0, 0, 0, 440,  0, 0, 0;                

- [0, 0, 0, 0.7071, 0, 0, 0.7071, 0]    with eigenvalues:   0, 0, 0, 0, 0, 440,  0, 0;                

- [0, 0, 0.7071, 0, 0, 0, 0, 0.7071]    with eigenvalues:   0, 0, 0, 0, 0, 0, 440, 0;                

- [0, 0.7071, 0, 0, 0.7071, 0, 0, 0]    with eigenvalues:   0, 0, 0, 0, 0, 0, 0, 440.                

 The eigenvectors of the second member and the fourth member in (8.1) that is the 

(8*8)-matrix (660j3+880j5+1040j0) has quite another orthogonal set of its 8 eigenvectors:  

- [0, -0.5, 0.5, 0, 0.5, 0, 0, -0.5] with eigenvalues: 1040, 0, 0, 880, 0, 880, 0, 0;   

- [-0.5, 0, 0, 0.5, 0, 0.5, -0.5, 0] with eigenvalues:  0, 1040, 880, 0, 880, 0, 0, 0;  

- [-0.6946, -0.1323, 0, 0, 0, 0, 0.6946, 0.1323] with eigenvalues: 0, 880, 1040, 0, 0, 0, 0, 880;    

- [0, 0, 0.7071, 0, -0.7071, 0, 0, 0] with eigenvalues:  880, 0, 0, 1040, 0, 0, 880, 0;  

- [0, 0, 0, -0.7071, 0, 0.7071, 0, 0] with eigenvalues:  0, 880, 0, 0, 1040, 0, 0, 880; 

- [-0.1323, 0.6946, 0, 0, 0, 0, 0.1323, -0.6946] with eigenvalues: 880, 0, 0, 0, 0, 1040, 880, 0;   

- [0.0083, 0.4999, 0.4999, 0.0083, 0.4999, 0.0083, 0.0083, 0.4999] with eigenvalues: 0, 0, 0,  

                                                                                                                   880, 0, 880, 1040, 0;    

- [0.4999, -0.0083, -0.0083, 0.4999, -0.0083, 0.4999, 0.4999, -0.0083] with eigenvalues: 0, 0,  

                                                                                                                 880, 0, 880, 0, 0, 1040.   

 

     The eigenvectors of the third member in (8.1), that is the (8*8)-matrix 330j3, has its own 

orthogonal set of 8 eigenvectors: 

- [0, -0.7071, 0.7071, 0, 0, 0, 0, 0] with eigenvalues:  -330,  0,  0,  0,  0,  0  0,  0; 

- [0.7071, 0, 0, -0.7071, 0, 0, 0, 0] with eigenvalues:  0, -330,  0,  0,  0,  0,  0,  0; 

- [0, 0, 0, 0, 0, -0.7071, 0.7071, 0] with eigenvalues:  0,  0,  -330,  0, 0,  0,  0,  0; 

- [0, 0, 0, 0, 0.7071, 0, 0, -0.7071] with eigenvalues:  0,  0,  0,  -330,  0,  0,  0,  0; 

- [0, 0, 0, 0, 0, 0.7071, 0.7071, 0]  with eigenvalues:  0,  0,  0,  0,  330,  0,  0,  0; 

- [0.7071, 0, 0, 0.7071, 0, 0, 0, 0]  with eigenvalues:  0,  0,  0,  0,  0,  330,  0,  0; 

- [0, 0, 0, 0, 0.7071, 0, 0, 0.7071]  with eigenvalues:  0,  0,  0,  0,  0,  0,  330,  0; 

- [0, 0.7071, 0.7071, 0, 0, 0, 0, 0]  with eigenvalues:  0,  0,  0,  0,  0,  0,  0,  330. 

 

But musical works are based not only on the sound frequencies of notes of a particular  

musical system but also on a system of note durations: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 

(with their traditional names: a whole note, a half note, a quarter note, an eighth note, a 

sixthteenth note, …).  In musical pieces each note is a symbiosis of a sound frequency and 

one of these durations. Correspondingly in the proposed approach on the foundation of       

2n-dimensional hyperbolic numbers, such symbiosis can be expressed as a sum of 

approproate basis units of these numbers. Let us explain this. 

One can take 2-dimensional hyperbolic number d0+1/2*d1 in its matrix representation        

[1, 1/2; 1/2, 1]. Rising this matrix into appropriate tensor power n automatically gives matrix 

representation of 2n-dimensional hyperbolic number with coefficients of its basis units 1, 1/2, 

1/4, 1/8, 1/16, 1/32, 1/64, 1/128. In the simplest case, if one wants to have this set of         

durations as the set of coefficients of basis units, it is enough to take 8-dimensional              

hyperbolic number d0+1/2*d1+1/4*d2+1/8*d3+1/16*d4+1/32*d5+1/64*d6+1/128*d7.  

To construct an algebraic symbiosis of note sound frequencies of any musical scale       

(Pythagorean, equal tempered scale, etc) and of the standard set of note durations 1, 1/2, 1/4, 

1/8, 1/16, 1/32, 1/64, 1/128, one can take enough long 2n-dimensional hyperbolic number, 

whose first part contains basis units with coefficients identical to sound frequencies of the 
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musical scale and whose second part contains basis units with coefficients identical to these 

durations. For example, in the case of Pythagorean musical scale (Fig. 8.2), which contains 7 

note frequencies, it is enough to take 16-dimensional hyperbolic number S16 (8.2), whose first 

part contains basis units with coefficients identical to note frequencies and the second part 

contains basis units with coefficients identical to note durations: 

 

S16 = 260*s0 + 293*s1 + 330*s2 + 348*s3 + 392*s4 +  440*s5 + 495*s6 + 0*s7 +   

      1*s8 + 1/2*s9 + 1/4*s10 + 1/8*s11 + 1/16*s12 + 1/32*s13 + 1/64*s14 + 1/128*s15         (8.2) 

 

In (8.2) the member 0*s7 represents silence. Correspondingly a symbiosis of separate 

sound frequency and separate note duration has a common orthogonal system of eigenvectors 

and eigenvalues. For example, the symbiosis of the note do (C1) and the duration 1/4 is     

expresses by the sum 260*s0+1/4*s10, whose matrix representation has a common orthogonal 

system of 16 eigenvalues. 

In the case of equal tempered scale, which has 12 note sound frequencies, the octave is 

devided into 12 parts with a ratio equal to the 12th root of 2. In the proposed approach, to 

consider a symbiosis of this frequencies scale and durations, we need at least 32-dimensional 

hyperbolic number (8.3). Its first part contains basis units with coefficients iden-tical to note 

frequencies (expressed in hertz or in ratios related with the 12th root of 2) and its second part 

contains basis units with coefficients identical to note durations. Many basis units in (8.3) 

have zero coefficients since it is enough 20 members of this 32-dimensional number to     

express the symbiosis of the set of 12 sound frequencies and the set of 8 durations. 

 

S32 = 1*s0 + 21/12*s1 + 22/12*s2 + 23/12*s3 + 24/12*s4 + 25/12*s5 + 26/12*s6 + 27/12*s7  

     +  28/12*s8 + 29/12*s9 + 210/12*s10 + 211/12*s11 + 0*s12 + 0*s13 + 0*s14 + 0*s15 +       

     1*s16 + 1/2*s17 + 1/4*s18 + 1/8*s19 + 1/16*s20 + 1/32*s21 + 1/64*s22 + 1/128*s23  

     + 0*s24 + 0*s25 + 0*s26 + 0*s27 + 0*s28 + 0*s29 + 0*s31                                          (8.3) 

 

One can remind that each kind of 2n-dimensional hyperbolic numbers under fixed n has its 

own hyper-alphabet of 2n orthogonal systems of its 2n basis units. Transitions from one   

member of such hyper-alphabet to other members are determined by transformations of   

mentioned orthogonal rotations (see above Section 6). From the proposed algebraic point of 

view, any musical piece is related with a sequence of the mentioned rotations of orthogonal 

systems of eigenvectors inside appropriate multi-dimensional vector space. These rotations of 

elements of music generate some associations with rotations (or whirling, or spin) of dancing 

pairs under dance music. Perhaps classical rotating movements of dancing pairs are related in 

some degree with mentioned rotations of members of algebraic hyper-alphabets of music. 

One can add that all movements of separate parts of our body skelet are provided by their 

rotations in joints.   

It seems important to note the following. The traditional use of one-dimensional numbers 

in musicology made it possible to study the relationship of musical sound frequencies in    

musical systems and chords in line with the Pythagorean theory of the relationship of musical 

frequencies with dividing strings into parts. But it is obvious that knowledge of only the   

harmonious interrelations of sound frequencies is not enough to reveal the harmony of the 

musical work as a whole. For example, you can take two pieces of music, which use the same 

set of sound frequencies, but – because of different sequences of the same musical sounds in 
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them - one piece will provides a charming effect on the listener, and the other will leave him 

indifferent or will cause a negative emotion. This indicates that in musical works there is 

some other - additional - type of harmony, reflected in the transitions between sounds and 

providing harmonical development of the theme of a musical work (musical plasticity). 

The author’s proposal of an application of 2n-dimensional hyperbolic numbers with their 

matrix forms of representation, which fully preserves the Pythagorean ideas about the       

harmonical relationship of musical frequencies, allows studying a completely different type 

of music harmony: harmony of transitions in a sounds sequence of a musical work, that is, 

harmony of the development of the theme of a musical work (musical plasticity). From the 

proposed algebraic point of view, a musical piece can be considered as a sequence of           

orthogonal transformations of the bases of multidimensional spaces. This new study is          

possible due to introducing quite new personages into mathematical musicology: matrix 

presentations of  2n-dimensional hyperbolic numbers with orthogonal systems of eigenvectors 

of their basis units to study such plasticity.  

In the proposed approach, music appears as a game with 2n-dimensional hyperbolic     

numbers. It reminds some ideas of the book "The Glass Bead Game" of Nobel laureate in 

literature by Hermann Hesse, where deep thoughts on interrelations of mathematics and    

music are presented [Hesse, 2002].  

Similar algebraic approaches are possible for analyzing DNA sequences, but corresponding 

author’s results will be published some later. 

 

9 Advantages of matrix representations of hyperbolic numbers 

 

The matrix forms of presentation of 2n-dimensional hyperbolic numbers deserve a special  

attention since they have the following useful properties:  

1. This presentation form is based on symmetric matrices, which are closely related with 

the theory of resonances of oscillatory systems, having many degrees of freedom, and 

also with Punnett squares from Mendelian genetics of inheritance of traits in living 

organisms [Petoukhov, 2011, 2015, 2016]. Symmetrical matrices are related with the 

theory of resonance of L. Pauling whose book [Pauling, 1940] about this theory in 

structural chemistry is the most quoted among scientific books of the XX century. The 

actual molecule, as Pauling proposed, is a sort of hybrid, a structure that resonates   

between the two alternative extremes; and whenever there is a resonance between the 

two forms, the structure is stabilized. Pauling claimed that living organisms are   

chemical in nature, and resonances in their molecules should be very essential for   

biological phenomena. In general, quantum mechanics was emerged and developed 

largely as a science about resonances in microworld. Thus, the concept of system-

resonance genetics (or spectral-resonance genetics) creates models of genetic        

phenomena on the same language of frequencies and resonances, on which models in 

quantum mechanics are based. In addition to this, it uses the same matrix language, on 

which “matrix mechanics” of Werner Heisenberg has been created; it is historically 

the first form of quantum mechanics, which retains its value to this day. 

2. These symmetric matrices are Hermitian (self-adjoint) matrices, which play an       

important role in quantum mechanics. By this reason they can be used in development 

of applications of ideas and methods of quantum mechanics and quantum informatics 

in the field of bioinformatics and algebraic biology. In this connection some of        
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author’s works [Petoukhov, 2018a,b, 2019a,b; Petoukhov, Petukhova, Svirin, 2019] 

are devoted to using formalisms of quantum mechanics and quantum informatics in 

bioinformatics and algebraic biology including analysis of long genetic and and      

literary texts. For example, in long DNA sequences of nucleobases, where           

complementary nucleobases C and G (A and T) are linked by 3 (2) hydrogen bonds, 

2n-dimensional hyperbolic numbers [%3, %2; %2, %3](n) (where %3 and %2 denote 

percentages of numbers 3 and 2 of hydrogen bonds in the analyzed DNA sequence;    

n = 2, 3, 4, 5) effectively models percentages of monoplets, doublets, triplets, tetra-

plets and pentaplets of these numbers 3 and 2 of hydrogen bonds [Petoukhov, 2018].  

3. These symmetric matrices can be interpreted as metric tensors, which are main        

invariants in Riemanian geometry and which can be used in the theory of                  

morpho-resonance morphogenesis [Petoukhov, 2008, 2015, 2016];  

4. These symmetric matrices are related with hyperbolic rotations [sh x, ch x; ch x, sh x], 

which are particular cases of hyperbolic numbers and are connected with the theory of 

biological phyllotaxis laws [Bodnar, 1992, 1994; Stakhov, 2009], with problems of 

locomotion control [Smolyaninov, 2000], with the main psychophysical law of       

Weber-Fechner (see above and also in [Petoukhov, 2016]), with Lorenz                      

transformations in the special theory of relativity;  

5. These symmetric matrices are related with the theory of solitons of sine-Gordon   

equation [Petoukhov, 1999, 2008; Petoukhov, He, 2009]. Such solitons are the only 

relativistic type of solitons; they were put forward for the role of the fundamental type 

of solitons of living matter in the book [Petoukhov, 1999]. 

Symmetric matrices possess a wonderful property to express resonances [Bellman, 1960; 

Balonin, 2000]. The expression y = A*S models the transmission of a signal S via an acoustic 

system A, represented by a relevant matrix A. If an input signal is a resonant tone, then the 

output signal will repeat it with a precision up to a scale factor y = λ*S by analogy with a 

situation when a musical string sounds in unison with the neighboring vibrating string. In the 

case of a matrix A, its number of resonant tones Si corresponds to its size. They are termed its 

eigenvectors, and the scale factors λi with them are termed its eigenvalues or, briefly, 

spectrum A. One of the main tasks of the theory of oscillations is a determination of natural 

frequencies (mathematically, eigenvalues of operators) and the natural forms of oscillations 

of bodies. To find all the eigenvalues λi and eigenvectors of the matrix A, which are defined 

by the matrix equation A*s = λ*s, the “characteristic equation” of the matrix A is analyzed: 

det(A − E) = 0, where E – the identity matrix (see more in [Petoukhov, 2016]). Matrices, 

which are relevant to the various problems of the theory of oscillations, are usually 

symmetric real matrices [Gladwell, 2004]. Such matrices have real eigenvalues and their 

eigenvectors are orthogonal. 

Symmetric matrices representing hyperbolic numbers are simultaneously metric tensors by 

their structure. Metric tensors are main invariants of Riemanian geometry, which can be used 

for modelling inherited curvilinear forms of biological bodies. By definition, the metric 

tensor in the n-dimensional affine space with the scalar multiplication introduced is defined 

by the nondegenerate matrix ||gij|| under the condition of symmetry gij = gji [Rashevskij, 

1964], which is satisfied by the structure of bisymmetric matrices of hyperbolic numbers. The 

coordinates gij of the metric tensor are the pairwise scalar products of vectors of the frame, on 

which it is built. If we extract the square root from a bisymmetric matrix, we get a square 

matrix whose columns are vectors of this frame. It is interesting that the extraction of the 
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square root from quint matrices of 2n-dimensional hyperbolic numbers [3, 2; 2, 3](n), which 

has integer components, get square matrices of 2n-dimensional hyperbolic numbers                

[φ, φ-1; φ-1, φ](n) whose components are irrational numbers of the golden section                     

φ = (1+50.5)/2 = 1,618… in integer powers; the golden section φ is famous in the aesthetics of 

proportions and described by many authors in a series of inherited physiological systems 

[Petoukhov, 2008; Petoukhov, He, 2010]. It means that metric tensors, having forms of quint 

matrices of hyperbolic numbers, are built on a frame of "golden" vectors, all components of 

which are equal to the golden sections in integer powers. 

10    2n-dimensional hyperbolic numbers and phenomenological rules of probabilities in 

genetics 

   The author revealed that in some cases it is possible to use 2n-dimensional hyperbolic 

numbers and their matrix representations for modeling some phenomenological rules in 

biology, first of all, in genetics. In this cases the tensor family of symmetric matrices          

[%S, %W; %W, %S](n) is under consideration, where %S and %W refer to percentages of 

biological realisation of some events denoted by symbols S and W (%W+%S=100%).                 

    This tensor family contains matrix representations of 2-dimensional hyperbolic numbers 

%S + %W*j1; of 4-dimensional hyperbolic numbers  %S*%S + %S*%W*j1 + %W*%S*j2 + 

%W*%W*j3; of 8-dimensional hyperbolic numbers, etc. Expressions like as %S*%S, 

%S*%W, %W*%W can be considered as percentages of realisation of doublets SS, SW, 

WW in chains of these events. 

      For example, the phenomenological rules described in [Petoukhov, 2011, 2018a,b, 2019b] 

can be modeled on the foundation of this approach. Details of such modeling will be 

published some later. 

11      Fractal-like multi-dimensional configurational spaces of hyperbolic types 

This Section is devoted to the use of 2n-dimensional hyperbolic numbers for modeling       

heritable fractal-like biostructures, which are developing step by step in ontogenesis of       

biological bodies.  

Living bodies in a course of their ontogenesis from the embryonic state to the mature state 

gradually increase the number of body parts. Accordingly, the number of parameters,          

characterizing the developing body, increases. This leads to appropriate phased increasing a 

dimensionality of a configurational space of parameters of the body. In many cases of such 

ontogenetic development one can see the following iterative process: body structural         

elements, which exist at a previous stage of ontogenesis, produce - at the next step of        

ontogenesis - new elements with similar structures (Fig. 11.1). In the result, after some       

repetitions of this ontogenetic procedure, complex fractal-like structure of the multi-level 

body appears. A multidimensional configurational space of parameters of such body has a 

fractal-like system of its different subspaces having similar patterns of parametric states. One 

of many examples of such phased producing a fractal-like structure of multi-level body is 

ontogenetic producing new and new dichotomic branches in some plants (Fig.  11.1, left). 
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Fig. 11.1. Illustrations for the phased ontogenetic development of fractal-like biological 

structures (from https://studbooks.net/2365314/tehnika/istoriya_poyavleniya_razvitiya). 

 

Regarding the theme of fractal-like structures in biological bodies, one can note a great 

number of publications is devoted to algorithmic creation of fractal-like geometric figures in 

spaces of a fixed (!) dimensionality, first of all, in 2-dimensional complex plane. There are 

also known works devoted to constructions of fractal geometric patterns on the plane of     

hyperbolic (or double) numbers [Pavlov, Panchelyuga, Panchelyuga, 2009a,b].  

In contrast to these works, the author proposes an approach to model an algorithmic 

reproduction of patterns, which are similar each other, not in a space of a fixed 

dimensionality but in different subspaces of multidimensional configurational spaces of 

parameters of multi-level bodies under their phased ontogenetic development. Due to 

similarity of parametric structures in its different subspaces, each of considered 

configurational spaces becomes a fractal-like space in the whole. 

