Preprint
Article

Optical Trajectory Manipulations Using the Self-Written Waveguides Technique

Submitted:

04 September 2019

Posted:

05 September 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In this paper, first the Self-Written Waveguide (SWW) process in wet photopolymer media (liquid solutions), are examined for three examples: single-, counter-, and co-fibers exposure. Then the SWWs formed inside solid material are examined including the effects of manipulating the alignment of the fibers. In all cases high precision measurements are used to position the fiber optic cables (FOCs) before exposure using a microscope. The self-writing process is indirectly monitored by observing (imaging) the light emerging from the side of the material sample during SWW formation. In this way the optical waveguide trajectories formed in an Acrylamide/Polyvinyl Alcohol (AA/PVA) a photopolymer material (sensitized at 532 nm) are examined. First the transmission of light by this material is characterized. Then the bending and merging of the waveguides which occur are investigated. The predictions of our model are shown to qualitatively agree with the observed trajectories. The largest index changes taking place at any time during the exposure, i.e. during SWW formation, are shown to take place at the positions where the largest exposure light intensity is present. Typically, such maxima exist close to the input face and the first maximum is referred to as the location of the Primary Eye. Other local maxima also appear further along the SWW and are referred to as Secondary Eyes, i.e. deeper within the material.
Keywords: 
Subject: 
Chemistry and Materials Science  -   Polymers and Plastics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated