Preprint
Article

Deriving Aerosol Absorption Properties from Solar Ultraviolet Radiation Spectral Measurements at Thessaloniki, Greece

Altmetrics

Downloads

272

Views

388

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

03 September 2019

Posted:

04 September 2019

You are already at the latest version

Alerts
Abstract
The gap in knowledge regarding the radiative effects of aerosols in the UV region of the solar spectrum is large, mainly due to the lack of systematic measurements of the aerosol single scattering albedo (SSA) and absorption optical depth (AAOD). In the present study, spectral UV measurements performed in Thessaloniki, Greece by a double monochromator Brewer spectrophotometer in the period 1998 - 2017 are used for the calculation of the aforementioned optical properties. The main uncertainty factors have been described and there is an effort to quantify the overall uncertainties in SSA and AAOD. Analysis of the results suggests that the absorption by aerosols is much stronger in the UV relative to the visible. SSA follows a clear annual pattern ranging from ~0.7 in winter to ~0.85 in summer at wavelengths 320 – 360 nm, while AAOD peaks in summer and winter. The average AAOD for 2009 – 2011 is ~50% above the 2003 – 2006 average, possibly due to increased emissions of absorbing aerosols related to the economical crisis and the metro-railway construction works in the city center. A detailed analysis of the uncertainties in the retrieval of the SSA and the AAOD from the Brewer spectrophotometer has been also performed.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated