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Abstract. The article is devoted to applications of 2-dimensional hyperbolic numbers and
their algebraic 2"-dimensional extensions in modeling some genetic phenomena.
Mathematical properties of hyperbolic numbers and their matrix representations are described
ina  connection with alphabets of DNA nucleobases, with inherited phyllotaxis phenomena
and with the Weber-Fechner law. New methods of algebraic analysis of the harmony of
musical works are proposed, taking into account the innate predisposition of people to music.
Known data on using hyperbolic rotations, which are particular cases of hyperbolic numbers,
in physics and in some biological phenomena, including phyllotaxis laws and structural
features of locomotions, are discussed. The hypothesis is put forward that alphabets of
eigenvectors of matrix representations of basis units of 2"-dimensional hyperbolic numbers
play a key role in transmitting biological information and that they can be considered as a
foundation of coding information at different levels of biological organization. The proposed
algebraic approach is connected with the theme of a grammar of biology. Applications of
hyperbolic numbers reveal hidden interrelations between structures of different biological and
physical phenomena. They lead to new approaches in mathematical modeling genetic
phenomena and innate biological structures.
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1 Introduction

The main task of the mathematical natural sciences is the creation of mathematical
models of natural systems. Development of models and formalized theories depends highly
on those mathematical notions and instruments, on which they are based. Modern science
knows that different natural systems could possess their own individual geometries and their
own individual arithmetic [Kline, 1982]. Various kinds of multi-dimensional numbers —
complex numbers, hyperbolic numbers, dual numbers, quaternions and other hypercomplex
numbers — are used in different branches of modern science. They have played the role of the
magic tool for development of theories and calculations in problems of heat, light, sounds,
fluctuations, elasticity, gravitation, magnetism, electricity, current of liquids, quantum-
mechanical phenomena, special theory of relativity, nuclear physics, etc. For example, in
physics thousands of works - only in XX century — were devoted to quaternions of Hamilton
(their bibliography is in [Gsponer, Hurni, 2008].

The idea about special mathematical peculiarities of living matter exists long ago. For
example V.I. Vernadsky put forward the hypothesis on a non-Euclidean geometry of living
nature [Vernadsky, 1965]. It seems an important task to investigate what systems of
multi-dimensional numbers are connected or can be connected with ensembles of parameters
of the genetic code and inherited biological peculiarities. Some results of such investigation
are presented in this article. They are connected with hyperbolic numbers and their algebraic
extensions, matrix forms of which give a new class of mathematical models in biology.
Author’s results described in this article are related in particularly to works by O. Bodnar
who noted that ontogenetic transformations of phyllotaxis lattices in plants can be formaly
modelled by hyperbolic rotations, which are particular cases of hyperbolic numbers and are
well known in the special theory of relativity (Lorentz transformations) [Bodnar, 1992,
1994]. On this basis he stated that geometry of living bodies has structural relations with the
Minkovsky geometry. Another evidence in favor of structural relaltions of inherited biologi-
cal phenomena with hyperbolic rotations was shown in the work [Smolyaninov, 2000], which
analyzed problems of locomotion control and put forward ideas of the “locomotor theory of
relativity”.

It is obvoius that all physiological systems must be argued with a genetic coding system in
order to be genetically encoded for their survival and inheritance into next generations. For
this reason, the structural organization of physiological systems can bear the imprint of the
structural features of molecular genetic systems. Our study aims to identify such relationships
of inherited physiological structures with the molecular genetic system. Taking into account
known data about ratios of musical harmony in parametric organization of DNA molecules,
new algebraic approaches are proposed for analyzing hidden harmony of musical pieces.
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2 Matrix representations of DNA alphabets and hyperbolic numbers

In DNA molecules DNA genetic information is written in sequences of 4 kinds of
nucleobases: adenine A, cytosine C, guanine G and thymine T. They form a DNA alphabet of
4 monoplets. In addition, DNA alphabets of 16 doublets and 64 triplets also exist. It is known
[Fimmel, Danielli, Striingmann, 2013; Petoukhov, 2008; Petoukhov, He, 2010; Stambuk,
1999] that these four nucleobases A, C, G and T are interrelated due to their symmetrical
peculiarities into the united molecular ensemble with its three pairs of binary-oppositional
traits or indicators (Fig. 2.1):

1) Two letters are purines (A and G), and the other two are pyrimidines (C and T). From the
standpoint of these binary-oppositional traits one candenote C=T=0,A=G =1;

2) Two letters are amino-molecules (A and C) and the other two are keto-molecules (G and
T). From the standpoint of these traits one can designate A=C=0,G=T = 1;

3) The pairs of complementary letters, A-T and C-G, are linked by 2 and 3 hydrogen bonds,
respectively. From the standpoint of these binary traits, one can denote C = G = 0,

A=T=1
e pee “%r Ne | Binary Symbols C|A|G | T
) /\_T o :.i: A 1 | 0i— pyrimidines 0|11 |11| O

1;— purines

o Bl \y 2 | 02— amino 0210212 12
(c{ >E§—\ 1,— keto

/”‘( }: ' 3 | 03— three hydrogen bonds; | 03 | 13 | O3 | 13
- 13— two hydrogen bonds

Fig. 2.1. Left: the four nitrogenous bases of DNA: adenine A, guanine G, cytosine C, and
thymine T. Right: three binary sub-alphabets of the genetic alphabet on the basis of
three pairs of binary-oppositional traits or indicators.

Taking into account the phenomenological fact that each of DNA-letters C, A, T and G is
uniquely defined by any two kinds of mentioned binary-oppositional indicators (Fig. 2.1),
these genetic letters can be represented by means of corresponding pairs of binary symbols,
for example, from the standpoint of two first binary-oppositional indicators. It is convenient
for us - for the further description - use at the first position of each of letters its binary symbol
from the second pair of binary-oppositional indicators (the indicator "amino or keto":
C=A=0, T=G=1) and at the second positions of each of letters its binary symbol from the first
pair of binary-oppositional indicators (the indicator "pyrimidine or purine": C=T=0, A=G=1).
In this case the letter C is represented by the binary symbol 0.0; (that is as 2-bit binary
number), A — by the symbol 0,11, T — by the symbol 1,01, G — by the symbol 1,1;. Using
these representations of separate letters, each of 16 doublets is represented as the concatena-
tion of the binary symbols of its letters (that is as 4-bit binary number): for example, the
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doublet CC is represented as 4-bit binary number 02010201, the doublet CA — as 4-bit binary
number 020,011, etc. By analogy, each of 64 triplets is represented as the concatenation of
the binary symbols of its letters (that is as 6-bit binary number): for example, the triplet CCC
is represented as 6-bit binary number 02010201004, the triplet CCA — as 6-bit binary number
02010201014, etc. In general, each of n-plets is represented as the concatenation of the binary
symbols of its letters (below we will not show these indexes 2 and 1 of separate letters in
binary representations of n-plets but will remember that each of positions corresponds to its
own kind of indicators from the first or from the second set of indicators in Fig. 2.1).

It is convenient to represent DNA-alphabets of 4 nucleotides, 16 doublets, 64 triplets, ...
4" n-plets in a form of appropriate square tables (Fig. 2.2), which rows and columns are
numerated by binary symbols in line with the following principle. Entries of each column are
numerated by binary symbols in line with the first set of binary-oppositional indicators in Fig.
2.1 (for example, the triplet CAG and all other triplets in the same column are the
combination “pyrimidine-purin-purin” and so this column is correspondingly numerated
011). By contrast, entries of each of rows are numerated by binary numbers in line with the
second set of indicators (for example, the same triplet CAG and all other triplets in the same
row are the combination “amino-amino-keto” and so this row is correspondingly numerated
001). In such tables (Fig. 2.2), each of 4 letters, 16 doublets, 64 triplets, ... takes
automatically its own individual place and all components of the alphabets are arranged in a
strict order.

It is essential that these 3 separate genetic tables form the joint tensor family of matrices
since they are interrelated by the known operation of the tensor (or Kronecker) product of
matrices [Bellman, 1960]. So they are not simple tables but matrices. By definition, under
tensor multiplication of two matrices, each of entries of the first matrix is multiplied with the
whole second matrix. The second tensor power of the (2*2)-matrix [C, A; T, G] of 4 DNA-
letters gives automatically the (4*4)-matrix of 16 doublets; the third tensor power of the same
(2*2)-matrix of 4 DNA-letters gives the (8*8)-matrix of 64 triplets with the same strict
arrangement of entries as in Fig. 2.2. In this tensor construction of the tensor family of genet-
ic matrices, data about binary-oppositional traits of genetic letters C, A, T and G are not used
at all. So, the structural organization of the system of DNA-alphabets is connected with the
algebraic operation of the tensor product. It is important since the operation of the tensor
product is well known in mathematics, physics and informatics, where it gives a way of
putting vector spaces together to form larger vector spaces. The following quotation speaks
about the crucial meaning of the tensor product: «This construction is crucial to understand-
ing the quantum mechanics of multiparticle systems» [Nielsen, Chuang, 2010, p. 71].

000110 |11

011 0o0jcc|cA|AC|AA
oJCc|A 01 | CT | CG | AT | AG
11T |G 10 TC [ TA|GC | GA

11| TT | TG | GT | GG
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000 | 001 | 010 | 011 | 100 | 101 | 110 |111

000 J CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
001 J CCT | CCG | CAT | CAG | ACT | ACG | AAT | AAG
010 J CTC | CTA | CGC | CGA | ATC | ATA | AGC | AGA
011 J CTT | CTG | CGT | CGG | ATT | ATG | AGT | AGG

100 § TCC | TCA | TAC | TAA ] GCC | GCA | GAC | GAA
101 § TCT | TCG | TAT | TAG | GCT | GCG | GAT | GAG
110§ TTC | TTA | TGC | TGA | GTC | GTA | GGC | GGA
111§ TTT | TTG | TGT | TGG | GTT | GTG | GGT | GGG

Fig. 2.2. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets and
64 triplets with a strict arrangement of all components. Each of tables is constructed in
line with the principle of binary numeration of its column and rows on the basis of bina-
ry-oppositional traits of the nitrogenous bases (see explanations in the text).

In the DNA double helix, complementary nucleobases C and G are connected by 3 hydro-
gen bonds and complementary nucleobases A and T are connected by 2 hydrogen bonds. One
can denote their typical connections with hydrogen bonds by expressions C=G=3 and
A=T=2. Replacing in the (2*2)-matrix [C, A; T, G] (Fig. 2.2) symbols C, A, T and G by their
numbers of hydrogen bonds 3 and 2, a numeric matrix [3, 2; 2, 3] appears (Fig. 2.3). The
second and the third tensor powers of this matrix [3, 2; 2, 3]™, where n = 2, 3, generate
numeric (4*4)- and (8*8)-matrices in Fig. 2.3, which automatically represent symbolic
matrices of 16 doublets and 64 triplets in Fig. 2.2 from the standpoint of the product of their
numbers of hydrogen bonds. For example the doublet CA is replaced by number 3*2=6 and
the triplet AGT is replaced by number 2*3*2=12. These genetic matrices are closely
connected by their structures with so called matrices of dyadic shifts, which are known in
digital information technology of noise immune coding and which are described below in the
Appendix I.

o ] ©O O
o O A O
O o o &~



https://doi.org/10.20944/preprints201908.0284.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 d0i:10.20944/preprints201908.0284.v2

2711818121812 |12 | 8
1827121812 |18| 8 |12
1812 |27 |18|12| 8 | 18|12
12118 |18 (27| 8 |12 |12 | 18
181212 | 8 | 27|18 |18 |12
12118 | 8 [12|18| 27|12 |18
12| 8 |18 12|18 |12 |27 | 18
8 (12|12 |18]12 |18 |18 |27

Fig. 2.3. Numeric representations of the tensor family of symbolic matrices (Fig. 2.2) of
4 monoplets, 16 doublets and 64 triplets from the standpoint of their numeric characteristics
of hydrogen bonds C=G=3 and A=T=2.

Fig. 2.4 shows that the matrix [3, 2; 2, 3] is decomposed into sum of two sparse
matrices, one of which is the identity matrix (jo = [1, 0; O, 1]) and the second matrix
ju = [0, 1; 1, 1]) represents imaginary unit of hyperbolic numbers since ji?> = jo. The set of
these matrices jo and ji is closed relative to multiplication and defines the multiplication table
of algebra of hyperbolic numbers (Fig. 2.4, right).

3,2
2,3

1,0
0,1

0,1
1,0

= 3%jo+2%5; | L[1 10
!l

= 3* + 2%

Fig. 2.4. The decomposition of the matrix [3, 2; 2, 3] into two sparse matrices, where
matrices jo and ji are matrix representations of real and imaginary units of algebra of
hyperbolic numbers with the shown multiplication table of these units.

Here we should remind that two-dimensional hyperbolic numbers are written in linear
notation as my = a*1+b*j (where 1 is the real unit; j is the imaginary unit with the property
j #+1 but j2=1; a, b are real coefficients). These numbers are used in physics and mathemat-
ics and they have also synonimical names: "split-complex numbers", "perplex numbers" and
"double numbers". The collection of all hyperbolic numbers forms algebra over the field of
real numbers [Harkin, Harkin, 2004; Kantor, Solodovnikov, 1989]. The algebra is not a
division algebra or field since it contains zero divisors. Addition and multiplication of

hyperbolic numbers are defined by (2.1):

(xHy)+H(uHV)=(x+u)+j(y+v);  (XHy)(U+V)=(Xu+yv)+j(xv+yu) (2.1)
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;
This multiplication is commutative, associative and distributes over addition.

A hyperbolic number has its matrix form of representation: [a, b; b, a] = a*[1, 0; 0, 1]
+b*[0, 1; 1, O] where [1, O; 0, 1] is the identity matrix representing real basis unit; [0, 1; 1, 0]
represents imaginary basis unit. Fig. 2.4 shows the matrix representation of hyperbolic num-
bers a*1+b*j for the case a = 3 and b = 2. The symmetric matrices [1, 0; 0, 1] and [0, 1; 1, O]
representing these real and imaginary unites are orthogonal matrices.

If a%-b? = 1, then the matrix [a, b; b, a] defines hyperbolic rotations known in the
special theory of relativity as Lorentz transformations. Hyperbolic rotations are usually
expressed by a symmetric matrix (2.2) through hyperbolic cosine «cosh» and hyperbolic sine
«sinh» since cosh?x— sinh?x= 1 [Collins Concise Dictionary, 1999; Shervatov, 1954; Stakhov,
2009]:
cosh?a, sinh?b

sinh? b, cosh? a (2.2)

Symmetric matrices that represent hyperbolic numbers have real eigenvalues and
orthogonal eigenvectors (which distinguishes them from non-symmetic matrix representa-
tions of complex numbers). Such symmetric matrices form the basis of the theory of
resonances of oscillatory systems with many degrees of freedom, and are also metric tensors
from the point of view of Riemannian geometry.

The second tensor power of the bisymmetric matrix [a, b; b, a], which represents
hyperbolic numbers, is decomposed into 4 sparse matrices e, e1, €2 and es with real
coefficients aa, ab ba and bb (Fig. 2.5). The used decomposition is based on the known
principle of dyadic shifts described below in the Appendix I.

The set of matrices eo, €1, €2 and ez is closed relative to multiplication and satisfies to
the multiplication table in Fig. 2.5. The set of these (4x4)-matrices corresponds to algebra of
4-dimensional numbers aa*eo + ab*e1 + ba*e, + bb*es, where the matrix eo represents the
real unit 1 and matrices e, e2 and ez represent imaginary units. These 4-dimensional numbers
are algebraic extensions of 2-dimensional hyperbolic numbers and for simplicity they can be
termed “4-dimensional hyperbolic numbers” (in our previous publications we termed them
“hyperbolic matrions” [Petoukhov, 2008; Petoukhov, He, 2010]). Each of matrices eo, €1, €2
and es is an orthogonal matrix with its determinant +1.

By comparing Fig. 2.3 and Fig. 2.5, one can see that the numeric (4*4)-matrix of hydrogen
bonds in Fig. 2.3 represents 4-dimensional hyperbolic number 9eo+6e;+6e2+4e3 where eg is
the identity matrix representing real unit 1. By analogy, the numeric (8*8)-matrix in Fig. 2.3
represents 8-dimensional hyperbolic number 27jo+18j1+18j2+12j3+18j4+12js+12je+8j7 where
jkare basis units of 8-dimensional hyperbolic niumbers.
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(2) aa, ab, ba, bb 1000 0100 0010
a b = | ab,aa, bb,ba | =aa | 0100 | +ab | 1000 | +ba | 0001 | +
b, a ba, bb, aa, ab 0010 0001 1000
bb, ba, ab, aa 0001 0010 0100
0001 * 11 e |e|es
+bb | 0010 | =aa*l + ab*e, + ba*e, + bb*e; . 11 0e /e |e
0100 (<] €1 1 €3 €
1000 (5] ()] €3 1 €1

C3 € | €| € 1

Fig. 2.5. The decomposition of the matrix [a, b; b, a]®, representing 4-dimensional
hyperbolic numbers, into 4 sparse matrices, the set of which is closed relative to
multiplication. The multiplication table for this set is shown at the right. The symbol 1
denotes the identity matrix eo.

In a general case, 2"-dimensional hyperbolic numbers are hypercomplex numbers and they
possess, by definition, the following features. They contain 2" basis units ex (one real unit and
2"-1 imaginary units), which are interrelated by a symmetric table of their mutual multiplica-
tion where all e = +1 (k=0, 1, 2,..., 2"-1).

By analogy with Figs. 2.4 and 2.5, the higher tensor powers n =3, 4, 5, ... of the bisym-
metric matrix [a, b; b, a] produce bisymmetric matrices [a, b; b, a]™, which can be also
decomposed into 2" sparse matrices, the set of which is closed relative to multiplication and
which define appropriate multiplication tables of algebras of 2"-dimensional hypercomplex
numbers m, (which were termed “hyperbolic matrions” of the order n in our previous
publications [Petoukhov 2008; Petoukhov, He, 2010]). These decompositions use a structural
similarity of the matrices [a, b; b, a]™ with matrices of dyadic shifts described below in the
Appendix I.

It is useful to rewrite the multiplication table in Fig. 2.5 into a form where all decimal in-
dexes of basis units eo, e1, e2 and ez are shown in their binary notations: eoo, €01, €10 and ei1
(Fig. 2.6).

* | eoo | €o1|€10] 611

€00 | €oo | €01 | €10 | B11
€01 ] €o1 | €00 | €11 | €10
€10 ]| €10 | €11 | €00 | €01
€11 ] €11 | €10 | €01 | €00

Fig. 2.6. The multiplication table in algebra of 4-dimensional hyperbolic numbers where
indexes of basis units are shown in their binary notations ego, €01, €10 and e11 in contrast to
their decimal notations ey, e1, €2 and es in Fig. 2.5.

One can see from Fig. 2.6 that in all cases a result of the product of two basis units
(ep*ex = es) is equal to that basis unit es whose binary index s is equal to a result of modulo-2
addition for binary indexes p and k of the factors e, and ex (under the operation of modulo-2
addition the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1). In other words the
following equation (2.3) for bimary indexes is true:
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ep*ex = ep+k (2.3)

For example, a result of the product e>*es is equal to e; since decimal indexes 2 and 3 are
expressed by binary numbers 10 and 11 whose modulo-2 addition gives the binary number 01
refered to decimal number 1. This method of binary operations with indexes to calculate a
result of the product of any two basis units is true not only for 4-dimensional hyperbolic
numbers but also for other 2"-dimensional hyperbolic numbers. The equation (2.3) is espe-
cially useful in cases of high values n when it is difficult to address to multiplication tables
having 2"*2" sizes each time when you need to know a result es of the product of basis units
ep*ex = €s.

For this you should represent indexes p and k in their binary notation (inside a complete set
of n-bit binary numbers) and calculate their binary sum p+k on the basis of the known opera-
tion of modulo-2 addition where the following rules are true: 0+0=0, 1+1=0, 0+1=1, 1+0=1.
The result of such modulo-2 addition is a searched index s in its binary notation. For exam-
ple, if you multiplicate two 23-dimensional hyperbolic numbers each other, the complete set
of 3-bit binary numbers is the following: 000, 001, 010, 011, 100, 101, 110, 111 (they
correspond decimal numbers 0, 1, 2, 3, 4, 5, 6, 7). To calculate a result of multuplication of
basis units es*es, you take decimal indexes 3 and 5 in their binary notation 011 and 101.
Their modulo-2 addition gives binary number 110, which corresponds decimal number 6. In
such way we get the search result: es*es=es.

3 Hyperbolic and Fibonacci numbers in phyllotaxis modeling

Fibonacci numbers F, form an additive sequence such that each number is the sum of the two
preceding ones: Fn = Fn.1+ Fn2 (Table 3.1).

Table 3.1. The Fibonacci sequence.
n|1(213[4|5(6|7 |8 |9 |10
Fn|1]1]2|3|5|8|13|21 34|55

Fibonacci numbers are strongly related to the golden ratio ¢ = (1+5%°)/2. Binet’s formula
(3.1) expresses the nth Fibonacci number in terms of n and the golden ratio, and implies that
the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases:

Fo = (¢" — (-¢™))/5°° (3.1)

In biology, it has long been known that, for example, in many plant objects the spiral
arrangement of their bioorganisms form ordered patterns (shoots of plants and trees, seeds in
the heads of sunflowers, scales of coniferous cones and pineapples, etc.). These patterns are
determined by overlapping left and right oriented spiral lines - parastichies. To characterize
phyllotaxis of such botanical objects, usually indicate two parameters: number of left spirals
and number of right spirals, which are observed on the surface of phyllotaxis objects.


https://doi.org/10.20944/preprints201908.0284.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 d0i:10.20944/preprints201908.0284.v2

10
Phyllotaxis of structures with such patterns is described by ratios of neighboring Fibonacci
numbers:
Fnea/Fn: 2/1,3/2, 5/3, 8/5, 13/8, 21/13, 34/21, ... (3.2)
(Fn+1/Fn) — (Frs2/Fn+1): 2/1 —> 3/2 > 5/3 — 8/5 — 13/8 - 21/13 —... (3.3)

The sequence (3.2) is termed the “parastichic sequence” [Jean ,2006; Petoukhov, 1981]. It
seems natural to use 2-dimensional hyperbolic numbers for modeling these 2-parametric pat-
terns in phyllotaxis objects and their ontogenetic transformations. In this approach, proposed
by the author, the sequence (3.2) of phyllotaxis ratios is transformed into additive sequences
(3.4, 3.5) reflecting linear notation of appropriate hyperbolic numbers and their matrix repre-
sentations (we call sequences (3.4, 3.5) as parastichic sequences of hyperbolic numbers):

Frer+ jFn: 2+, 3 42,5+ 3§, 8 +5j, 13 +8j, 21 + 13, 34 + 21j, .... (3.4)
Fn+1, Fn 2,1 3,2 53 8,5 13,8
Fo, Foer |:|1,2 |, 12,3 |, |35 |, |58 |, |813 (3.5)

In this approach, to define a hyperbolic number u+jv, which transforms a hyperbolic number
Fn+1 + jFn into its neighboring hyperbolic number Fn+2 + jFn+1 from the sequence (3.4), the
following simple equation (3.6) should be solved:

(Fn+1 + an)(U + jV) = (Fn+2 + an+1) (3.6)

The solution to this equation (3.6) gives the following expressions (3.7) for components of
the desired hyperbolic number u + jv:

u= Fn+1/Fn + (‘l)n+1*Fn-1/ (Fn*(Fn2 — Fn-lz)), V= ('1)“ / (Fn2 — Fn-lz) (37)

In the case of such components (3.7), u? — v2 # 1 and the appropriate matrix [u, v; v, u] does
not present a hyperbolic rotation in the sense of expression (2.2). But this matrix can be
rewriting into the form (10) where the matrix of a hyperbolic rotation (in the sense of
expression (2.2)) is multiplied by a coefficient (u? - v?)°°:

[U, ViV, U] - (u2 _ V2)0.5 [u(uz - V2)—0.5, V(U2 - VZ)—O.S; V(UZ - VZ)—O.S’ u(uz - V2)—0.5] (3.8)

Now let us describe results of the author’s study of eigenvalues of the symmetric
matrices in the parastichic sequence (3.5). Each of these matrices [Fn+1, Fn; Fn, Fn+1] has two
eigenvalues, which are equal to two Fibonacci numbers again: Fn+2 and Fn.1. One can noted
that these eigenvalues are the sum and the difference of the Fibonacci components of the
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original hyperbolic number Fns1t+ jFn since Fns2 = Fns1 + Fy and Fna = Fn+r - Fn. The ratio

Fn+2/Fn-1 Of such eigenvalues defines a new sequence (11) of Fibonacci ratios, which tend to
@° as n increases:
FneolFna:  3/1,5/1, 8/2,13/3, 21/5, 34/8, 55/13, .... (3.9

By analogy with expressions (3.2, 3.4, 3.5) such pair of eigenvalues Fn+2 and Fn.1 can be
considered as components of a new hyperbolic number Fn+2 + jFn.1. In this case the sequence
of ratios (3.9) is transformed into additive sequences (3.10, 3.11) reflecting linear notation of
appropriate hyperbolic numbers and their matrix presentations:

Froo+ jFna: 3+, 5+j,8+j2,13+j3,21+5,34+j8,55+j13, .... (3.10)
‘sz,Fn.l ‘3,1 ‘ ‘5,1 ‘ ‘8,2 ’ ’13,3 ‘ ‘21,5 ‘
Foo, Foe2 |2 12,3 |, |1,5 |, 12,8 |, 313 |, | 521 (3.11)

Each of symmetric matrices [Fn+2, Fn1; Fn-1, Fn+2] Of the sequence (3.11) has two eigenvalues,
which are again equal to two Fibonacci numbers multiplied by a factor 2 (twice the Fibonacci
numbers): 2Fq+1 and 2F,. Ratios 2Fq+1/2F, of such eigenvalues form a sequence, which is
identical to the initial parastichic sequence (3.2). Using the Binet’s formula (3.1), all mem-
bers of these sequences can be additionally expressed through the golden ratio ¢ in integer
powers. This procedure of analysis of the eigenvalues of new and new sequences of
symmetric matrices, representing hyperbolic numbers by analogy with sequences (3.4, 3.5,
3.10, 3.11), can be repeated as long as desired, obtaining a hierarchy of eigenvalues of the
matrices based on Fibonacci numbers multiplied by a factor 2 at corresponding steps of the
iterative procesure.

The following important point should be emphasized. In contrast to the traditional
additive series of one-dimensional Fibonacci numbers, the author introduces an additive
series of two-dimensional hyperbolic numbers and an additive series of (2*2)-matrices
representing these numbers and defining an additional additive series of eigenvalues of these
matrices (3.4, 3.5, 3.10, 3.11). As far as we know, such Fibonacci series of two-dimensional
numbers have not been described in the literature by anyone, and therefore they can be
considered new in the extensive subject matter of Fibonacci numbers and their applications
(some of author's results of the study of additive series of 4-dimensional hyperbolic Fibonacci
numbers will be presented below).

Similar results are obtained by considering the additive series of two-dimensional
hyperbolic Lucas numbers and the additive series of their matrix representations, which
determine the additive series of eigenvalues of these symmetric matrices (these results are
been publishing in a separate article). Here one can remind that one-dimensional Lucas
numbers form the series Ln+2 =Ln +Ln+1: 2, 1, 3, 4, 7, 11, 18, ... , which is also known in
phyllotaxis laws [Jean, 2006]. A study of additive series of complex numbers, whose
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components are Fibonacci numbers, and of their ordinary representations by non-symmetric

matrices gives also interesting additive series of their eigenvalues but in form of complex
numbers.

It should be noted that the study of the eigenvalues of symmetric matrices has special
meaning due to the fact that in the theory of oscillations symmetric matrices are matrix
representations of oscillatory systems with many degrees of freedom. Moreover, the
eigenvalues of such a matrix determine the resonant frequencies of the corresponding
oscillatory system. The described results on the properties of inherited phyllotaxis
phenomena with their Fibonacci ratios, represented by symmetric matrices and their matrix
eigenvalues, are important, in particular, for the concept of multi-resonance genetics, which
connects structural features of molecular-genetic systems with resonances of oscillatory
systems [Petoukhov, 2016].

4 Fibonacci sequences of 2"-dimensional hyperbolic numbers

This Section continues the theme of additive series of hyperbolic numbers, coordinates of
which are Fibonacci numbers. Now we turn to algebraic extensions of hyperbolic numbers in
forms of 2"-dimensional hyperbolic numbers. Let us consider an additive sequence (4.1) of
4-dimensional hyperbolic numbers Fn+seot+Fn+2€1+Fni1€2+Fres with Fibonacci coordinates
from (Table 3.1). In this sequence, each member is equal to the sum of two previous
members:

3egt2e1+1ex+les; Seot+3e1+2ex+1es; 8eotber+3ex+2e3; 13e0+8e1+5e2+3e3; ... (4.1)

A corresponding matrix representation of each member from (4.1) has 4 eigenvalues, which
can be considered again as coordinates of a new 4-dimensional hyperbolic number. The au-
thor reveals that these new 4-dimensional hyperbolic numbers form a new additive sequence
(4.2):

leot+lei+3ex+7e3; leo+3e1+bert+lles; 2eo+4e1+8e,+18es; 3eg+7e1+13e2+29%¢3;. .. 4.2)

The sequence (4.2) combines Fibonacci and Lucas sequences in the following sense. In its
4-dimensional hyperbolic numbers, coordinates of basis elements eq and e, are Fibonacci
numbers and coordinates of basis elements e1 and ez are Lucas numbers: 3, 1, 4, 7, 11, 18, 29,
... . Such aggregation of Fibonacci and Lucas numbers resembles a phyllotaxis-like locations
of amino acid residues in the helices of polypeptides for various molecular chains - 11/3,
18/5, 29/8, 47/13; here fraction numerators are Lucas numbers and fraction denominators are
Fibonacci numbers. These bio-molecular phenomena of polypeptides configurations are de-
scribed in the fundamental book [Frey-Wissling, Muhlethaler, 1965].

A matrix representation of each member of the sequence (4.2) has 4 eigenvalues,
which can be considered again as coordinates of a new 4-dimensional hyperbolic number.
These 4-dimensional hyperbolic numbers form a new additive sequence (4.3):
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-8eo-4e1+4er+12e3; -12e0-8e1+4e2+20e3; -20e0-12e1+8e2+32e3; -32e0-20e1+12e2+32€3;.. (4.3)

Comparing sequences (4.1) and (4.3) reveals that a set of coordinates of each member of
the sequence (4.3) repeats - with a factor 4 - a set of coordinates of the corresponding mem-
ber of the sequence (4.1) with accuracy up to signs and a cyclic permutation of coordinates.
For example, the first member of (4.1) contains coordinates 3, 2, 1, 1 and the first member of
(4.3) contains coordinates -4*2, -4*1, 4*1, 4*3. This procedure of calculating repeating addi-
tive sequences of 4-dimensional hyperbolic numbers associated with Fibonacci and Lucas
numbers can be repeated as long as desired. Similar results are received for additive sequenc-
es of 2"-dimensional hyperbolic numbers with Fibonacci coordinates in casesn= 3,4, ....

5 Hyperbolic numbers and the Weber-Fechner law

It is profitable for an organism, which is a single whole, to have the same typical
algorithms at different levels of its functioning for a mutual optimal coordination of its parts.
By this reason we study possibilities to simulate differentinnate phenomena on the general
basis of hyperbolic numbers and its algebraic extensions. This Section is devoted to the main
psychophysical law by Weber-Fechner and its structural connection with phyllotaxis laws
through hyperbolic numbers. The innate Weber-Fechner law states that the intensity of the
perception is proportional to the logarithm of stimulus intensity; it is expressed by the
equation (5.1):

p = k*In(x/xo) = k*{In(x) - In(X0)} (5.1)

where p - the intensity of perception, x — stimulus intensity, Xo - threshold stimulus,
In — natural logarithm, k — a weight factor. It is known that different types of inherited
sensory perception are subordinated to this law: sight, hearing, smell, touch, taste, etc.
Because of this law, the power of sound in physics and engineering technologies is measured
on a logarithmic scale in decibels.

One can suppose that the innate Weber—Fechner law is the law especially for nervous
system. But it is not so since its meaning is much wider because it holds true in many kinds
of lower organisms without a nervous system in them: “this law is applicable to chemo-
tropical, helio-tropical and geo-tropical movements of bacteria, fungi and antherozoids of
ferns, mosses and phanerogams ... . The Weber-Fechner law, therefore, is not the law of the
nervous system and its centers, but the law of protoplasm in general and its ability to respond
to stimuli” [Shults, 1916, p.126]

Let us show that hyperbolic numbers are related to the Weber-Fechner law, which is based
on the natural logarithm (5.1). Historically the natural logarithm was formerly termed the
hyperbolic logarithm, as it corresponds to the area under a hyperbola [Klein, 2004;
Shervatov, 1954]. History of hyperbolic logarithms is described for example in the book
[Klein, 2004]. As known, the natural logarithm can be defined for any positive real number
“a” as the area under the hyperbola y = 1/x from 1 to a (Fig. 5.1, left). It means that two
points of the hyperbola with their coordinates (x, 1/x) and (Xo, 1/Xo0), where x > 1 and Xo > 1,
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define values of natural logarithms In(x) and In(Xo). Subtraction In(x) — In(xo) = In(x/Xo)
expresses the intensity of perception p in the expression (5.1) of the Weber—Fechner law
(Fig. 5.1, right).

. y=1/x L y=1x

In(a) ) In(x/x,)

0 1 a o Xo X

Fig. 5.1. Natural logarithm as the area under the hyperbola y = 1/x. Left: In(a) is equal to
the area under the hyperbola from 1 to a. Right: In(x/xo) is equal to the area under the
hyperbola from Xo to X.

A plane of the hyperbola y=1/x can be naturally considered as the hyperbolic plane
where points (x, 1/x) and (Xo, 1/xo) on this hyperbola are defined as hyperbolic numbers
x+j1/x and Xo+jl/xo. From the standpoint of the expression (5.1) of the Weber-Fechner law,
any transformation of a stimulus intensity x (X > Xo) into a new stimulus intensity X2 (X2 > Xo)
corresponds to the case that the hyperbolic number x+jl/x is transformed into a new
hyperbolic number x>+j1/x. on the same hyperbola y=1/x by means of multiplication of the
first hyperbolic number with another hyperbolic number u+jv that is (x+j1/X)(u+jv)=x2+j1/x>
where u=(x22x3-x)/(x2(x*-1)), v=x(X22-x2)/(x2(1-x%)).

This analysis gives evidences that our sensory perception obeys the same structural
principles as morphogenesis with its phyllotaxis laws and that these principles can be
effectively modelling on the basis of hyperbolic numbers.

6  The alphabets of orthogonal vector bases associated with basis units of
2"-dimensional hyperbolic numbers

Let us remind the essence of the eigenvalues and eigenvectors by means of the matrix
A on Fig. 6.1, which acts on vectors [x, y]. In this case almost any vector is transformed into
a new vector [x, y]*A with changing its direction. The exceptions are those vectors [x, Y],
which belong to two orthogonal dotted lines and are called "eigenvectors” of the matrix A;
they conserve their direction under action of the matrix A, but their lengths are scaled with
factors Ai, which are called “eigenvalues” of the matrix A (each eigenvalue corresponds to its
own direction of eigenvectors).
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A=(4, 0.6
0.6 2

Fig. 6.1. Illustration of actions of the matrix A on vectors [X, y] (from [Zharov, 2002])

Each basis unit of 2"-hyperbolic numbers is represented by a corresponding symmetric
(2™2M-matrix, which is an orthogonal matrix and has its own set of orthogonal eigenvectors.
This orthogonal set is a corresponding vector basis of 2"-dimensional space. For example in
the case of any 2-dimensional hyperbolic number a*jo +b*j; (Fig. 2.4) its real component ajo
is presented by the matrix a*[1, 0; 0 1], which has two orthogonal eigenvectors [1, 0] and
[0, 1] independently on value of the coefficient a (a = 0). This pair of eigenvectors defines
the first vector basis of the 2-dimensional space of existance of hyperbolic numbers. The
imaginary term bjz is presented by the matrix b*[0, 1; 1, 0] (Fig. 2.4), which has another pair
of orthogonal eigenvectors [-29°, 205], [29°, 295] independently on value of the coefficient
b (b # 0). This pair of eigenvectors defines the second vector basis of the considered
2-dimensional space. In other words, the pairs of eigenvectors are determined only by basis
units jo and ji. These two pairs of eigenvector bases can be considered as a two-term vector
alphabet of basis units of hyperbolic numbers in case of 2-dimensional space.

A similar situation is true for cases of other 2"-dimensional hyperbolic numbers and
eigenvectors of their matrix representations. For example, in the case of 4-dimensional
hyperbolic numbers aeo + b*e1 + c*e, + d*es, matrix representations of their basis units (see
Fig. 2.5) have the following eigenvectors:

e The (4*4)-matrix [1,0,0,0;0,1,0,0; 0,0, 1, 0; 0, 0, 0, 1] representing the real unit
eo has 4 eigenvectors [1, 0, 0, 0], [0, 1, 0, 0], [0, O, 1, O], [0, O, O, 1];
e The (4*4)-matrix [0, 1,00; 1, 0,0,0;0, 0,0, 1; 0, 0, 1, O] representing the first
-0.

imaginary unit e; has 4 eigenvectors [-2°9°, ° 0, 0], [0, 0, -20° 299,
[0, 0, 205 2705 [2°95, 205 0, 0];
e The (4*4)-matrix [0, 0,1, 0;0,0,0,1;1,0,0,0; 0, 1, 0, 0] representing the second
imaginary unit e, has 4 eigenvectors [-29° 0, 2°° 0], [0, 2%% o0, -209],
[0, 205, 0, 209], [-20%, 0, -2%°, 0];
e The (4*4)-matrix [0, 0, 0, 1; 0,0, 1, 0; 0, 1, 0, 0; 1, O, O, O] representing the third
imaginary unit es has 4 eigenvectors [0, -20° 29%° 0], [2°° 0, 0, -299],
[2°%, 0,0, 209, [0, 295, 205 0].

Correspondingly in the case of 4-dimensional hyperbolic numbers and their space, the
4-term eigenvector alphabet of their 4 basis units exists. In a general case of 2"-dimensional
hyperbolic numbers, the 2"-term eigenvector alphabet of their 2" basis units exists. Each
member of such alphabet is a set of 2" orthogonal vectors. The author briefly calls such
alphabets of eigenvector bases of matrix representations of basis units of 2"-dimensional
hyperbolic numbers as «hyperbolic eigenvector alphabets» or simply «hyper-alphabets».
Here the prefix "hyper" is the beginning of the word "hyperbolic™ and its use is additionally
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justified by the fact that each member of such hyper-alphabet contains in itself another
alphabet of a set of eigenvectors of the corresponding basis unit.

Any transformation of one such eigenvector basis into another (that is a transformation of
one member of a hyper-alphabet into another) is provided by means of an orthogonal matrix
(orthogonal operator), that is, a real unitary matrix (previously, the structural connection of
DNA alphabets with orthogonal matrices was shown by the author in [Petoukhov, 2018a];
unitary operators play a great role in quantum mechanics and quantum computing; for
example, all calculations in quantum computers are based on unitary operators). Orthogonal
operators preserve the space metric and define transformations of proper and improper
rotations. Any sequence of basis units (or their sums) of 2"-dimensional hyperbolic numbers
corresponds to a certain sequence of eigenvector bases of these units, and also to a sequence
of orthogonal matrices transforming successively these bases. Such algebraic sequences can
be used for transmitting information. Taking into account some results of his previous
published studies, the author supposes that genetic sequences are related with such algebraic
sequences.

Moreover, the author puts forward the hypothesis that alphabets of eigenvectors of matrix
representations of basis units of 2"-dimensional hyperbolic numbers play a key role in
transmitting biological information and that they can be considered as a foundation of
coding information at different levels of biological organization. The corresponding
languages using such alphabets define many inherited phenomenological structures in
biology including molecular-genetic structures.

As known, the principle of transmitting information in the form of certain texts composed
on the basis of certain “alphabets” is widely used in living organisms: genetic information is
recorded in DNA molecules in the form of texts based on the DNA alphabet; music is a
sequence of sound frequencies of one or another musical scale (that is, the "alphabet™ of
note sound frequencies of one octave); literary texts are written on the basis of literary
alphabets, etc. The author believes that various alphabets and texts in these bioinformational
fields can be effectively modeled and studied on the basis of the presented hidden algebraic
alphabets as their joint algebraic foundation. This approach is connected with the theme of a
«grammar of biology», which term was introduced by E.Chargaff in the title of his article
on DNA peculiarities «Preface to a Grammar of Biology» [Chargaff, 1971] (see also the
book [Yamagishi, 2017]).

Since alphabets are used as foundations of corresponding languages, each algebraic
hyper-alphabet in 2"-dimensional spaces with a concrete number n can be considered as a
foundation of a corresponding algebraic language. From this point of view, many such
algebraic languages using these hyper-alphabets exist in biology.

7 Quint ratios in DNA parameters and musical harmony

As known, thoughts about the key significance of musical harmony in the organization of
the world exist from ancient time. For example, one can quote here a classical work of
Chinese literature “Spring and Autumn” by Lu Bu We about the fundamental role of music
and numbers 3 and 2 as numbers of Heaven and Earth: “The origins of music lie far back in
the past. Music arises from Measure and is rooted in the great Oneness. ... Music is founded
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on the harmony between Heaven and Earth” (this citation is taken from the book [Hesse,
2002]. In Ancient China the ratio 3/2, traditionally termed as the quint ratio (or the pure
perfect fifth), was used as the fundament of quint music scales. After Ancient Chinese,
Pythagoreans also considered numbers 2 and 3 as the female and male numbers (or Yin and
Yang numbers), which can give birth to new musical tones in their interconnection. Ancient
Greeks attached an extraordinary significance to search of the quint 3:2 in natural systems
because of their thoughts about musical harmony in the organization of the world. For exam-
ple, Archimedes considered as the best result of his life a detection of the quint 3/2 between
volumes and surfaces of a cylinder and a sphere entered in it.

Science has been dealing with the physiological mechanisms of music perception for a
long time [Weinberger, 2004]. There is no specialized center of music in the human brain, a
sense of love for music can be considered dispersed throughout the body, similar to the
dispersion of genetic DNA molecules throughout all of its cells. More than 30 thousand years
ago, long before the advent of arithmetic, our ancestors already played stone flutes and bone
harps. For example, the bone flute found in France is at least 32 thousand years old. The
enjoyment of music is usually explained by the fact that it gives rise to emotions and feelings.
Aristotle tried to understand how rhythms and melodies, being only sounds, resemble states
of mind. Available data indicate that our affinity for music and musical creativity is biologi-
cal in nature and the sense of musical harmony is based on innate mechanisms. Therefore,
one should look for a connection between the genetic system and musical harmony.

For Europeans the idea of musical harmony is basically connected with the name
Pythagoras. The Pythagorean musical scales, which are based on the quint ratio 3/2, played
the main role in the Pythagorean’s doctrine about a cosmic meaning of musical harmony. Fig.
7.1 shows the known interconnection of sound frequencies of notes of Pythagorean 7-stages
scale (a heptatonic scale) on the basis of the ratio 3/2 when notes are spaced in the
appropriate octaves.

fa (F) |do (C) | sol (G) | re (DY) | la (AY) | mi (E?) | si (B?)
87 130 196 293 440 660 990
323 (3127 | G2t [ 32)° | G2)t | (322 | (312

Fig. 7.1. The quint sequence of the 7 notes of the Pythagorean musical scale is presented. The
upper row shows the notes. The second row shows their frequencies. The third row shows the
ratios between the frequencies of these notes to the frequency 293 Hz of the note  re (DY).
The designation of notes is given on Helmholtz system. Values of frequencies are
approximated to integers.

Pythagoras created the mathematical foundations of ancient Greek music, borrowing in a
certian degree some ancient knowledge on musical harmony. His theory used the discovery
that the frequency of a vibrating string is inversely proportional to its length and that musical
consonances can be represented by the ratios of small integer numbers, first of all the octave
ratio 2:1 and the quint ratio 3:2. These ideas became the basic fundamental ones of all music
theory from antiquity to even modern times. For most Europeans from antiquity, quint scales
in music are connected with this Pythagorean mathematical theory of musical harmony and
with divisions of vibrating strings in the quint ratio 3:2.
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In a general case, the Pythagorean scale is any scale, which can be constructed from only
quint ratios 3:2 and octaves 2:1 [Sethares, 2005, p. 163]. One of known Pythagorean scales
is a pentatonical scale, which is a five-stages music scale, all the sounds of which can be
arranged in quint ratios. Its example is the set of the following 5 notes with their sound
frequencies from Fig. 7.1: do(C)-sol(G)-re(D)-la(Al)-mi(E?) or respectedly 130-196-293-
440-660 Hz. Other examples of Pythagorean scales are tetratonic and tritonic scales, which
are correspondingly 4-stages and 3-stages music scales, all the sounds of which can be
arranged by the quint ratio, for instance, 130-196-293-440 Hz for the tetratonic scale and
130-196-293 Hz for the tritonic scale.

The historical fact is that these Pythagorean musical scales on the basis of the quint ratio
were used by different civilisations around the world long before Pythagoras without
knowledge of any mathematical laws [Apel, 1969; Day-O'Connell, 2007; Christidis, Arapo-
poulou, Christi, 2007; Olsen, Sheehy, 1998; Todd Titon, 1996]. For example, the pentatoni-
cal scale is the foundation of traditional music of the Chinese, Vietnamese, Mongols, Turkic
peoples (Bashkirs, Tatars, Chuvashes, etc.), the Inca Empire and the peoples of the South
Andes in general. Pentatonics is also found in European musical folklore and in the oldest
layers of the Russian folk song (especially in the so-called calendar ritual songs). Tetratonic
music was noted as common in Polynesia and Melanesia. Tetratonic scales were known for
example among the Plains Indians, the Arapaho, Blackfoot, Crow, Omaha, Kiowa, Pawnee,
Sioux, some Plateau tribes, the Creek Indians, and in the Great Basin region among the
Washo, Ute, Paiute, and Shoshone. In the Southwest, the Navajo people also largely used the
pentatonic and tetratonic, occasionally also tritonic scales. Tetratonic, as well as tritonic
scales, were commonly used by the tribal peoples of India, such as the Juang and Bhuyan of
Orissa state [Sudhibhushan Bhattacharya, 1968]. Tetratonic scales are generally associated
with prehistoric music [Baines, 1991].

G.Leibniz declared that music is arithmetic of soul, which computes without being aware
of it. But what is there in living organisms that determines the special attraction of musical
scales on the basis of the quint ratio 3/2 for representatives of various civilizations and
epochs? A possible answer lies in the structural features of DNA molecules that are carriers
of genetic information in humans and other living organisms. The author has paid attention to
the fact that the parametric structure of DNA molecules is connected in many ways with the
quint ratio 3/2 and with numbers 3 and 2 at various levels of their parametric organization
[Petoukhov, 2008; Petoukhov, He, 2010]. Let us briefly say now about this relation between
the musical harmony and structures of genetic molecules.

Molecules of heredity - DNA and RNA - contain sequences of 4 “letters” or nucleobases:
adenine (A), cytosine (C), guanine (G), thymine (T) (or uracil U in RNA). Letters A-T(U)
and C-G form complementary pairs with 2 and 3 hydrogen bonds in them, respectively. From
the standpoint of its sequence of two and three hydrogen bonds, each DNA molecule is a long
chain of numbers 2 and 3 of a type 32232332

The genetic code encodes sequences of 20 amino acids in proteins by means of 64 triplets
(three-letter words) that represent all possible combinations of these four letters (ATC, TTA,
..). Since A=T =2, C=G = 3, each triplet has a numeric representation as a product of
number of hydrogen bonds of its constituent letters. For example, the triplet ACT is
represented by number 2*3*2 = 12. Each of 64 triplets is represented by one of such numbers
of hydrogen bonds 23=8, 22*3=12, 2*32=18, 33=27, the pairwise relations between which are
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equal to the quint 3/2 in varying integer degrees (by analogy with music tetratonic scales), for
example, 27/8 = (3/2)3, 18/8 = (3/2)?, etc.

Under considering pairs of adjacent triplets, then DNA molecule appears as a quint
sequence of 7 kinds of numbers of hydrogen bonds with the following numeric
representation: 20=64, 2°%3=96, 2%*32=144, 2%*33=216, 22*3%=324, 2*3°=486, 3°=729.
Pairwise ratios in this series of numbers are equal to the quint 3/2 in the same powers as in
the Pythagoras 7-stage scale in Fig. 7.1. If, for example, the frequency of 87 Hz of the note
"F" is compared with the first number 64 of this series, then all other numbers of this series
will correspond precisely to the other frequencies of the Pythagoras scale. Then any sequence
of triplets (eg, insulin gene GGC-ATC-GTT-GAA-CAG-TGT- ...) can be associated uniquely
with a sequence of notes of Pythagoras 7-stages scale (figuratively speaking, we have “music
of genes in the Pythagoras scale”).

Accordingly, each DNA molecule as a chain of hydrogen bonds is characterized by its own
sequences of the quint 3/2 in different integer degrees. By analogy with quint musical scales,
depending on the chosen lengths of nucleobase fragments of DNA, we have — on the basis of
considered hydrogen bonds - various systems for transmitting information signals with
quint-power relations between signals.

The quint ratios are realized in DNA not only for the hydrogen bonds of complementary
nucleobases, but also for several other parameters, such as sums of atoms in the rings of
purines and pyrimidines (numbers 9 and 6 with their ratio 3/2), or sums of protons in the
rings of complementary nitrogenous bases (numbers 60 and 40 with their ratio 3/2), and
others. Chains of these parameters in DNA form their own sequences of quint ratios, which
are similar to sequences of note frequencies in quint scales of music. In other words, Nature
created DNA as a plexus of various sequences of quint ratios (“a quint polyphony of DNA”).
The harmony of the parametric organization of the genetic system is akin to the musical
harmony of the Pythagorean scales.

As it was reminded above, over the centuries from Ancient China to antiquity, the numbers
2 and 3 were considered respectively as female and male numbers (that is as Yin and Yang
numbers) forming the important pair. The author proposes their consideration not as separate
one-dimensional numbers but as two separate parts of two-dimensional number. Mathematics
knows 3 main kinds of two-dimensional numbers: complex numbers, hyperbolic (or double)
numbers and dual numbers [Kantor, Solodovnikov, 1989]. Taking into account a set of our
results on relations of genetic system and inherited physiological phenomena with hyperbolic
numbers, we choice namely hyperbolic numbers for a presentation of these historically
known numbers 3 and 2 as two interrelated parts of single two-dimensional number
G, = 3+2j, where j is imaginary unit with its feature j> = +1; the index 2 refers
2-dimensionality of the number G». This hyperbolic number can be expressed as a point or a
vector on a hyperbolic plane with Cartesian coordinates, in which the axis of abcissus is con-
sidered the axis of Yang-numbers, and the axis of ordinates is considered the axis of
Yin-numbers. Fig. 7.2 shows this coordinate system and also the matrix form of presentation
of hyperbolic numbers with its decomposition into 2 sparse matrices playing the role of real
and imaginary basis units of hyperbolic numbers. This matrix [3, 2; 2, 3] is conditionally
termed “quint matrix” since its components 3 and 2 give the ratio 3/2. (The same quint matrix
[3, 2; 2, 3] appears under a consideration of DNA alphabet C, A, T, G and its three binary
sub-alphabets [Petoukhov, 2008, Chapter 2; Petoukhov, He, 2010, Chapter 4].


https://doi.org/10.20944/preprints201908.0284.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 d0i:10.20944/preprints201908.0284.v2

20
Yin * [ jl
z 3,2 1,0 Oal 1 1 jl
e G2=|2,3|=3%|0,1|+2¢|1,0(|; i |51

Fig. 7.2. The graphical and matrix presentation of 2-dimensional hyperbolic number
G2 = 3 + 2j1 (by analogy with Fig. 2.4). The first sparse matrix [1, 0; 0, 1] is the identity
matrix, the second sparse matrix [0, 1; 1, O] presents imaginary unit ji having the property
[0, 1; 1, 0]> = [1, 0; 0, 1]. The multiplication table of these sparse matrices, where 1 refers the
matrix [1, 0; 0, 1], is also shown at right.

8 Applications of algebras of 2"-dimensional hyperbolic numbers in musicology

This Section is devoted to relations of Pythagorean musical scales with 2"-dimensional
hyperbolic numbers and also to a possibility of using hyper-alphabets of eigenvectors of
matrix representations of their basis units for progress in mathematical musicology (see
mathematical explanations above in Sections 2 and 6). It should be emphasized an important
differency between a traditional using in musicology one-dimensional numbers (which
provide a comparison numeric analysis of sound frequencies of various notes) and the
proposed using the multi-dimensional numbers. In the case of using the described multi-
dimensional numbers, cardinally new personages come into play: matrix representations of
these numbers with orthogonal systems of eigenvectors of their basis units, sets of which
form hyper-alphabets described above in Section 6. These new personages allow significantly
encreasing analytical possibilities in musicology by means of those mathematical tools,
which are effectively used in many scientific and technology fields.

Let us show now that exponentiation of the quint matrix [3, 2; 2, 3] into tensor powers
n =2, 3, 4,... generate 2"-dimensional hyperbolic numbers, whose components form sets
similar to the sets of sound frequencies of the Pythagorean quint scales in the following
sense: ratios between any pair of their components are equal to the ratio 3/2 in integer
powers. The tensor product of matrices [Bellman, 1960] is widely applied in mathematics,
physics, informatics, etc. It is used for algorithmic generation of higher dimensional spaces
on the basis of spaces with smaller dimensions. By definition, the tensor product of two
square matrices V and W of the orders m and n respectively is the matrix Q = VQW=
|Ivij*W]|| with the order m*n. For example, the second tensor power of the initial (2*2)-matrix
[3, 2; 2, 3] gives the (4*4)-matrix [9, 6, 6, 4; 6,9, 4, 6; 6, 4, 9, 6; 4, 6, 6, 9], representing the
4-dimensional hyperbolic number 9eo+6e;+6e,+4e3 where e, €1, €z, €3 are basis units from
Fig. 2.5. The set of components of this hyperbolic number consists of numbers 4, 6, 9 with
the following ratios between them: 9/6 = 3/2, 9/4 = (3/2)?, 6/4 = 3/2. The same ratios
characterize the above mentioned tritonic musical scale 130-196-293 Hz: 293/196 = 3/2,
293/130 = (3/2)?, 196/130 = 3/2.

The third tensor power of (2*2)-matrix [3, 2; 2, 3]® gives an appropriate (8*8)-matrix
representing the 8-dimensional hyperbolic number 27+18s1+18s,+12s3+18s4 +1255+1256+8s7,
where s1, Sz, ..., s7 are imaginary units. The set of components of this hyperbolic number
consists of numbers 8, 12, 18, 27; pairwise ratios between them are identical to pairwise
ratios between sound frequencies in the above mentioned Pythagorean tetratonic scale
130-196-293-440 Hz. By analogy the sixth tensor power of (2*2)-matrix [3, 2; 2, 3]© leads to
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64-dimensional hyperbolic number, whose components form the set with the same values of
pairwise ratios as in Pythagorean 7-stages scale in Fig. 7.1.

Taking into account the described relations of Pythagorean musical scales with some
2"-dimensional hyperbolic numbers, the author proposes using 2"-dimensional hyperbolic
numbers joinly with their hyper-alphabets of eigenvectors their basis units (see above Section
6) as a new mathematical tool in musicology for a possible revealing hidden regularities in
products of musical creativity. The speech is that each of Pythagorean k-stages scales (k = 2,
3,4,5,6,7,...) can be formally connected with an appropriate multi-dimensional hyperbolic
number and its matrix representation. In other words, the author proposes to use mutual
matching the members of the musical scale and the members of the hyper-alphabets of
eigenvectors described above in Section 6.

For example, the above mentioned Pythagorean tetratonic scale with sound frequencies of
its notes 130-196-293-440 Hz can be formally expressed by a matrix form of 4-dimensional
hyperbolic number 130eo+196e1+293e,+440e3 where eo, €1, €2 and ez are basis units in their
matrix representations from Fig. 2.5. In such case, musical notes of this Pythagorean scale
have the following presentations using separate basis units of hyperbolic numbers:

- the note do(C) with its frequency 130Hz is represented by the square matrix 130eq
simultaneously with its 4 eigenvectors and corresponding eigenvalues Ai: [1,0,0,0],
A0 =130; [0,1,0,0], A1 =130; [0,0,1,0], 2> =130; [0,0,0,1], A3=130;

- the note sol(G) with its frequencyl196 Hz is represented by the square matrix 196e;
simultaneously with its 4 eigenvectors and their eigenvalues Ai: [-0.7071, 0.7071, 0,
0], o = -196; [0, O, -0.7071, 0.7071], A = -196; [0, 0, 0.7071, 0.7071], A> = 196;
[0.7071, 0.7071, O, 0], A3 = 196;

- the note re (D) with its frequency 293 Hz is represented by the square matrix 293e;
simultaneously with its 4 eigenvectors and 4 eigenvalues Ai: [-0.7071, 0, 0.7071, 0],
Ao = -293; [0, 0.7071, O, -0.7071], A1 = -293; [0, 0.7071, O, 0.7071], A» = 293;
[-0.7071, 0, -0.7071, O], Az = 293;

- the note la (A') with its frequency 440 Hz is represented by the square matrix 440es
simultaneously with its 4 eigenvectors and their eigenvalues i: [0, -0.7071, 0.7071,
0], ho = -440; [0.7071, O, 0, -0.7071], A = -440; [0.7071, 0, 0, 0.7071], A2 = 440;
[0, 0.7071, 0.7071, O], A3 = 440.

One can see that in such presentation each note of the considered musical scale has its own
orthogonal system of eigenvectors and eigenvalues in multi-dimensional configurational
space of this scale. Accordingly, the sequence of sound members of this musical fragment
can be considered as a sequence of transformations of the orthogonal system of eigenvectors
and eigenvalues of a previous note into an orthogonal system of eigenvectors and eigenvalues
of a subsequent note. The transition of one such system of eigenvectors to another system is
carried out using orthogonal matrices representing proper or improper rotations in the
considered multi-dimensional space.

In the proposed algebraic approach, each chord can be represented by the sum of
2"-dimensional hyperbolic numbers representing its notes. For example, in the considered
tetratonic scale, a chord of notes with sound frequencies 130, 196 and 440 Hz can be
represented by the aggregated hyperbolic number 130e9+196e:+440e3, which has the follow-
ing 4 eigenvectors and eigenvalues: [0.5,-0.5,0.5,-0.5], Ao = -506; [-0.5, -0.5, 0.5, 0.5],
M = -114; [0.5, -0.5, -0.5, 0.5], A2 =374 ; [-0.5, -0.5, -0.5, -0.5], A3 = 766. The described
approach allows algebraic studying musical harmony and it can be applied for cases of
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various musical scales (including “genctic scales” described in [Petoukhov, 2008;
Petoukhov, He, 2010]).

Let us additionally explain a specificity of this approach by an example of its usage for
modeling a short sequence of separate notes and musical chords in Fig. 8.1. We will assume
that its note frequencies correspond to the case of Pythagorean 7-stages scale in Fig. 7.1.

£ 3
T .

Fig. 8.1. An arbitrary example of a sequence of separate notes and musical chords.

Inside the first octave, which begins from 260 Hz, the set of 7 notes of Pythagorean scale
from Fig. 7.1 has sound frequencies shown in Fig. 8.2.

do (CY) [ re (DY [ mi (ED) | fa (FY) | sol (G | Ia (A [ si (B
260 | 293 | 330 | 348 |392 | 440 | 495

Fig. 8.2. Sound frequencies in Hz inside the first octave for 7 notes of the Pythagorean
musical scale from Fig. 7.1.

In the considered approach, each of notes of this scale is connected with one of basis units
of 8-dimensional hyperbolic number agjo + aij1 + azj2 + asjs + asja + asjs + asjs + asjs + azjz for
example in the following way:

e The coefficient ap corresponds to the sound frequency of the note “do (C)” in
corresponding octave (ap = 260 Hz for the case “do (C!)). This note is expressed as
8-dimensional hyperbolic number aojo with its matrix representation in a form of a
sparce (8*8)-matrix;

e The coefficient a; corresponds to the sound frequency of the note “re (D)” in a
corresponding octave (a: = 293 Hz for the case “re (D')”). This note is expressed as
8-dimensional hyperbolic number aiji;

e The coefficient a> corresponds to the sound frequency of the note “mi (E)” in a
corresponding octave (a; = 330 Hz for the case “mi (E!)”). This note is expressed as
8-dimensional hyperbolic number azjo;

e The coefficient as corresponds to the sound frequency of the note “fa (F)” in a
corresponding octave (az = 348 Hz for the case “fa (F')”). This note is expressed as
8-dimensional hyperbolic number asjs;

e The coefficient as corresponds to the sound frequency of the note “sol (G)” in a
corresponding octave (as = 392 Hz for the case “sol (G1)). This note is expressed as
8-dimensional hyperbolic number asjs;

e The coefficient as corresponds to the sound frequency of the note “la (A)” in a
corresponding octave (as = 440 Hz for the case “la (A!)”). This note is expressed as
8-dimensional hyperbolic number asjs;
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e The coefficient as corresponds to the sound frequency of the note “si (B)” in a
corresponding octave (as = 495 Hz for the case “si (B)”). This note is expressed as
8-dimensional hyperbolic number agjs;
e The coefficient a; = 0 corresponds to the case of silence.

All these representations of separate notes of the musical scale have also their matrix
represenations in a form of sparce (8*8)-matrices (Fig. 8.3) with their eigenvectors and

eigenvalues.

20000000 0a2000000 00a 00000 000a0000
02000000 aa0000000O0 000 a0000O0 00a00000
00a00000 000a0000 220000000 0a000000
000a0000 00a00000 0a000000 a0 000000
0000a000 00000a00 000000 a0 0000000 a3
00000a00 0000a000 0000000 & 000000as0
000000a00 0000000a 0000a000 00000a00
0000000a 000000 a0 00000a00O0 0000a3 000
0000a&000 00000a00 000000 a0 0000000 a
00000a&00O0 0000as000 000000 Oas 000000as0
000000a&a0 0000 000 as 0000a000 00000a00O0
00000 O0OQas 000000 a0 00000a00 0000a000O0
0000000 0a000000 00a00000 000ar0000
Oau000000 as000000 O 000a0000 00800000
00a&00000 000a0000 0000000 0as000000
000a&0000 00a00000 0a000000O0 a70000000

Fig. 8.3. Matrices aojo, a1, a2z, asjs, aajs, asjs, asjs, asjs and azjz, which represent separate notes
of the musical scale from Fig. 8.2 as components of 8-dimensional hyperbolic number.

Returning to the musical fragment in Fig. 8.1, one can see that its first note “la (Al)”
and its third note “mi (E)” are now represented as 440js and 330js correspondingly. The
chord of this fragment is represented by the sum of the three notes “mi (E?)”, “la (A%)” and
“do (C®)” included in its composition that is by the 8-dimensional hyperbolic number
660j3+880j5+1040jo. From this standpoint this fragment is the sequence (8.1) of
(8*8)-matrix representations of 8-dimensional hyperbolic numbers:

(440js) — (660j3+880js+1040jo) — (330j3) — (660j3+880s+1040jo) (8.1)

Each (8*8)-matrix member of this sequence has an orthogonal set of its
8 eigenvectors with appropriate eigenvalues. For example, the first member (440js) has the
following 8 eigenvectors:
- [0, -0.7071, 0, 0, 0.7071, 0, O, O] with eigenvalues: -440, 0, 0,0, 0, 0, 0, 0;
-[0,0,0,-0.7071, 0, 0, 0.7071, 0] with eigenvalues: 0, -440,0,0, 0,0, 0, O;
- [0.7071, 0, 0,0, 0, -0.7071, O, O] with eigenvalues: 0, 0, -440, 0, 0, 0, O, O;
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- [0, 0, 0.7071, 0, 0, 0, 0, -0.7071] with eigenvalues: 0, 0, 0, -440, 0, 0, 0, 0;
- [0.7071,0,0,0,0,0.7071, 0, 0] with eigenvalues: 0,0, 0, 0, 440, 0,0, 0;
- [0, 0, 0,0.7071, 0, 0, 0.7071, 0] with eigenvalues: 0,0, 0, 0, 0, 440, 0, 0;
- [0, 0, 0.7071, 0, 0, 0, 0, 0.7071] with eigenvalues: 0, 0,0, 0, 0, 0, 440, 0;
- [0, 0.7071, 0, 0, 0.7071, 0, 0, O] with eigenvalues: 0,0, 0,0, 0, 0, 0, 440.

The eigenvectors of the second member and the fourth member in (8.1) that is the
(8*8)-matrix (660j3+880js+1040jo) has quite another orthogonal set of its 8 eigenvectors:
- [0,-0.5,0.5, 0, 0.5, 0, 0, -0.5] with eigenvalues: 1040, 0, 0, 880, 0, 880, 0, 0;
-[-0.5, 0, 0, 0.5, 0, 0.5, -0.5, 0] with eigenvalues: 0, 1040, 880, 0, 880, 0, 0, 0;
- [-0.6946, -0.1323, 0, 0, 0, 0, 0.6946, 0.1323] with eigenvalues: 0, 880, 1040, 0, 0, 0, 0, 880;
- [0, 0, 0.7071, 0, -0.7071, 0, 0, 0] with eigenvalues: 880, 0, 0, 1040, 0, 0, 880, 0;
- [0, 0, 0, -0.7071, 0, 0.7071, 0, 0] with eigenvalues: 0, 880, 0, 0, 1040, 0, 0, 880;
- [-0.1323, 0.6946, 0, 0, 0, 0, 0.1323, -0.6946] with eigenvalues: 880, 0, 0, 0, 0, 1040, 880, 0;
- [0.0083, 0.4999, 0.4999, 0.0083, 0.4999, 0.0083, 0.0083, 0.4999] with eigenvalues: 0, 0, 0,
880, 0, 880, 1040, 0;
- [0.4999, -0.0083, -0.0083, 0.4999, -0.0083, 0.4999, 0.4999, -0.0083] with eigenvalues: 0, 0,
880, 0, 880, 0, 0, 1040.

The eigenvectors of the third member in (8.1), that is the (8*8)-matrix 330js, has its own
orthogonal set of 8 eigenvectors:

- [0, -0.7071, 0.7071, 0, 0, O, O, 0] with eigenvalues: -330, 0, 0, 0, 0, 0 O, O;
- [0.7071, 0, 0, -0.7071, 0, O, 0, 0] with eigenvalues: 0,-330, 0, 0, 0, 0, O, O;
-[0,0,0,0,0,-0.7071, 0.7071, 0] with eigenvalues: 0, 0, -330, 0,0, 0, O, O;
- [0, 0,0, 0, 0.7071, 0, 0, -0.7071] with eigenvalues: 0, 0, 0, -330, 0, 0, O, O;
-[0,0,0,0,0,0.7071, 0.7071, 0] with eigenvalues: 0, 0, 0, 0, 330, 0, 0, O;
- [0.7071, 0, 0, 0.7071, O, O, 0, O] with eigenvalues: 0, 0, 0, 0, 0, 330, 0, O;
-[0,0, 0,0, 0.7071, 0, 0, 0.7071] with eigenvalues: 0, 0, 0, 0, 0, 0, 330, O;
- [0, 0.7071, 0.7071, 0, 0, O, 0, 0] with eigenvalues: 0, 0, 0, 0, 0, 0, 0, 330.

But musical works are based not only on the sound frequencies of notes of a particular
musical system but also on a system of note durations: 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128
(with their traditional names: a whole note, a half note, a quarter note, an eighth note, a
sixthteenth note, ...). In musical pieces each note is a symbiosis of a sound frequency and
one of these durations. Correspondingly in the proposed approach on the foundation of
2"-dimensional hyperbolic numbers, such symbiosis can be expressed as a sum of
approproate basis units of these numbers. Let us explain this.

One can take 2-dimensional hyperbolic number do+1/2*d; in its matrix representation
[1, 1/2; 1/2, 1]. Rising this matrix into appropriate tensor power n automatically gives matrix
representation of 2"-dimensional hyperbolic number with coefficients of its basis units 1, 1/2,
1/4, 1/8, 1/16, 1/32, 1/64, 1/128. In the simplest case, if one wants to have this set of
durations as the set of coefficients of basis units, it is enough to take 8-dimensional
hyperbolic number do+1/2*d1+1/4*d,+1/8*d3+1/16*ds+1/32*ds+1/64*ds+1/128*d7.

To construct an algebraic symbiosis of note sound frequencies of any musical scale
(Pythagorean, equal tempered scale, etc) and of the standard set of note durations 1, 1/2, 1/4,
1/8, 1/16, 1/32, 1/64, 1/128, one can take enough long 2"-dimensional hyperbolic number,
whose first part contains basis units with coefficients identical to sound frequencies of the
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musical scale and whose second part contains basis units with coefficients identical to these
durations. For example, in the case of Pythagorean musical scale (Fig. 8.2), which contains 7
note frequencies, it is enough to take 16-dimensional hyperbolic number Si6 (8.2), whose first
part contains basis units with coefficients identical to note frequencies and the second part
contains basis units with coefficients identical to note durations:

S16 = 260*sg + 293*s; + 330*s, + 348*s3 + 392*s4 + 440*s5 + 495*56 + 0*s7 +
1*sg+ 1/2*sg+ 1/4*S10+ 1/8%*S11 + 1/16%S12 + 1/32*S13+ 1/64%*S14 + 1/128%*5:15 (8.2)

In (8.2) the member 0*s; represents silence. Correspondingly a symbiosis of separate
sound frequency and separate note duration has a common orthogonal system of eigenvectors
and eigenvalues. For example, the symbiosis of the note do (C!) and the duration 1/4 is
expresses by the sum 260*so+1/4*s10, whose matrix representation has a common orthogonal
system of 16 eigenvalues.

In the case of equal tempered scale, which has 12 note sound frequencies, the octave is
devided into 12 parts with a ratio equal to the 12th root of 2. In the proposed approach, to
consider a symbiosis of this frequencies scale and durations, we need at least 32-dimensional
hyperbolic number (8.3). Its first part contains basis units with coefficients iden-tical to note
frequencies (expressed in hertz or in ratios related with the 12th root of 2) and its second part
contains basis units with coefficients identical to note durations. Many basis units in (8.3)
have zero coefficients since it is enough 20 members of this 32-dimensional number to
express the symbiosis of the set of 12 sound frequencies and the set of 8 durations.

S32 - 1*30 + 21/12*51 + 22/12*52 + 23/12*53 + 24/12*54 + 25/12*55 + 26/12*36 + 27/12*57
+ 28/12*38 + 29/12*59 + 210/12*510 + 211/12*511 + 0*512 + 0*513 + 0*314 + 0*515 +
1*s16+ 1/2*S17+ 1/4*S18 + 1/8*S19 + 1/16%*S20 + 1/32*S21 + 1/64%S20 + 1/128%* )3
+ 0*Sp4 + 0*sp5 + 0*Sp6 + 0*Sp7 + 0*Sp8 + 0*Spg + 0*S31 (8.3)

One can remind that each kind of 2"-dimensional hyperbolic numbers under fixed n has its
own hyper-alphabet of 2" orthogonal systems of its 2" basis units. Transitions from one
member of such hyper-alphabet to other members are determined by transformations of
mentioned orthogonal rotations (see above Section 6). From the proposed algebraic point of
view, any musical piece is related with a sequence of the mentioned rotations of orthogonal
systems of eigenvectors inside appropriate multi-dimensional vector space. These rotations of
elements of music generate some associations with rotations (or whirling, or spin) of dancing
pairs under dance music. Perhaps classical rotating movements of dancing pairs are related in
some degree with mentioned rotations of members of algebraic hyper-alphabets of music.
One can add that all movements of separate parts of our body skelet are provided by their
rotations in joints.

It seems important to note the following. The traditional use of one-dimensional numbers
in musicology made it possible to study the relationship of musical sound frequencies in
musical systems and chords in line with the Pythagorean theory of the relationship of musical
frequencies with dividing strings into parts. But it is obvious that knowledge of only the
harmonious interrelations of sound frequencies is not enough to reveal the harmony of the
musical work as a whole. For example, you can take two pieces of music, which use the same
set of sound frequencies, but — because of different sequences of the same musical sounds in
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them - one piece will provides a charming effect on the listener, and the other will leave him
indifferent or will cause a negative emotion. This indicates that in musical works there is
some other - additional - type of harmony, reflected in the transitions between sounds and
providing harmonical development of the theme of a musical work (musical plasticity).

The author’s proposal of an application of 2"-dimensional hyperbolic numbers with their
matrix forms of representation, which fully preserves the Pythagorean ideas about the
harmonical relationship of musical frequencies, allows studying a completely different type
of music harmony: harmony of transitions in a sounds sequence of a musical work, that is,
harmony of the development of the theme of a musical work (musical plasticity). From the
proposed algebraic point of view, a musical piece can be considered as a sequence of
orthogonal transformations of the bases of multidimensional spaces. This new study is
possible due to introducing quite new personages into mathematical musicology: matrix
presentations of 2"-dimensional hyperbolic numbers with orthogonal systems of eigenvectors
of their basis units to study such plasticity.

In the proposed approach, music appears as a game with 2"-dimensional hyperbolic
numbers. It reminds some ideas of the book "The Glass Bead Game" of Nobel laureate in
literature by Hermann Hesse, where deep thoughts on interrelations of mathematics and
music are presented [Hesse, 2002].

Similar algebraic approaches are possible for analyzing DNA sequences, but corresponding
author’s results will be published some later.

9  Advantages of matrix representations of hyperbolic numbers

The matrix forms of presentation of 2"-dimensional hyperbolic numbers deserve a special
attention since they have the following useful properties:

1. This presentation form is based on symmetric matrices, which are closely related with
the theory of resonances of oscillatory systems, having many degrees of freedom, and
also with Punnett squares from Mendelian genetics of inheritance of traits in living
organisms [Petoukhov, 2011, 2015, 2016]. Symmetrical matrices are related with the
theory of resonance of L. Pauling whose book [Pauling, 1940] about this theory in
structural chemistry is the most quoted among scientific books of the XX century. The
actual molecule, as Pauling proposed, is a sort of hybrid, a structure that resonates
between the two alternative extremes; and whenever there is a resonance between the
two forms, the structure is stabilized. Pauling claimed that living organisms are
chemical in nature, and resonances in their molecules should be very essential for
biological phenomena. In general, quantum mechanics was emerged and developed
largely as a science about resonances in microworld. Thus, the concept of system-
resonance genetics (or spectral-resonance genetics) creates models of genetic
phenomena on the same language of frequencies and resonances, on which models in
guantum mechanics are based. In addition to this, it uses the same matrix language, on
which “matrix mechanics” of Werner Heisenberg has been created; it is historically
the first form of quantum mechanics, which retains its value to this day.

2. These symmetric matrices are Hermitian (self-adjoint) matrices, which play an
important role in qguantum mechanics. By this reason they can be used in development
of applications of ideas and methods of quantum mechanics and quantum informatics
in the field of bioinformatics and algebraic biology. In this connection some of
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author’s works [Petoukhov, 2018a,b, 2019a,b; Petoukhov, Petukhova, Svirin, 2019]
are devoted to using formalisms of quantum mechanics and quantum informatics in
bioinformatics and algebraic biology including analysis of long genetic and and
literary texts. For example, in long DNA sequences of nucleobases, where
complementary nucleobases C and G (A and T) are linked by 3 (2) hydrogen bonds,
2"-dimensional hyperbolic numbers [%3, %2; %2, %3]™ (where %3 and %2 denote
percentages of numbers 3 and 2 of hydrogen bonds in the analyzed DNA sequence;
n = 2, 3, 4, 5) effectively models percentages of monoplets, doublets, triplets, tetra-
plets and pentaplets of these numbers 3 and 2 of hydrogen bonds [Petoukhov, 2018].

3. These symmetric matrices can be interpreted as metric tensors, which are main
invariants in Riemanian geometry and which can be used in the theory of
morpho-resonance morphogenesis [Petoukhov, 2008, 2015, 2016];

4. These symmetric matrices are related with hyperbolic rotations [sh X, ch x; ch X, sh x],
which are particular cases of hyperbolic numbers and are connected with the theory of
biological phyllotaxis laws [Bodnar, 1992, 1994; Stakhov, 2009], with problems of
locomotion control [Smolyaninov, 2000], with the main psychophysical law of
Weber-Fechner (see above and also in [Petoukhov, 2016]), with Lorenz
transformations in the special theory of relativity;

5. These symmetric matrices are related with the theory of solitons of sine-Gordon
equation [Petoukhov, 1999, 2008; Petoukhov, He, 2009]. Such solitons are the only
relativistic type of solitons; they were put forward for the role of the fundamental type
of solitons of living matter in the book [Petoukhov, 1999].

Symmetric matrices possess a wonderful property to express resonances [Bellman, 1960;
Balonin, 2000]. The expression y = A*S models the transmission of a signal S via an acoustic
system A, represented by a relevant matrix A. If an input signal is a resonant tone, then the
output signal will repeat it with a precision up to a scale factor y = A*S by analogy with a
situation when a musical string sounds in unison with the neighboring vibrating string. In the
case of a matrix A, its number of resonant tones S; corresponds to its size. They are termed its
eigenvectors, and the scale factors Ai with them are termed its eigenvalues or, briefly,
spectrum A. One of the main tasks of the theory of oscillations is a determination of natural
frequencies (mathematically, eigenvalues of operators) and the natural forms of oscillations
of bodies. To find all the eigenvalues Ai and eigenvectors of the matrix A, which are defined
by the matrix equation A*s = A*s, the “characteristic equation” of the matrix A is analyzed:
det(A — E) = 0, where E — the identity matrix (see more in [Petoukhov, 2016]). Matrices,
which are relevant to the various problems of the theory of oscillations, are usually
symmetric real matrices [Gladwell, 2004]. Such matrices have real eigenvalues and their
eigenvectors are orthogonal.

Symmetric matrices representing hyperbolic numbers are simultaneously metric tensors by
their structure. Metric tensors are main invariants of Riemanian geometry, which can be used
for modelling inherited curvilinear forms of biological bodies. By definition, the metric
tensor in the n-dimensional affine space with the scalar multiplication introduced is defined
by the nondegenerate matrix ||gj|| under the condition of symmetry gij = g;i [Rashevskij,
1964], which is satisfied by the structure of bisymmetric matrices of hyperbolic numbers. The
coordinates gij of the metric tensor are the pairwise scalar products of vectors of the frame, on
which it is built. If we extract the square root from a bisymmetric matrix, we get a square
matrix whose columns are vectors of this frame. It is interesting that the extraction of the
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square root from quint matrices of 2"-dimensional hyperbolic numbers [3, 2; 2, 3]™, which
has integer components, get square matrices of 2"-dimensional hyperbolic numbers
[o, o1 ¢ @)™ whose components are irrational numbers of the golden section
¢ = (1+5%%)/2 = 1,618... in integer powers; the golden section ¢ is famous in the aesthetics of
proportions and described by many authors in a series of inherited physiological systems
[Petoukhov, 2008; Petoukhov, He, 2010]. It means that metric tensors, having forms of quint
matrices of hyperbolic numbers, are built on a frame of "golden™ vectors, all components of
which are equal to the golden sections in integer powers.

10 2"-dimensional hyperbolic numbers and phenomenological rules of probabilities in
genetics

The author revealed that in some cases it is possible to use 2"-dimensional hyperbolic
numbers and their matrix representations for modeling some phenomenological rules in
biology, first of all, in genetics. In this cases the tensor family of symmetric matrices
[%S, %W; %W, %S]™ is under consideration, where %S and %W refer to percentages of
biological realisation of some events denoted by symbols S and W (%W+%S=100%).

This tensor family contains matrix representations of 2-dimensional hyperbolic numbers
%S + %W=*ji; of 4-dimensional hyperbolic numbers %S*%S + %S*%W*j; + %W=*%S*j, +
%W*%W*j3; of 8-dimensional hyperbolic numbers, etc. Expressions like as %S*%S,
%S*%W, %W*%W can be considered as percentages of realisation of doublets SS, SW,
WW in chains of these events.

For example, the phenomenological rules described in [Petoukhov, 2011, 2018a,b, 2019b]
can be modeled on the foundation of this approach. Details of such modeling will be
published some later.

11  Fractal-like multi-dimensional configurational spaces of hyperbolic types

This Section is devoted to the use of 2"-dimensional hyperbolic numbers for modeling
heritable fractal-like biostructures, which are developing step by step in ontogenesis of
biological bodies.

Living bodies in a course of their ontogenesis from the embryonic state to the mature state
gradually increase the number of body parts. Accordingly, the number of parameters,
characterizing the developing body, increases. This leads to appropriate phased increasing a
dimensionality of a configurational space of parameters of the body. In many cases of such
ontogenetic development one can see the following iterative process: body structural
elements, which exist at a previous stage of ontogenesis, produce - at the next step of
ontogenesis - new elements with similar structures (Fig. 11.1). In the result, after some
repetitions of this ontogenetic procedure, complex fractal-like structure of the multi-level
body appears. A multidimensional configurational space of parameters of such body has a
fractal-like system of its different subspaces having similar patterns of parametric states. One
of many examples of such phased producing a fractal-like structure of multi-level body is
ontogenetic producing new and new dichotomic branches in some plants (Fig. 11.1, left).
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T4 -

Fig. 11.1. llustrations for the phased ontogenetic development of fractal-like biological
structures (from https://studbooks.net/2365314/tehnika/istoriya_poyavleniya_razvitiya).

Regarding the theme of fractal-like structures in biological bodies, one can note a great
number of publications is devoted to algorithmic creation of fractal-like geometric figures in
spaces of a fixed (') dimensionality, first of all, in 2-dimensional complex plane. There are
also known works devoted to constructions of fractal geometric patterns on the plane of
hyperbolic (or double) numbers [Pavlov, Panchelyuga, Panchelyuga, 2009a,b].

In contrast to these works, the author proposes an approach to model an algorithmic
reproduction of patterns, which are similar each other, not in a space of a fixed
dimensionality but in different subspaces of multidimensional configurational spaces of
parameters of multi-level bodies under their phased ontogenetic development. Due to
similarity of parametric structures in its different subspaces, each of considered
configurational spaces becomes a fractal-like space in the whole.

The author notes the following possibility of modelling such multi-step ontogenetic
development of biological objects and their configurational spaces, which receive new and
new parameters and dimensionalities step by step. Let us take the matrix representation of
hyperbolic number [fi(t), f2(t); f2(t), fi(t)] whose components fi(t) and f(t) are functions of
time. Fig. 11.2 shows that if this (2*2)-matrix is tensor multiplied on the left by a hyperbolic
number [1, 1; 1, 1], which acts as a generator of additional dimensionalities of the configura-
tional space, the result is (4*4)-matrix representing 4-dimensional hyperbolic number fi(t)*eo
+ fo(t)*er + fi(t)*e2 + f2(t)*es. This 4-dimensional configurational space repeats in its sub-
spaces (namely the first plane on the basis vectors eo and ez, and the second plane on the basis
vectors e> and es) the same functions fi(t) and f(t), which were in the initial 2-dimensional

space.
fi(), fa(t), fu(t), £2(H)

L@ | fi), &) | = | £(0), fi(t), H(0), fi(t) | = hi()*eo+ H()*er + fi(t)*ex + fr(t)*es
= (1), fi() £1(1), £(1), fi(t), £(1)

£(1), fi(0), (1), fi(1)

Fig. 11.2. An initial step of a generation of a fractal-like 2"-dimensional space whose
subspaces have identical contents. Here eo, e1, e2 and es are basis units from Fig. 2.5.

Repeating the required number of times this operation of the tensor multiplication on
the left using the generator [1, 1; 1, 1], we obtain a hierarchical tree of 2"-dimensional
hyperbolic numbers and their corresponding 2"-dimensional configurational spaces for
algorithmic modelling multi-step onthogenesis of a fractal-like morphogenetic construction.
Different levels of this tree have subspaces with the same functions f1(t) and f(t), which were


https://studbooks.net/2365314/tehnika/istoriya_poyavleniya_razvitiya
https://doi.org/10.20944/preprints201908.0284.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2019 d0i:10.20944/preprints201908.0284.v2

30
in the initial 2-dimensional space; in this sense one can speech about a fractal-like structure
of this hierarchy of multi-dimensional configurational spaces of parameters.

We briefly note that the noted generator [1, 1; 1, 1] (Fig. 11.2) can be used in a more
complicated form if its components are some functions of time gi(t), for example [g1(t), g2(t);
g2(t), 01(t)]. For modeling biological cyclic processes based on such fractal-like sets of
subspaces, the case, in which the functions fi(t), f2(t), g1(t) and go(t) are cyclic functions of
time, is especially interesting.

12 Pythagoras and the importance of the concept of number

The notion of “number” is the main notion of mathematics and mathematical natural
sciences. Pythagoras has formulated the famous idea: “Numbers rule the world” or “All
things are numbers”. This Pythagorean slogan arised not because that the number can express
a quantity of objects. Pythagoras was engaged in figured numbers associated with geometric
figures: triangular, square, 5-angled, 12-angled, etc. Seeing that different numbers can dictate
different geometric shapes, he came up with the idea that numbers have an internal structure
and able to organize the outside world according to their properties. In view of this idea,
natural phenomena should be explained by means of systems of numbers; the systems of
numbers play a role of the beginning for uniting all things and for expressing the harmony of
nature [Kline, 1980]. For the Pythagoreans, the number expressed the "essence" of
everything, and therefore the phenomena should be explained only with the help of numbers;
it was numerical relations that served as the unifying principle of all things and expressed the
harmony and order of nature.

Many prominent scientists and thinkers were supporters of this Pythagorean standpoint or
of one similar to it. As W. Heisenberg noted, modern physics, where matrices are used as a
higher form of numbers, is moving along the same path along which the Pythagoreans
walked [Heisenberg, 1958]. Not without reason B. Russell noted that he did not know any
other person who could exert such influence on the thinking of people as Pythagoras [Russell,
1945]. Taking this into account, one can believe that there is no more fundamental scientific
idea in the world than this idea about a basic meaning of numbers.

Our research results and the proposed approach can be considered as a further development

of this fundamental idea of Pythagoras in connection with the structural organization of the
genetic system and inherited biological phenomena.

13 Some concluding remarks

The development of modern mathematical natural sciences is based on the use of certain
mathematical tools. Mathematical tools of theoretical research can be compared with glasses
for a visually impaired person: adequate glasses provide a person with a clear and beautiful
picture of reality, which he had previously seen as blurred and hidden by fog. Darwin once
wrote: “l have deeply regretted that | did not proceed far enough at least to understand
something of the great leading principles of mathematics; for men thus endowed seem to have
an extra sense” (this quotation is taken from [May, 2004]).
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This article attracts attention of researches to an important role of hyperbolic numbers and

their matrix representations in algebraic modelling structural features of genetic phenomena.
The author puts forward the hypothesis that hyper-alphabets of eigenvectors of matrix
representations of basis units of 2"-dimensional hyperbolic numbers play a key role in
transmitting biological information and that they can be considered as a foundation of coding
information at different levels of biological organization. He believes that corresponding
languages using such hyper-alphabets define many inherited phenomenological structures in
biology including molecular genetic structures. In particular, using these hyper-alphabets
gives new algebraic tools to study phenomenological genetic rules and also harmony of
musical pieces. The proposed algebraic approach is connected with the theme of a grammar
of biology mentioned above.

In the author’s opinion, the proposed kind of mathematics is beautiful and it can be used
for further developing of algebraic biology and informatics in accordance with the famous
statement by P. Dirac, who taught that a creation of a physical theory must begin with the
beautiful mathematical theory: “If this theory is really beautiful, then it necessarily will
appear as a fine model of important physical phenomena. It is necessary to search for these
phenomena to develop applications of the beautiful mathematical theory and to interpret
them as predictions of new laws of physics” (this quotation is taken from [Arnold, 2007]).
According to Dirac, all new physics, including relativistic and quantum, are developing in
this way. One can suppose that this statement is also true for mathematical biology.

Appendix I. Dyadic groups of binary numbers, modulo-2 addition and matrices of
dyadic shifts

This article has repeatedly used a special decomposition of bisymmetric (2"*2")-matrices,
which represented them as a sum of 2" sparse matrices, defining multiplication tables of
corresponing algebras (Figs. 2.3, 2.4, 7.2, 8.3). Just these sparce matrices represented the
basic units of hyperbolic numbers. This Appendix explains what this special kind of
decomposition is.

Bisymmetric matrix representations of 2"-dimensional hyperbolic numbers have the
peculiarity that the set of numbers of the first row of the matrix is completely repeated in
each subsequent row with some permutation or "shift". This permutation is called the dyadic
shift and is associated with the well-known operation of modulo-2 addition described below.
Matrices constructed by this principle are called dyadic shift matrices. Matrix representations
of 2"-dimensional hyperbolic numbers are constructed by analogy with dyadic shift matrices.
Decompositions of such matrices provide that each of appearing sparse matrices contains
only one identical non-zero number in each row (Figs. 2.3, 2.4, 7.2, 8.3).

Modulo-2 addition is utilized broadly in the theory of discrete signal processing as a fun-
damental operation for binary variables. By definition, the modulo-2 addition of two numbers
written in binary notation is made in a bitwise manner in accordance with the following rules:

0+0=0,0+1=1,1+0=1,1+1=0 (Al)
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For example, modulo-2 addition of two binary numbers 110 and 101, which are equal to
6 and 5 respectively in decimal notation, gives the result 110 @101 = 011, which is equal to
3 in decimal notation (&is the symbol for modulo-2 addition). The set of binary numbers

000, 001, 010, 011, 100, 101, 110, 111 (A2)

forms a diadic group with 8 members, in which modulo-2 addition serves as the group
operation [Harmuth, 1989]. By analogy dyadic groups of binary numbers with 2" members
can be presented. The distance in this symmetry group is known as the Hamming distance.
Since the Hamming distance satisfies the conditions of a metric group, the dyadic group is a
metric group. The modulo-2 addition of any two binary numbers from (A2) always gives a
new number from the same series. The number 000 serves as the unit element of this group:
for example, 010 @000 = 010. The reverse element for any number in this group is the
number itself: for example, 010 @010 = 000. Each member from (A2) possesses its
inverse-symmetrical partner (or a mating number), which arises if the binary symbol of the
member is transformed by the inverse replacements 0—1 and 1—0. For example, binary
numbers 010 and 101 give an example of such pair of mating numbers.

The series (A2) is transformed by modulo-2 addition with the binary number 001 into a
new series (A3) of the same numbers:

001, 000, 011, 010, 101, 100, 111, 110 (A3)

Such changes in the initial binary sequence, produced by modulo-2 addition of its members
with any binary numbers (A2), are termed dyadic shifts [Ahmed and Rao, 1975; Harmuth,
1989]. If any system of elements demonstrates its connection with dyadic shifts, it indicates
that the structural organization of its system is related to the logic of modulo-2 addition. The
article shows additionally that the structural organization of genetic systems is related to logic
of modulo-2 addition.

By means of dyadic groups, a special family of (2"*2")-matrices can be constructed which
are termed “matrices of dyadic shifts” and which are used widely in technology of discrete
signal processing [Ahmed, Rao, 1975; Harmuth, 1977, 81.2.6]. Fig. A1l shows examples of
bisymmetric matrices of dyadic shifts. In these matrices their rows and columns are
numerated by means of binary numbers of an appropriate dyadic group. All matrix cells are
numerated by means of binary numbers of the same dyadic group in such way that a binary
numeration of each cell is a result of modulo-2 addition of binary numerations of its column
and its row. For example, the cell from the column 110 and the row 101 obtains the binary
numeration 011 by means of such addition. Such numerations of matrix cells are termed
“dyadic-shift numerations” (or simply “dyadic numeration”).

00 (0) | 01 (1) [ 10 (2) | 11 (3)

01 00 (0) J 00 (0) | 01 (1) [ 10 (2) | 11 (3)
01 01 (1) o1 (1) | 00 (0) | 11 (3) | 10 (2)
1]1]0 10 (2) [ 10 (2) [ 11 (3) J 00 (0) | 01 (1)
11 (3) | 11 3) | 10 (2) 01 (1) | 00 (0)
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000 (0) [ 001 (1) [010(2) [011(3) | 100 (4) |101(5) |110(6) | 111 (7)
000 (0) J000(0) |001(1) |[010(2) |o011(3) J100(4) | 101 (5) |110(6) |111(7)
001 (1) J001 (1) |000(0) |011(3) |010(2) J101(5) | 100 (4) | 111 (7) | 110 (6)
010 (2) J010(2) |011(3) | 000(0) | 001 (1) J110(6) | 111(7) | 100 (4) | 101 (5)
011 (3) J011(3) |010(2) |001(1) |000(0) J111(7) | 110(6) | 101 (5) | 100 (4)
100 (4) | 100 (4) | 101 (5) | 110(6) | 111(7) J000 (0) | 001 (1) |010(2) | 011 (3)
101 (5) | 101(5) | 100 (4) | 111(7) | 110 (6) J001 (1) | 000 (0) | 011 (3) | 010 (2)
110 (6) | 110(6) | 111(7) | 100(4) | 101 (5) J010(2) |011(3) | 000 (0) | 001 (1)
111 (7) |111(7) |110(6) | 101 (5) | 200 (4) Jo11(3) |010(2) | 001 (1) | 000 (0)

Fig. Al. The examples of matrices of dyadic shifts. Parentheses contain expressions of the
numbers in decimal notation.
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