The author notes the following possibility of modelling such multi-step ontogenetic        

development of biological objects and their configurational spaces, which receive new and 

new parameters and dimensionalities step by step. Let us take the matrix representation of 

hyperbolic number [f1(t), f2(t); f2(t), f1(t)] whose components f1(t) and f2(t) are functions of 

time. Fig. 11.2 shows that if this (2*2)-matrix is tensor multiplied on the left by a hyperbolic 

number [1, 1; 1, 1], which acts as a generator of additional dimensionalities of the configura-

tional space, the result is (4*4)-matrix representing 4-dimensional hyperbolic number f1(t)*e0 

+ f2(t)*e1 + f1(t)*e2 + f2(t)*e3. This 4-dimensional configurational space repeats in its sub-

spaces (namely the first plane on the basis vectors e0 and e1, and the second plane on the basis 

vectors e2 and e3) the same functions f1(t) and f2(t), which were in the initial 2-dimensional 

space. 

 

Fig. 11.2. An initial step of a generation of a fractal-like 2n-dimensional space whose 

subspaces have identical contents. Here e0, e1, e2 and e3 are basis units from Fig. 2.5. 

Repeating the required number of times this operation of the tensor multiplication on 

the left using the generator [1, 1; 1, 1], we obtain a hierarchical tree of 2n-dimensional 

hyperbolic numbers and their corresponding 2n-dimensional configurational spaces for 

algorithmic modelling multi-step onthogenesis of a fractal-like morphogenetic construction. 

Different levels of this tree have subspaces with the same functions f1(t) and f2(t), which were 
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in the initial 2-dimensional space; in this sense one can speech about a fractal-like structure 

of this hierarchy of multi-dimensional configurational spaces of parameters.                             

We briefly note that the noted generator [1, 1; 1, 1] (Fig. 11.2) can be used in a more 

complicated form if its components are some functions of time g i(t), for example [g1(t), g2(t); 

g2(t), g1(t)]. For modeling biological cyclic processes based on such fractal-like sets of 

subspaces, the case, in which the functions f1(t), f2(t), g1(t) and g2(t) are cyclic functions of 

time, is especially interesting. 

12     Pythagoras and the importance of the concept of number 

 

The notion of “number” is the main notion of mathematics and mathematical natural      

sciences. Pythagoras has formulated the famous idea: “Numbers rule the world” or “All 

things are numbers”. This Pythagorean slogan arised not because that the number can express 

a quantity of objects. Pythagoras was engaged in figured numbers associated with geometric 

figures: triangular, square, 5-angled, 12-angled, etc. Seeing that different numbers can dictate 

different geometric shapes, he came up with the idea that numbers have an internal structure 

and able to organize the outside world according to their properties. In view of this idea,    

natural phenomena should be explained by means of systems of numbers; the systems of 

numbers play a role of the beginning for uniting all things and for expressing the harmony of 

nature [Kline, 1980]. For the Pythagoreans, the number expressed the "essence" of             

everything, and therefore the phenomena should be explained only with the help of numbers; 

it was numerical relations that served as the unifying principle of all things and expressed the 

harmony and order of nature.  

Many prominent scientists and thinkers were supporters of this Pythagorean standpoint or 

of one similar to it. As W. Heisenberg noted, modern physics, where matrices are used as a 

higher form of numbers, is moving along the same path along which the Pythagoreans 

walked [Heisenberg, 1958]. Not without reason B. Russell noted that he did not know any 

other person who could exert such influence on the thinking of people as Pythagoras [Russell, 

1945]. Taking this into account, one can believe that there is no more fundamental scientific 

idea in the world than this idea about a basic meaning of numbers. 

Our research results and the proposed approach can be considered as a further development 

of this fundamental idea of Pythagoras in connection with the structural organization of the 

genetic system and inherited biological phenomena. 

 

13     Some concluding remarks 

 

The development of modern mathematical natural sciences is based on the use of certain 

mathematical tools. Mathematical tools of theoretical research can be compared with glasses 

for a visually impaired person: adequate glasses provide a person with a clear and beautiful 

picture of reality, which he had previously seen as blurred and hidden by fog. Darwin once 

wrote: “I have deeply regretted that I did not proceed far enough at least to understand   

something of the great leading principles of mathematics; for men thus endowed seem to have 

an extra sense” (this quotation is taken from [May, 2004]). 
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This article attracts attention of researches to an important role of hyperbolic numbers and 

their matrix representations in algebraic modelling structural features of genetic phenomena. 

The author puts forward the hypothesis that hyper-alphabets of eigenvectors of matrix 

representations of basis units of 2n-dimensional hyperbolic numbers play a key role in 

transmitting biological information and that they can be considered as a foundation of coding 

information at different levels of biological organization. He believes that corresponding 

languages using such hyper-alphabets define many inherited phenomenological structures in 

biology including molecular genetic structures. In particular, using these hyper-alphabets 

gives new algebraic tools to study phenomenological genetic rules and also harmony of 

musical pieces. The proposed algebraic approach is connected with the theme of a grammar 

of biology mentioned above. 

In the author’s opinion, the proposed kind of mathematics is beautiful and it can be used 

for further developing of algebraic biology and informatics in accordance with the famous 

statement by P. Dirac, who taught that a creation of a physical theory must begin with the 

beautiful mathematical theory: “If this theory is really beautiful, then it necessarily will 

appear as a fine model of important physical phenomena. It is necessary to search for these 

phenomena to develop applications of the beautiful mathematical theory and to interpret 

them as predictions of new laws of  physics” (this quotation is taken from [Arnold, 2007]). 

According to Dirac, all new physics, including relativistic and quantum, are developing in 

this way. One can suppose that this statement is also true for mathematical biology. 

 

Appendix I. Dyadic groups of binary numbers, modulo-2 addition and matrices of          

                      dyadic shifts 

 

   This article has repeatedly used a special decomposition of bisymmetric (2n*2n)-matrices, 

which represented them as a sum of 2n sparse matrices, defining multiplication tables of    

corresponing algebras (Figs. 2.3, 2.4, 7.2, 8.3). Just these sparce matrices represented the 

basic units of hyperbolic numbers. This Appendix explains what this special kind of          

decomposition is. 

   Bisymmetric matrix representations of 2n-dimensional hyperbolic numbers have the        

peculiarity that the set of numbers of the first row of the matrix is completely repeated in 

each subsequent row with some permutation or "shift". This permutation is called the dyadic 

shift and is associated with the well-known operation of modulo-2 addition described below. 

Matrices constructed by this principle are called dyadic shift matrices. Matrix representations 

of 2n-dimensional hyperbolic numbers are constructed by analogy with dyadic shift matrices. 

Decompositions of such matrices provide that each of appearing sparse matrices contains  

only one identical non-zero number in each row (Figs. 2.3, 2.4, 7.2, 8.3). 

Modulo-2 addition is utilized broadly in the theory of discrete signal processing as a fun-

damental operation for binary variables. By definition, the modulo-2 addition of two numbers 

written in binary notation is made in a bitwise manner in accordance with the following rules: 

 

                               0 + 0 = 0, 0 + 1 = 1, 1+ 0 = 1, 1+ 1 = 0                                           (A1) 
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     For example, modulo-2 addition of two binary numbers 110 and 101, which are equal to   

6 and 5 respectively in decimal notation, gives the result 110 ⊕101 = 011, which is equal to 

3 in decimal notation (⊕is the symbol for modulo-2 addition). The set of binary numbers 

 

                               000, 001, 010, 011, 100, 101, 110, 111                                           (A2) 

 

forms a diadic group with 8 members, in which modulo-2 addition serves as the group         

operation [Harmuth, 1989]. By analogy dyadic groups of binary numbers with 2n members 

can be presented. The distance in this symmetry group is known as the Hamming distance. 

Since the Hamming distance satisfies the conditions of a metric group, the dyadic group is a 

metric group. The modulo-2 addition of any two binary numbers from (A2) always gives a 

new number from the same series. The number 000 serves as the unit element of this group: 

for example, 010 ⊕000 = 010. The reverse element for any number in this group is the      

number itself: for example, 010 ⊕010 = 000. Each member from (A2) possesses its            

inverse-symmetrical partner (or a mating number), which arises if the binary symbol of the 

member is transformed by the inverse replacements 0→1 and 1→0. For example, binary 

numbers 010 and 101 give an example of such pair of mating numbers. 

The series (A2) is transformed by modulo-2 addition with the binary number 001 into a 

new series (A3) of the same numbers: 

 

                                001, 000, 011, 010, 101, 100, 111, 110                                           (A3) 

 

Such changes in the initial binary sequence, produced by modulo-2 addition of its members 

with any binary numbers (A2), are termed dyadic shifts [Ahmed and Rao, 1975; Harmuth, 

1989]. If any system of elements demonstrates its connection with dyadic shifts, it indicates 

that the structural organization of its system is related to the logic of modulo-2 addition. The 

article shows additionally that the structural organization of genetic systems is related to logic 

of modulo-2 addition. 

By means of dyadic groups, a special family of (2n*2n)-matrices can be constructed which 

are termed “matrices of dyadic shifts” and which are used widely in technology of discrete 

signal processing [Ahmed, Rao, 1975; Harmuth, 1977, §1.2.6]. Fig. A1 shows examples of 

bisymmetric matrices of dyadic shifts. In these matrices their rows and columns are             

numerated by means of binary numbers of an appropriate dyadic group. All matrix cells are 

numerated by means of binary numbers of the same dyadic group in such way that a binary 

numeration of each cell is a result of modulo-2 addition of binary numerations of its column 

and its row. For example, the cell from the column 110 and the row 101 obtains the binary 

numeration 011 by means of such addition. Such numerations of matrix cells are termed   

“dyadic-shift numerations” (or simply “dyadic numeration”).  

 

   00 (0) 01 (1) 10 (2) 11 (3) 

 0 1   00 (0) 00 (0) 01 (1) 10 (2) 11 (3) 

0 0 1 ;  01 (1) 01 (1) 00 (0) 11 (3) 10 (2) 

1 1 0   10 (2) 10 (2) 11 (3) 00 (0) 01 (1) 

 11 (3) 11 (3) 10 (2) 01 (1) 00 (0) 
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 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

000 (0) 000 (0) 001 (1) 010 (2) 011 (3) 100 (4) 101 (5) 110 (6) 111 (7) 

001 (1) 001 (1) 000 (0) 011 (3) 010 (2) 101 (5) 100 (4) 111 (7) 110 (6) 

010 (2) 010 (2) 011 (3) 000 (0) 001 (1) 110 (6) 111 (7) 100 (4) 101 (5) 

011 (3) 011 (3) 010 (2) 001 (1) 000 (0) 111 (7) 110 (6) 101 (5) 100 (4) 

100 (4) 100 (4) 101 (5) 110 (6) 111 (7) 000 (0) 001 (1) 010 (2) 011 (3) 

101 (5) 101 (5) 100 (4) 111 (7) 110 (6) 001 (1) 000 (0) 011 (3) 010 (2) 

110 (6) 110 (6) 111 (7) 100 (4) 101 (5) 010 (2) 011 (3) 000 (0) 001 (1) 

111 (7) 111 (7) 110 (6) 101 (5) 100 (4) 011 (3) 010 (2) 001 (1) 000 (0) 

 

Fig. A1. The examples of matrices of dyadic shifts. Parentheses contain expressions of the   

               numbers in decimal notation. 
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